Isometric embedding of a smooth compact manifold
with a metric of low regularity

Anders Killén

1. Introduction

Let X be a compact C= manifold of dimension n>1 with a C* Riemannian
metric G. By an isometric embedding of X in RY we mean an injective function
UcCY(X, RY) which induces the given metric, that is

(L.1) (dU, dU) =G.

Nash [7] proved that if G€C® there is an isometric embedding U¢ C'(X, RY) pro-
vided that N=n+2 and that there is a differentiable embedding of X in RY, in
particular if N=2n. Nash also indicated that the condition N=n+2 could be
weakened to N=n+1, which was proved by Kuiper [6]. It should be observed
that (1.1) in local coordinates means n(n+1)/2 equations for N variables. For G€C¥,
k=3, Nash [8] also showed that there is an embedding UcC*(X,RY) if
N=n(3n+11)/2. The condition on N has been improved for smooth metrics to
Nz=n(n+1)/2+3n+5 by Gromov and Rokhlin [3], who also gave lower estimates
for the embedding dimension of the same order of magnitude for k=2. This result
of Nash was extended by Jacobowitz [5] to Holder classes H* with a>2, and he
also showed that there are metrics GEH?, §=2, such that (1.1) has no solution
UcH*(X,RY), a=>p, for any N.

The result of Nash—Kuiper shows in particular that there is always a local
embedding of X in R"**1, Borisov [1] has announced that if G is analytic there is
a local isometric embedding U€ H*(X, R"*1) with any a<1+1/(n®+nr+1). Thus
o is close to 1 if n is large. The low regularity seems to be caused by the demand
for a low codimension, for by permitting large values of N we shall prove

Theorem 1.1. If GcH?, 0<Bf=2, then the equation (1.1) has a solution
UcH*(X,RY) if a<1+/2 and N is sufficiently large. On the other hand, if 0=f<2
the set of all GEH? for which (1.1) has a solution Uc H*(X, RY) with a>1+§/2
is of the first category.
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The proof of the first half of Theorem 1.1 uses ideas from Nash [7, 8]. We give
a general outline here.

To solve equation (1.1) for given G we want to find an appropriate iteration
scheme producing metrics G,, k=0, 1, ..., G,~G, and functions U,€C=(X, R"),
U=lim U,c H*(X, RY), k=0, 1, ..., such that

(1.2) (dUk, dUk) = Gk+ek'

Here the error term e, is to be so small that it almost can be corrected in the next
step.

To construct U, , from U, we perturb U, in normal directions. However, this
introduces a difficulty; if U,€C" then the normal will only belong to C*~! and so
will Uy, ,. Nash [8] overcame this problem by requiring that the perturbation should
be normal not to U, but to Sp, Us, where S, is a smoothing operator. We therefore

define
(13) Vg1 = Uk+1—Uk = 2; ck,ka,s,

where {{, .} is an orthonormal system of normals to the range of S, U, and C; ,
are real valued functions on X. In terms of the coefficients ¢, , the equation
(dU,,,,dU, ,)=Gy can be written in the form

1.4 2 ([dcy, ) +2¢,,,(dSe, Uy, diy,5)) = Gisr— (Gr+e) —E;

where we shall always neglect the error term
E = 2((dUk5 dvy 1) — 2" ¢.s(dSp, Uy, dgk,s))+(dvk+la dver)— 2 (dey,

If GeHP, B=>2 we can simplify (cf. [S, 8]) (1.4), by also omitting the quadratic

term, to
2 2; Ck‘s(dSo,‘Uk, agy, ) = my,

2; ck,s(dzsok U, Gi,) = —my/2.

that is

Here m, is close to G,,,—G,—e,. This linear system of equations for ¢, gives
an iteration scheme which leads to a solution u€ H® of (1.1). For details in this
case see for instance Hérmander [4].

If Ge H?, B<2, this does not work because now the quadratic term is dominant.
Using an idea in [7] we take U, to be a C* embedding of X in R" such that g=G—
(dU,, dU,) is positive definite. Then split g into a geometric series with terms

g=0""(1-0""¢g
and define
G, = (dU,, dUo)'f'Z:—l 8;-
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Then G, ,—G,—e,=g.—e,, and with 6, and @ properly chosen it turns out
that g, —e, is the dominant term on the right hand side of (1.4) and that it is positive
definite. But then

my = Sp, (8 —ex)

will also be positive definite and we want to solve
(1.5) Zs ((dck’s 2+2ck,s(dS0kUk, de,s)) = mk.

This non-linear equation we cannot solve exactly but with the accuracy the iteration
scheme requires. This can be done because of the following observation made by
Nash in [7]. Write (formally) half of the functions ¢, ; as a; ,cos (8, ¢,)/6, and the
other half as a, ,sin(6,¢,)/0, where ¢, are linear functions in local coordinates.
Then

25 (de, ) = 2, (a8, (do)*+(day, /8

and it turns out that the dominant term of the left hand side of (1.5) is 3, a ,(do,)%.
But since any positive definite matrix is the sum of » squares of linear forms we
can solve the system

2: aﬁ,,(d(p,)z = my.

With a rather heavy use of the inverse function theorem, we can than solve (1.5)
with the required accuracy. In this way we obtain an iteration scheme that for any
a<1+p/2 gives a solution UCH* of (1.1).

The second part of Theorem 1.1 follows by the usual derivation of the Gauss
equation in differential geometry, where derivatives are replaced by smoothed
differences.

We leave it as an open question whether (1.1) has a solution U¢ H* with =14
B/2 when GeéH? 0<B<2 and also how large the dimension N in Theorem 1.1
has to be.

Finally T want to express my gratitude to Professor Hoérmander for helping
me constantly with the following work.

2. Preliminaries

In this section we shall collect some facts that will be needed in the proof of
Theorem 1.1. First we shall review briefly some classical facts on Holder classes
(cf. Hérmander [4]). Then, in Lemma 2.3., we shall define a special covering of
the manifold X and decompose Riemannian metrics in a way that will suit the
iteration scheme in the proof of Theorem 1.1. This iteration scheme also requires
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the existence of a family of globally defined normal vector fields for embeddings
of X. Such fields will be constructed in Lemma 2.4.

We start with discussing Holder classes. Let B be a fixed convex compact set
in R* with interior points. For a continuous real valued function defined in B we set

luls = sup |u(x)—u()|/|x—y*
x,y€B

if O<a=1. If instead k<a=k+1 where k is a positive integer, we set for
u¢ C*(B, R), the space of k times continuously differentiable real valued functions
in B,

Iuln = 22al=k ]aaula—lv

Here 0* denotes an arbitrary partial derivative of order |«].

Definition 2.1. If k<a=k+1 where k is an integer =0, then the Holder
class H®(B,R) is the set of all u¢C*(B,R) with |u|,<c and the norm |u|,=
|u],+sup ju|. Weset HO(B,R)=C?(B,R) and |luflo=sup |u|.

For functions u=(y, ..., u,) with values in B'SR™ we write u¢ H*(B, B’)
if all coordinate functions u;€ H*(B, R). We then set

”u”a = Z?:l ”uj”a'

These Holder classes have the following six properties. H1—H3 and HS were
proved in Hormander [4]. H6 is a discrete version of Theorem A.11 in [4] and will
be proved here. H4 is an easy consequence of H2 and H 3 which we shall also prove.

H1. H® is a Banach space which decreases when a increases. For 0=a=b
and & bounded, O<f¢<1, there is a constant C such that
lulla = Cllullys  Nullasa-ns = Clullalulz=".

H2. H° is aring. When q is bounded there is a constant C such that

luvll, = C(lullallollo+lullolvll,)-

H3. H*® is closed under composition. Let B; be a compact convex subset of R™,
If g€ H*(B,, B,) and fc H*(B,, R™) then fog¢ H*(B,, R™) and we have the following
estimates
Ifegla = CIfILlgli+1 N lgla+1fl0), a=1;

Ifeglla = min(fl,Ngla, IflIgID+1fle, O=a=1

Properties H2 and H3 allow one to define H*(X, R™) if X is any compact C=
manifold. To do so we cover X by coordinate patches Q; and take a partition of
unity > x;=1 with x ;€Cq (25, R). A function u on X with values in R is then
said to belong to H°(X, R™) if yx;u for every jis in H* as a function of the local
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coordinates, and |u[|, is then defined as 3 |x;ul, with the terms defined by means
of local coordinates. The definition of H*(X, R™ does not depend on the choice
of covering, local coordinates or partition of unity, and the norm is well defined
up to equivalence. Similarily we can define H*(X, E) for sections of a C* vector
bundle E over X; the only new feature is a change of trivializations of the bundle
over coordinate patches.

HA4. Estimates of a non-linear differential operator. Let F(x, U) be a smooth
function of x¢B and U= {u,}, =, Where B is a compact convex subset of R" with
interior points, u,¢RY and a=(x, ..., «,) is an n-tuple of non-negative integers
with sum |a|. Let & be the corresponding partial differential operator acting on
functions u defined in B and with values in R" defined by @ ()= F(-, {0*u(*)}pi=m)-
For u, v€e H™**(B, RY) with ||u|,,=C, where C is a fixed constant, we then have
the estimates

D 12@la = C(A+ttllmra)
(i) |12 +0)— 2l = Ca(lvlmratlttlmsallolm)-

Here (i) follows from H3 with f=F and g: BYx—(x, {0°u(x)}) if we observe
that (], +1§C|]u|]}n/1a when a=1. (i) then follows from the mean value theorem,
(i) and H2. These estimates easily carry over to the case where @ is a differential
operator of order m carrying sections of a vector bundle E over X to sections of
another vector bundle F over X. Such an operator is defined to be a functional
which over every coordinate patch where E and F are trivial has the above form
with respect to the local coordinates and trivializations of the bundles.

HS5. Existence of a smoothing operator. Let E be a C™ vector bundle over a
C* compact manifold X. Then there is a smoothing operator S,, §=1, such that
for uc H*(X, E)

@) [Souly = Cyliulas 0=b=gq;

() Soully = C,0°~“ull,, 0=a=b;

(iii) [|lu—Seul, = C,0°~°|ull,, 0=b=a.

H6. A characterisation of H* when o is not an integer. Let E be a C™ vector
bundle over a C~ compact manifold X, and assume that the interval I=[x—e, o -4-¢]
does not contain an integer. Let »;€C~(X, E) be sections and assume for all
acl that

lojll, = K85~%, j=0,1,..

where 60;=0,0' with §>1. Then it follows that
@n U=2g v;eH*(X, E), |Ul,= CK/(1-07%)

where C, is independent of 6 and 0,.
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Proof. We can assume that v;€C> (B, R) where BSR" is compact and convex
and that 7E]0, 1[. If & is an integer = — 1, then we have

(2.2) 2o Ivjllare = K 2505 = KO3/(1-679)
e I0illacy = K 37, 05° = KOH/(1-079).
Set d=|x—y| and assume first that d<1/0,. We can then find an integer k=0
such that 1/(d0)=0,<1/d. If we use this value of k in (2.2) we get
lu(x)—u(y)| = 2Kad*[(1-67°).

If d=1/0, we choose k= —1 in (2.2) and get

u(x)—u(y)| = d*~2K65/(1—0-%) = Kd*/(1—67%).
Summing up we have

sup |u(x)—u)|/|x—yI* = 2K/(1-679)
x,yEB
which proves the statement,
Our next aim is to decompose metrics close to a given one. The corresponding
algebraic decomposition is given first in the following lemma.

Lemma 2.2. Let g be a positive definite quadratic form in R". Then one can find
linear forms L,, t=0, ..., s,=n(n+1)/2 with affinely independent squares and

g = 2 Lif(sa+ -

Proof. We can first write g=>7* I? with linearly independent linear forms
/; and then choose additional linear forms L,, t=n, ..., s, such that all the squares
I and L} are affinely independent. For small ¢>0 we have

g 30 L= 370

where L; is close to /; for j<n if ¢ is small. But then the squares of the forms L,
for =0, ..., s, will be affinely independent, and if we multiply the forms by (s, + 1)*/2
or (s,+1)Y2e~V2 the lemma is proved.

Note that the affine independence means that any quadratic form 4 can be
written in a unique way

h= 3L Ak =1.

Here A,(h) is an affine linear function of & with 4,(g)=1/(s,+1).

In the following lemma we denote by S%7T*X) the vector bundle over X whose
fiber over x€X is the vector space of symmetric bilinear forms on T, X. Recall
that we have introduced the notation s, for the fiber dimension.
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Lemma 2.3. Let g be a given positive definite continuous section of S?(T*X).
We can then find

() a covering of X by finitely many coordinate patches Q;, j€J, such that the
index set J is a disjoint union Jyu ...V J, , and

2.3) QnQ;=0 if i#j and i, jcJ,,

(ii) functions x;€ C5(Q;, R) with 3 xi=1,

(i) functions @ieCy (X, R), jeJ, t=0,...,s,, which are linear in the local
coordinates in Q;,

(iv) a neighborhood Wy of g in H*(X, S*(T*X)) and a neighborhood W, of the
zero section of S*(T*X) in H(X, S*(T*X)), with the following properties: If
me W, and Mic W, for all j and t we can find real valued continuous functions a; on
X such that

Q4 mE) =2 je; 2o (O x)al 0)2(do+x;(x) af (x) Mi (%)), x€X.
Here

@.5) af = FI({M}),m), FicC=;
(2.6) laflle = 1.
H 3 then implies the estimates
@.7) lafly, = Co(1+Imls+ 3, , IME), b=0.

Proof. We shall first show that the choices (i)—(iii) can be made so that there
is a neighborhood V of g(X) in S2(7*X) and b/¢C~ (¥, R) such that
Q8  m= 3, S, ((b(m)de)? i meV o SUT*X),.

For any point x€X we can choose a coordinate neighborhood @, with local
coordinates y,, ..., y, vanishing at x, and in w, we can write

g(x) = 2 gun(y) dy; dy,.
By Lemma 2.2. we can then choose linear forms L,, t=0, ..., s,, such that
g(0) = 25" dL,(y)*/(s,+ 1),
and every quadratic form % in dy can be written uniquely
h =2 A dL»y)», X i) =1
Let w; be a neighborhood of x which is relatively compact in @, such that
A(g(@) = 1/2(s,+1) if z€w}.

Then {w}},.x is an open covering of X. Since X is compact there is a finite sub-
covering and it can be refined to a covering {Q,};., such that no point in X belongs
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to more than n+1 different Q;. This implies (i). Choose y; satisfying (ii). If Q;,C o,
we set with the notations used above

@i(2) = L(y(2), bi(m) = A, (m)"*
if z€Q; and mecS%2(T*Q;) is so close to g(x) that A,(m)>1/2(s,+1). We can
extend ¢/ and b/ to C> functions on X and a neighborhood of g(x) in S2(T*X)

respectively, and have then proved (2.8).
Now define

o(x, (M}, {ai}) = 2 ((; () ad)*(doi)*+x;(x)al M) € SHT*X),
for a/€R and M€ S*(T*X),. Let Q be the number of indices j and 7. This induces
a fiber preserving C* map
@: SUT*X)2D (XXRY —~ SHT*X)2S:(T*X)
defined by taking

D(x, (M}, {ai}) = (x, {Mi}, o (x, (M}, {al})
in the fiber over x. Here @ denotes the Whitney fiber sum.

Now (2.8) means that there is a neighborhood V of g(X) in S?(T*X) such

that the restricted map
0D (XXR?) ~ 0pS2(T*X) (0 means the zero section)
nas a right inverse 0®¥V-~0D(XXR2). This can be trivially continued to a map
¥ SHT*X)2@V ~ SAT*X)2® (XXRY)

by defining ¥ (x, {M]}, m)=(x, {M]}, {b{(m)}) where bj(m) are defined by (2.8).

Now Poy|0® V=identity on 0¥, and this implies that the differential of
Poy at (0, V)E0D SAHTFX)c 08V has the triangular form

[‘: i‘;]: SATE X)2@T,SHT*X) ~ SHTX)2® T,S2(T*X).
(If E is a vector bundle over M, then TE can at the zero section be identified with
E®TM; regard SX(T*X)2® S(T*X) as a vector bundle over S*(T*X).) It is
therefore invertible. If we take a relatively compact subset ¥; of V the inverse
function theorem then gives a neighborhood U of the zero section of S2(7*X)?
and a C* map y, from U@V, into S2(T*X)2@V such that Poy oy, =identity
on U V,. Thus
Yoy, : UBV, — SE(T*X)?B(XXR2)

is a right inverse to ¢. It is clear that we can assume U and ¥V, so small that
Yoy (U Vl)g{(x, {M7}, {a)e S2(T*X)2B (X XR2); Oéa{él}. This implies (iv),
(2.4) and (2.6).



Isometric embedding of a smooth compact manifold with a metric of low regularity 37

Finally we shall construct normal vector fields for embeddings of X.

Lemma 2.4. Let u, be a given C= embedding in RY of the n-dimensional compact
C*= manifold X, where N=p+2n. We can then find an orthonormal family {{;}}
of C* normals to uy(X). This means that {; is a C* function from X to RY such that
({i> dug)=0 and ({;,(;)=0;;. Moreover we can find a first order differential operator
v—{,(v) defined in a H'-neighborhood W of u, such that {{;(v)}} is an orthonormal
Samily of normals to v(X) and {;(u)={;.

According to (i) in H4 we then have the estimate

(2.9 IO = CA+vlz+), i=1,..,p, a=0.
For the proof we need the following well-known

Lemma 2.5. Let X be an n-dimensional compact C* manifold, E a sub-bundle
of XXRY and E* its orthogonal bundle. If the fiber dimension of E* is at least n+1
there is a C™ section over X of the unit sphere bundle of E*.

Proof of Lemma 2.5. If k is the fiber dimension of E* then dim E=n+N—k<N
and according to the Morse—Sard theorem the image of the projection of E on
RY is not all of R". Now take an element of R" not in this image and project it
orthogonally on E} for every x in X. The wanted section is then obtained from
a normalization.

Proof of Lemma 2.4. We identify X and u,(X) and define {; by taking E=TX
in Lemma 2.5. Then define successively {, by taking E=TX®F,&..®F,_, with
F={(x, t{,(x)): x€X, t€R}, noting that N—(n+k—1)=>n if k=p.

Now take a tubular neighborhood Q,, of X in R¥ with projection map g: Qy—~X.
We can then continue these vector fields to a full neighborhood of X in RY by
defining Z,(»)=(,(q(»), y€ Q. If v is another C~ embedding of X in RY close
enough to u, in the H'-topology, we can recursively define {;(v)(x) by subtracting
from Z,(v(x)) its projection on the space spanned by the tangent plane at x of v(X)
and {,(v)(x), ..., {;_;(v)(x) and then normalizing. The lemma will be proved if
we show that there is a neighborhood of u, in the H*-topology where the procedure
above defines a differential operator v~{;(v). To do so let B be a compact subset
of a coordinate patch in X and let 9; denote differentiation in the local coordinates.
In order to compute {;(v) with respect to these coordinates let

1n:(v) = Ziov_2;=1 r;;(v) 9;v
where r;; are given by
0 = (1;(v), &v) = (Ziov, fv)— 37, 1i; ()00, v) k=1,....n.
The matrix ((9,v, 9,v)) is invertible if v is close to u,, and since Z,, ..., Z, are given
C= functions it follows that r,,(v) is a C* function of v and v, ..., d,v, thatis,
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a first order differential operator for v in a neighbourhood of u, in H!(B, R") with
r;j(u)=0. The estimate (ii) in H4 then shows that if v is close enough to u, in
H*(B, R") then {,(v)=n,(v)/|n,(v)| is well defined as a first order differential oper-
ator in v. Now {;(v) is defined recursively. Suppose that {;(v), ..., {,_,(v) are already
defined. Then put

0 (®) = () — 2721 (Ziov, {;@)¢,0)-

Since 6, (u4p)={,, H4 again shows that we can normalize, and thus define {,(v)=
8, (v)/16,(v)], if v is close enough to w, in H*(B, RY).

3. The Embedding Theorem

In this section we shall prove the first half of Theorem 1.1, with an estimate
of N. Suppose that G€H*(X, S2(T*X)) is positive definite, 0<f<2. If 1<a<
1+p/2 and N=3(n+1)(m2+n+2)+2n, then we shall prove that there is an
embedding U€ H*(X, R") such that

3.1 U, dU) = G.

We can of course assume that a>max(l, 8) and that N=N,+N,+N,
where N;=2(n+1)(s,+1)+2n and N,=N,=2(n+1)(s,+1). In order to con-
struct an embedding that solves (3.1) we first take, in the terminology of Nash [7],
ashort embedding, thatis a C* embedding u, of X in R™: such that g= G —(du,, du,)
is positive definite. Such an embedding can be constructed from any C* embedding
of X in RM by a change of scale in R™:.. The embedding u, defines an embedding
Uy of X in RY by Uy(x)=(up(x),0). By successively constructing functions
U, € C=(X, RY) we shall increase the C metric (dU,, dU,) to the metric G. To
do so we introduce the notation y=2(x—1) and decompose the metric g so that,
with a large parameter 6,

&= Z:gi where g; = 9_i7(1—0'7)g,

The aim of the iteration scheme is to make

(3.2 e = (dU,, dU)—(dU,, dUo)"'Z:_lgi
much smaller than g, and the difference
(3.3) u=U—Us,

so small that U, has a limit U< H*(X, RY).
First we choose ¢=0 with the following three properties:

P1. If ueC*(X, R™) and |ju—ul,<¢ then u is an embedding.
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P2. If m, MJ, jeJ, t=0, ..., s, are sections of S2(T*X) such that [|m—glly<e
and ||M}|,<e for all j and ¢ then we can decompose m according to (2.4).

P3. When [u—ul;<e, ucC=(X,RM), then there exist 2(m+1)(s,+1)
orthonormal vector fields {, ,(v) I=1,...,n+1, s=0, ..., 25,+1, normal to u(X),
which are first order differential operators in u. We set Cﬁ(u):{,’s(u) if jeJ, (see
Lemma 2.3).

The existence of this =0 follows from Lemma 2.3 and Lemma 2.4 together
with the fact that the set of embeddings is open in C'(X, R™) (see Golubitsky—
Guillemin [2], Ch 2, Prop 5.8). Let 0,=0,0° where 0, is a large parameter. We
assume that §=2 and 6,=2.

Lemma 3.1. It is possible to find a constant K=1 such that whenever 0 and
0,/0 are large enough there exist embeddings U,c C™ (X, RY) such that with e; and
v; defined by (3.2) and (3.3) and i=1,2, ...,

(3.4 lodl, = K63~10¢=f, O=a=4;
3.5) e, = %89;-'_10“7, O=a=§
The proof of Lemma 3.1 occupies the major part of this section and it gives
easily the statement made at the beginning of the section.
Lemma 3.2. From (3.4) and (3.5) it follows that
(3.6) U=U,+37 v;€ H(X,R"Y)

and that U satisfies (3.1). Moreover, if we suppose (3.4) to hold only for i=1, ...,k
and set bt =max (b, 0) then we have the estimate

(3.7) 1Ukla = CKOF@-16239°, 0=a=4,
where L(a)=max (1, min (g, o)).
Here and elsewhere constants C are independent of 6, @ and K.

Proof. First we fix a §>0so0 that 1 <a—d<a+d5<2. Then (3.6) is an immedi-
ate consequence of property H6, and this property also shows that

IU=Uoll. = CKO;~Y/(1—077).
From (3.4) we get the estimates
NU—Udlly = K65~ 371 64~% = KO3~ 104-3/(1—6°~%)
NU—=Uylls = KO5~Y/(1—0"%) if 0=a=a—4.
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In view of the logarithmic convexity in H1 we then get
U, —U,l, = CKOpin@a-1ge-0* " (0 =<gq =4
This implies (3.7). Moreover, using (3.4), (3.7) and (2.1)
1(dUy, dUY—(@U, dU)|, = C(IUl, +1U DU =Ullp
=CK20571 37 64 -* = CK2057 10, /(1-0*"%) -0 as k —oo.

Since [le,l,>0 as k— < this implies (3.1). The lemma is proved.

The first two steps, that is, the definition of U, and U, respectively, wili differ
slightly from the others. The reason for a separate first step is that we want to be
able to apply Lemma 2.4, and in it we are going to alter U, in R”:, that is, in the
coordinate directions in which U, vanishes. The reason for the second step, in which
we are going to alter U, in R™s, that is, in the coordinate directions in which U,
vanishes, we will return to. In the remaining steps we are only going to modify
the first N, coordinates. Let 1, denote the projection of U, on the first N, coordinates.
Then (3.4) gives us the estimate

B8 Ju—uoly = [U—Uyly = K S5 0109 = KoO=9(1 -0 < ¢

if we only take 0 sufficiently large. Hence U must be an embedding. The fact that
U is an immersion follows of course also directly from (3.1).

The first step. Define my=_S, 8. From the definition of g, and HS (iii) we
get the estimate
Imo—gllo = CO3*ligllg+07)lgllo-

If we take 6 and 0, large enough, this will be less than &. Lemma 2.3 then gives us
functions a} , such that

39 mg =2 (x;0,0°(dei).
Using HS5 (i) and (i) we get

Imyll, = COE=8* gy, 0=a=4.
Then (2.5) and H3 implies
3.10) lad ll, = CO*~#*, O0=a=4.
We can now define
U = Zj, t Xj a({,t(cos (o) U+ +sin (B, 0)) ’I(J;, t)/eo .

Here the normals are defined so that if j€J, then (] ,=e, and nf,=e, n >
v=N,+ (k—1)(s,+1)+£+1, where ¢; is the i*® basis vector in R". In order to

prove (3.4) we observe that (3.10) implies
llag, cos (B @), = C(OF~P"+0§) =2C65, 0=a=4,
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if we also use H2 and H3. Of course we get the same estimate if we substitute
sin for cos. Summing up we get the estimate

(3.11) logll, = Co02* = Co03-162-%, 0=a=4.

Here C, is a constant independent of 8,, so this will give (3.4) for i=1 if we take
K larger than C,. We will not fix the value of K before having considered the
general step.

In order to get (3.5) for /=1 we compute

&, = (dUy, dUp)—(dU,, dUp) — g, = ((d”u dvl)—m0)+(m0—g0)'

Then H5 (iii) gives
(3.12) me—golla = CO~*(glg, O=a=8p.

If we differentiate v, and use (3.9) and the fact that the normals are orthonormal
and constant we get

(dvy, dv)—my = 3, (d(x;ai,))?/65.
Using H2, H3 and (3.10) we get the estimate
(3.13) I(dvy, dv)—molla = 3, 65 [|(@Gt; ad, )
=C ;050108 darilinyad, Jl, = COPI-P*+0=-P*-2 0=q=§.

Here the exponent is less than a—pf which is obvious if f=1; if 1<f<2
it is easy to see that (¢+1--8)+ —2=a—f. Combining (3.12) and (3.13) we obtain
the estimate

lela = CO5~%, 0=a=8,

which implies (3.5) with i=1 if we take 8,/0 so large that
CO'05 % = C(0/0,)f = %a.

The second step. Define m;=S, (g,—e,). Since g;=07"g, we get, using (3.5)
and HS5 (iii)
160" my—gllo = 0”|my—g1llo+1107g,—gllo
= 0"(COr P gl 077+ 1So,e1—exllo+ llegll) +67 1 gllo
1 1
= ~B __ o8 N4 —
= C(O +5 07" +07) +5 &
If we take 0 so large that the first term is less than ¢ this implies
167 my—gll, < e.
Thus P2 is fulfilled and according to Lemma 2.3 we can find functions af , such that
(3.14 0"m, = 2 ;, (1,0 af, )*(doi)’.
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From the definition of m; and (3.5) with i=1 if follows that
16" myll, = CO" (gl +lesll) = CO5, 0=a=§;

16 my)l, = COLO:-8 = CO-205, B=a=A4,

using HS. According to (2.5) and H3 this implies that
laf l, = CQ+Co-min@Pgng=r2 0=aq=4.

In particular we have the estimates
(3.15) lla I, = CO20="2, 0=a=24;
(3.16) lai . = C(O~1+0-F)0;0-"2, 1=a=4,

when 6,/0 is large. The second estimate is crucial when we estimate e,.
We now define

Uy = 2;,; Xj a{.t(cos 6, ‘P{)C{,t'i‘sm (01(/’{)'1{,:)/01-

Here the normals are defined so that if j€J, then (] ,=e,, n =€, ,y 5, p=N1+
Ny+(k—1)(s,+1)+¢+1, where ¢; is the i™® basis vector in R". In order to prove
(3.4) for i=2 we observe that (3.15) implies

lai,; cos (0, 0], = CO67, O=a=4,

and that we have the same estimate if we substitute sin for cos. This implies the
estimate
(3.17) o, = C,0¢-20-7% = C,05-16¢-°, 0=a=4

Here C; is independent of 8, and 8, so this will give (3.4) for i=2 if we take K
larger than C;.
In order to get (3.5) for i=2 we compute

ey = (dU,, dU,)—(dU,, dUy) —(go+ g1) = ((dv,, dvy) —my)+(m,— g, + €)).
Using HS5 (iii) and (3.5) for i=1 we obtain the following two estimates
1S5, 81—81lla = COTP gl 050~7 O0=a=p;
ISs,ex—esll, = COT~Flleyll, = CH-PO50-7 = CO'-PO60-, O0=a=p.
In view of the definition of m, it follows that
(3.18) Imy—g+ell, = CO-26:0-2 0=a=S§.

As in the first step, we get

(dvy, dvp)—m, = 2],, (d(Xj af, :))2/03
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and using (3.16) this shows that
(3.19) (dvy, dvy) —my|l, = COT2(02+0-2P)05+20~7
=CO-P920-», 0=a=p.
Combining (3.18) and (3.19) we obtain the estimate
legll, = CO"-#610-*, 0=a=p,
which implies (3.5) with i=2 if we take 0 sufficiently large.

The general step. We shall construct U, from U, k=2. Since we shall only
work in the N, first coordinate directions this means the construction of %, from
u,. Let

i, = S, ty.

We start with defining some vector fields. If 8 is sufficiently large then (3.7)
with a=o implies in view of H5 (iii) that |# —u,<3e Together with (3.8)
this shows that | & —u,|, <e. According to property P3 of ¢ we can then define
the normal vector fields

Le=Um), jeJ, s=0,..,25+1,
and (2.8) gives the estimate

1L, sle = Ce(I+lllarr), 0=a=4.
In view of H5 and (3.7) this gives the estimates
(3.20) 16l = COpinteria-tget-a: 0=a=3;
(321 ICholle = CxO* 05720517, 3=a=4,

for the unit vectors (] ;. Here and elsewhere constants Cy depend on K.
Now define

(3.22) my = Sy, (8—e)-
Lemma 3.3. We can find real valued C= functions c,{’s with support in Q;,
(3.23) lici s = CO3~105~% 0=a=4,
such that
(3.24) Ry =m—3, , ((dc], )2+ 2¢], (dik, dti,,))
has the estimate
(3.25) (R, = Cx0~2020-C+D>r 0 =g =8

We postpone the proof of Lemma 3.3 in order to prove that it allows us to complete
the proof of Lemma 3.1. Define

U1 = Zj,s cz,sCi.s'
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In order to prove (3.4) for i=k+1 we estimate the a-norm of v, for a=0 and
a=4:
ogsalle = Zj,s IICi,sIloIICi,sllo = Co! P

vesalls = C 3, Aled lalith sho+lled, dlo 1L, sll0)
= C(B- 031+ Cp 107207205105 —%) = COF104~*(1+ C 02460~ 9),
Here we have used H3, (3.21) and (3.23). If we take 0 so large that
Cyt=1,
the logarithmic convexity of H1 implies that
(3.26) lvgsalle = C.0572657% O0=a=4.

Now choose X equal to the maximum of this constant C, and of the constants
C, in (3.11) and C, in (3.17). Then (3.4) with i=k+1 follows when 8 and 6,/6
are large enough.

In order to prove (3.5) for i=k+1 we compute e,

ex+1 = (dUy41, AU, ) —(dU,, dUo)—Z"Sgi
=(dug 41, Aty ) —(duy, dug) + e, — g =[(duty 4 1, Aty 1) — (duy, duy) —m]+[me—git el

The term in the first bracket we call the iteration error and the term in the
second bracket the smoothing error.

The smoothing error. Using HS5 (iii) and (3.5) for i=k we obtain the following
two estimates
1Ss, g —gulla = Cliglls 087707, 0=a=p;

|.Se, ex—exlla = COE~Pllel s = COZ#6F_,0°"
= CO—fge—*+r 0=a=8p
In view of the definition (3.22) of m, it follows that

3.27) Im,—gitel, = COr—Pgag—%+1r Q0=gqg=8,
since k=2.

The iteration error. A direct computation gives
(duy v, dug ) —(duy, dug)—my = 2(duy, dvg 1)+ (g1, AVesr) — My
= 2((dup> dvgs)— 3 ol (s AL, )+ (d0isr, o) — 3 (def, )’ — Ry
if we use (3.24). The linear term can be estimated by
(3.28) (| (duy, dvg)— 35, ol (@it AL, o

= Cxf*ttr g5~ 0+, 0=a=4
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In fact, we have
(duy, dvgyy) = (d(up—), dvger)+ 3, of, (i, dC. )
since C,{_s are orthogonal to d#,. Moreover, by H2, H5, (3.26) and (3.7)
H(d(uk_ﬁk), dUk+1)“a = Cllug—ailla+2 10e s sl + e — Bl 10r 41l g 1)
= CO el a ol + 0k~ * lullalvesallas )
= Ci102-200220,205 = Cp2 417920~ %+17 Q=g B,

This proves (3.28).
The term (A1, dvg+)— 2, ((de] )* is a sum of terms

(Ci,s d(i, ) Wl{:s’) where wl{,s = (dci,s) Cl{,s or Wi,s = ci,st'l’;,s-
A factor ¢} .dl} , has an estimate
led,sdl,slla = Cllef alldd sl + e ol Ci, slla )
= Cpfi-10007%05- 1028 = C 0°-202(0,/0)%*D, 0=a = p.

Here we have used H2, H3, (3.20), (3.21) and (3.23). It is an immediate con-
sequence of the derivation of (3.26) that we have the estimate

Iwh,sla = Cx0i(00/0,)*Y, 0=a=§.
Now we have the estimate
(e, s dlh, s, wE Mo = Cllic, sl oWl sl
Flels dl sllollwh o ll) = Cx0*7265(6,/60*~Y
= Cy02000—%+ 0=g=B.
Here we have used 3k/2=k+1, thatis, k=2. The fact that this estimate is not
true for k=1 is the reason why the second step above could not be covered by
the general step.
Combining this estimate with (3.25) and (3.28) we obtain
I(dtty 4.1, dugr)—(duy, du) —my)| = C 0070~ *+D7, 0 =4q = p,
since a=f. In view of (3.27) we then get the estimate
lexsalla = Cx07-FO50-C+D7, 0 =qa= .

If 0 is large enough the coefficient will be less than %s, which means that (3.5)
is fulfilled for i=k+1.

To prove Lemma 3.1 it is therefore sufficient to prove Lemma 3.3.

as

s S

Proof of Lemma 3.3. Write formally half of the functions ¢}
x;ai,:cos (0,00, jE€J, t=0,..,5,
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and the other half as
xjai,ISin(Bk(p{)/ok’ ]EJ’ t=0’ ...,S";

where ¢/ are defined in Lemma 2.3. Then for (3.23) and (3.24) to be fulfilled it is
sufficient to find real valued functions af , with

(3.29 laf |, = CO2(6,/0,)*72, 0=a=4;

(3.30) 25,0 (Cyal, 02 (ol + 2,01, Mi, +(d (101, 0/6,)?) = m— Ry,
where we have set

(3.31) M, = 2(cos (6, 9{)(dit, d&f, ) +sin (0, ¢)) (ddy, dnf,,)/6,.

Here {¢],,ni,} isa partition of {{],} corresponding to the partition of {cf} made
above.

The construction of af, is made by a heavy use of Lemma 2.3. Let I be an
integer so large that «<2—p/(/+1). We then want to show that we can define
functions af:! by the formula

(33D afi*t = F("1M,, 09(m,— 3, , @(;al)/0)D)0", =0, ..., I-1,

aly =0,
where M,={Mj }, so that
(333) laf:ils = Ci67(6o/6,)* Y, 0=a=4+I-i;
(3.39) lalil, = Ci(0*2+0-P)050-%% 1 =a=4+1—i;
(3.35) 0 *||(d (s kD) — (dtsai= )P

= C(*2+0-F)+1020-%, O0=a=3+I-i

Here the constants C; depend on i and K and F; are the C> functions of (2.5).
Since (I+1)(@—2)<—p and

Ry =—3; 0c*((dy;al; 12— (dyaf:i ")),

if we choose af ,=af:{, this will prove Lemma 3.3.

It suffices to prove that the function afi*! fullfills (3.33)—(3.35) if af:} does.
First we prove that the right hand side of (3.32) is well defined. If we take 0 large
enough then the computation at the beginning of the second step gives

1Fm,—gl,=C (0,,‘” +%£0_ﬂ+0_7J +-;—s < 3g/4.

Using (3.31) and (3.20) we obtain
1672 Ml = CxOM26; 05716375 = Cx 0 <.
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and finally (3.34) gives
16%7(daf:i{0%o = Ci(6°2+07%)* < ¢/4.

In view of the property P 2 this shows that (3.32) is well-defined if 6 is large enough.
To obtain an estimate for af'{*' we first have to estimate the H%norms of 6*'m,
and 0*°Mj] . Repeating the estimate of 6”m, in the second step we get

(0 m), = Co—min@Pgs 0 =g =441,
and in view of H5 (i) the estimate of ||6*/2M] |, above can be extended to
6¥72M] |, = Cx6*~202, O0=a=4+1
Using (3.34) this gives
lafi*), = C(14+(Cg05-2+ CO-mint@®)gR)9—412, 0 = g = 3+1—i,

from which we deduce (3.33) and (3.34) for i+1 if 8 is larger than some number
depending on K and 6,/0 is large. This also gives (3.35) for i=1.

It remains only to prove (3.35) for i+ 1. First we note that if Fis a C* func-
tion of M/ and f, and |[follo=C then H4 (ii) implies

IF(M, fo+)—FOM, fo)lla = Co((IMIla+ 1 folla+ 1S lla+ DIF o+ 1£1L0)-
By definition
afi*'—afi = (F/M, fo+)+ F/ (M, fp))6"%, i>0,
M = 2M,, fo = 0 (m— 2, (d(xt;ali7)/6.)°)

f=023, 0:2(d(xsali=0)®— (@ al:h)?).

where

and

In view of the estimates above this implies that
laf:i+tt—alil, = C(0*2+0-F)+1080 92, 0=a=3+1-i
Using this together with (3.33) for i and i+1 we get the estimate
072 ||(d (a9~ (s ad: DY
= CO*((lafi* Navr+laf: s D ai* —af:iily
+(lal i+ lad i) lak i —af:ilava)
= Cpp (0 24-07F)+2020-%, O=a=3+T—i

This proves (3.34) for i+ 1, and therefore the first half of Theorem 1.1.
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4. A necessary condition on the regularity

In this section we shall prove the second half of Theorem 1.1. Since regularity
is a local property we can assume that X is a ball in R” with center at 0. The equation
(du, du)= g is then equivalent to n(n+1)/2 equations (;u, 9;u)=g;;. Let X, denote
the set of points in X whose distance to the boundary is at least 4.

Now fix ¢€Cy with support in the unit ball with [@dx=1 and define

do(x) = [v(x—hy) o (¥)dy for vECO(X,R), XEX,.

Then d, will be an operator depending on 4 and we make it a convention that for-
mulas involving 4, are valid in X, and formulas involving d,d, are valid in X,,.
Then we have the following properties:

(4.1) d,dyv = d dow, vEC;
4.2) d, 00 = d, 0,0, vECY;
@.3) dv=0(h), vEHe O=as=l;

4.4) dy(uv) = (deu)v+udo+O(h**Y) if ucH*® or u=O(h),
veEH? or v=0(h"), O0=a, b=1.

Here O(h) represents any function v(x, h) such that, for 4 in a neighborhood of
0, [v(x, h)|/|k| is bounded by a constant independent of x and h. (4.1)—(4.3) are
immediate consequences of the definition and the fact that

fakgodx=0, k=1,..,n,
and (4.4) follows from the formula
(dow) — (o —vd, W) @) = [ (0(x—hy)—v (X)W (x—hy)—w(x) 8,0 (7) dy.
Lemma 4.1. Let g=(du, du), u¢ H*, «>1, and set

1
L,(g) = 3 d,d;gp+did;gs—d.d;gn—d,d; gjs)'
Then we have the estimate
@4.5) sup |L,(g)| = Ch*e=V

Xon

Jor h small. Here C is independent of h.
Proof. First note that g€ H*'. Set y;=d;u. From (u,u;)=g;; we get
d 8y = (dyuy, uy) +(uy, dyuy) +O0(HED)
using (4.4). Permuting the indices and using (4.2) we obtain

(dyu;, uy) = T,-jk+0(h2(°“1))
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where

1
Tiﬂ‘ = E (dk gij+digjk_dj g,-k) = O(ha-—l)'
We can then write
46) du, =2 (Tp+0W)u,+Fy, (Fyu)=0, j=1..,n
with '
m=2,8" T = 0.
Here (g") is the inverse of (g;;) and belongs to H*~*. Using (4.6) and (4.4) we then

obtain
d-‘ d" Uy = Zm (dsTkT) um+2m le!dsum+dsti+0(hZ(¢_l)),

But T,:’i'dsum=0(h2(a-l)) since d,u,,=O(h*~"), and using (4.4) we get
&1 = 3, g"(d, Tu) + 2, (d,8™) Tine+ O (B*¢7)

=2 g™ d, Ty +O(h*D),
From this we deduce that

ddiuiy ) = 3, 1 8j 8" s Tig+(d; Fy, u ) +O(R2E),
Moreover, |F,;|=|d,u,| implies that F;=0(#* ") so
(dsFyy u)) = —(Fy, dgu)) + O (h2@V) = O(h**~Y),
Since 3, g,;8™ =9, (Kronecker delta) this shows that

(dsdiu;y up) = d Tip+O(hD).
The equation
(d;dyu;—didgu, “j) =0
then implies (4.5).

Lemma 4.2. Let E be the set of all gc H® with | gl,=C and
sup |L,(g)| = C'h#*:, O0<h<l1
Xon
Jfor some ¢=>0 and some constant C’. Then E is of the first category.
Proof. Let ¢"(x)=h""@(x/k). Then

d;g(®) = [ g(x—hy)0;0() dy = h(,8% 9")(x),
from which we obtain that d,d;g=h*(9,0;g+¢") with =0 x¢. If we set

1
L(g) = 3 (9 aigjk +0k 31' 25i—0s 31‘ 8ix—0k 0; gjs)9

this shows that L,(g)=h*(L(g)*@"). Here all derivatives are taken in the sense
of distribution theory. Now define

E,={gcH’: gl =C, sup |L,(g)| = hf+efe, 0 <h <1}
2h
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It is clear that E, is closed, symmetric and convex. To show that E, has no interior
points it is sufficient to show that 0 is not an interior point. For this we take Y ¢ Cy
with L)% 30 and define y,(x)=Hy (x/h), p<b<pB+e. Note that if i=s=1,
j=k=2 then

1
L(g) = 5 (0101820402 05811~ 20, 0,810 Z 0.
Then we have L,(¥,)(x)=Hh(L())* $)(x/h) which shows that
B®+9 sup [L,(h)| = B~C O sup L) x@| — = as h 0.

Moreover, |,ll,=C,h*~° since this is true when a is an integer. Hence |y, s~ 0
as h—~0 which proves the lemma.
Suppose g€ H? and that there is some u€H% 2(a—1)>p with (du, du)=g. Then
(4.5) implies that

h—2@Dgup |L(g)l=C, O0<h=<1,

Xop

with C independent of 4. But Lemma 4.2 then implies that g must belong to a set
of the first category in H?. This completes the proof of Theorem 1.1.
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