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Two theorems in this paper investigate Fourier--Stieltjes transforms of measures 
on curves in the plane; the first is more general in respect of the curves investigated 
and more precise in the inequalities obtained for Fourier transforms, while the 
second introduces a more powerful and flexible technique. The first is proved by 
elementary methods, insofar as it avoids the theory of stochastic processes and 
martingales. 

A survey of Gaussian processes in related extremal problems is given by Kahane 
[3, ch. 13--15], who extends some results to stable processes in [4]. A set of the type 
S occurring in the first theorem is often called a Salem set of dimension fl [8], [5, VIII]. 
Non-linear transformations and Hausdorff dimension are studied in [6]. 

1. Let F be a curve of class C 2 in the plane R 2, of positive curvature. An ele- 
mentary proof is provided for the following theorem: 

For each fl in (0, 1) there exists a compact set SC=l ", of Hausdorff dimension fi, 
and a positive measure I~ on S, such that 

I~(u)l-- o(1)Ilull -aj~ for u in R 2. 

For definiteness we suppose that F is described by co-ordinates -2<=x~_2, 
and y=y(x ) ,  where y is of class C z and y " > 0 .  Whenever 2 is a measure on [ - 1 ,  1] 
we denote by # its transform by the mapping of [ - 2 ,  2] onto F. For present purposes, 
/z is best defined by its Fourier--Stieltjes transform on R2: 

p(u,,  us) = f e x p  ( - i u l x - iu2y (x ) )2 (dx ) ,  uER z. 

Lemma. Let f be an element of  C2[--2, 2] and f=O outside ( - 1 ,  1). For any 
~>0 and integer N > N ,  there is an element gl=>0 of  C2[-2,  2] so that 

O) The closed support of  gl is covered by 10N a log2N intervals of  length N -1. 
(ii) The measures p and I~1 corresponding to f ( x ) d x  and gl (x) f (x)dx  fulfil the 

inequaBty 
I~(u) -p~(u) l  <= 5(1 + llull) -~/2, u ~ R  ~ 
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In the proof  we use a special partition l = ~ h k ,  in which O<--hk<=l, 
hk E C ~ (-- co, co), ' < Ihkl = C N  and hk = 0 outside ( ( k -  1)/2N, (k + 1)/2N). The existence 
of  a partition 1 = ~  H, ,  adapted to N- -1 ,  is well known, and we have only to 
choose hk(x)-H,(Nx).  In the construction of  gl=~?~khk, with certain random 
variables ~,, we need bounds for the partial integrals 

bk (u) = f h~ (x)f(x) exp ( - iu l x  - iu2y(x)) dx. 

In fact we have the inequalities 

(a) [bk(u)] --<_ CN -1 for all u. 

(b) Z [bk(U)] 2 <= Cllu[1-1 when lull -> N. 

Here C depends on f and y (x) but not on N; it is easy to see that bk (u) = 0 if  Ik[ >2N,  
and (a) is a consequence of the properties of h k. As for (b), we can easily dispose 
of the special case [u~[~=2Alu~l, where A : s u p  {]y'(x)l}. For  the analysis leading 
to van der Corput's inequality [9, p. 116] yields I bk (u) l------ Cllull - I  and then ~ [bk (u)[2 <__ 
<-CIlu[I-2N<-ClIul1-1. Henceforth, in the proof  of (b) we assume ]Ull<=2Alu2l. 

We let m, be the minimum of u1+u2y'(x)[ on the interval ( ( k -  1)/2N, ( k +  1)/2N), 
and obtain ]bk(U)[<=Cm~ 1 by the argument mentioned before. We also have the 

bounds [bk (u)l <- CN -1 and lbk (u)]-<_ C'lu~l-Xl~<- Cllul1-1/2 by [9, p. 116]. Suppose now 
that mk attains a minimum at k=p; then ]mk+pl~=f'pluuIN-~>=fPllul]N -1 if (say) 
[p[->3. When N~IIulI<=N 2 we use the bound [bk+v(U)[<-CN -1 for the range Ipl<_- 
<-311ulI-~N z, and the lower bound on mk for other values o f p .  When N~[lull  we 
use the bound lb~(u)l<-Cllull-lZm for lpl<=3NIlul1-11~, and Cm[ 1 outside. 

To construct gl from all these preliminaries we set pN=NP-1 log2N, and take 
independent random vaiiables ~, with law 

P(~k = P~)  = PN, e(~k = O) = 1--pN. 
Then g l : ~  ~khk . 

For  each fixed u in R ~, p1(u)-p(u)=~(;~k-1)bg(u), a sum of  independent 
terms of magnitude CN-lp~ ~ and total variance Cp~rl~ [b~(u)]. Classical bounds 
for expected values of exp (t [Re/~l-Re/~1) and exp (t Jim/~-Im/~iI) are valid 
provided [t[<=C-~Np~. Choosing then t=rINl-P/2p~ for a small constant t l>0  we 

conclude 

P(IPI (U) --/~ (/2)[ ~ 8N -~/2) =~- 4 exp (--~fN~-apN) ~ 4 exp (--~/' log 2 N). 

This inequality governs/~x(U)--/~(u) for each u in the ball []ull <_-N, but we can 
obtain a similar, uniform, inequality for the entire ball by checking /~1-/2 at N c 
points u; C is a constant whose exact value is immaterial in the presence of  the 
strong bound on P. This remark is valid for the remaining estimation of/21--/L 
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In the range N<=IIulI<=N ~ somewhat more care is required in the choice of t. 
The expected value of exp t ]121 -/2[ is bounded by 4 exp (CtZp~r 1 [Iull -1) if 0 <= t <=qNpj v. 
For  these numbers t we have 

P(l/2~(u)-/2(u)l  =>~ II u l l -Of~)~4  exp (CtZp~lllull-x-et]lu]l-ate). 

The infimum, for unrestricted values t, obtained at to----~(2C)-~PNl]U]] 1-~1~, equals 
4 exp (-@ArllullX-~)<=4 exp (--6 log ~ N). This is of course a sufficient bound, and can 
be used if to<=rINpn, that is, IIul l l -m<_-~lNo If  we assume the opposite inequality, 
II ull l - m  ~ I N ,  and choose t = tl~NpN, then the negative term exceeds twice the positive, 
and the bound becomes exp ( -- t/, NPN II u II - a/s) ~ exp ( -  t/z NpN N-a) = exp (-- t/a log 2 N). 

In the range Ilul] > N  ~, we note that ]bk(u)l<=ClluI1-11~ by the arguments used 
before in estimating variances, so the exponential bounds are  valid for 0<=t<_ - 

<-C'XllullX/~p N. Now IIu[llZ~PNIlu[I-P/m>=log2N for these values u, and the bounds 
of ~-/~1 can be extended to the ball Ilull<=N c, C = 4 ( 1 - f l )  -1. But ~ , < 5 N  with 

probability near 1, so we have ~ I~- l I" ]bk(u)t < Cllull-l/m 5N and this is O(llull-m) 
when IlullX-P>N ~, for example. Thus we obtain the required inequalities for 
/2(u)-/21 (u) in four different regions, and the lemma is proved. 

To prove the theorem in its entirety we begin with f~  C2[ -2 ,  2], f = 0  outside 
of ( - 1 ,  1), f > 0  on ( - 1 ,  1) and apply the modification of the lemma successively, 
with numbers e j=3-J f f (x )dx  so that the limit measure is positive. Its support S 
has finite Hansdorff measure for the function h(t)=t ~ log 2 t -x, hence dim S ~ .  
The method can be improved to cover any measure function h (t) such that t a log t - 1 =  
=o(h)  as t ~ 0 + .  This approaches the theorem of Kahane [3, p. 13--15] in precision. 
In a certain sense, discussed briefly at the conclusion of [6], the set S is much more 
massive than some Salem sets of dimension ]L 

To obtain o (1) in place of  O (1), we observe that each measure in our construc- 
tion belongs to C ~, so its Fourier transform is O(llul[-2). 

2. In the next theorem y is a function of class C = ( - o o ,  oo) and y " > 0  every- 
where. Moreover 2 is a probability measure on [0, 1] with a Lipschitz condition 
2(a, a+h)<=Ch ~ for a certain e in (0, 1/2). The measure # is now defined to be the 
image of 2 by the mapping t-+(X(t), y o X(t)) so that # is carried by the graph of 
y in the plane. X denotes Brownian motion. 

Theorem. For almost all paths X, [/2(u)[<=Cllul[ ~-~ for uER ~, and each 6>0.  

For  the proof  we fix a function ~ of class C ~ and compact support and inves- 
tigate, instead of #, the measure ~(X(t))2(dt), and its t r ans form/q .  Our theorem 
will be a simple consequence of the next assertion: 

(M) For  each p = 1, 2, 3 . . . .  the p-th moment of/2t (u) admits a bound II/11 (u)l[ pv 

<_- Cl lu l l~ -~ .  



248 R. Kaufman 

We observe that ~ ( x ) = 0  outside a certain interval [x[~A, and on this interval 
we have ly'l<=A1. Now the transform/21(u ), u=(ul, u2), involves a mapping u~x+ 
+uzy(x), whose derivative has absolute value >-Iu~l-Axlu~l. As we shall soon 
observe, the estimation o f / ~ ( u )  becomes much simpler if ]u~]~_2Aliu21; a similar 
easy case occurred in the proof  completed above. In the opposite case, lu21 >(2A1)-llu [, 
we can write ulx+u2y(x)=+_]lullg,(x), where g , = c > 0  and all derivatives of  g, 
are bounded on ( - A ,  A) by constants independent of u. Until the conclusion of 
the demonstration of  (M), we keep g=g, and write v in place of [lull. 

First of all we partition the interval 0 <  t <  1 to isolate the small values of g'(X(t)). 
For this purpose we construct a function L of  class C =, vanishing outside (1, 4) 
so that 0~L<_-I and ~_~=L(2kx)= l  if x > 0 .  A function L can be obtained from 
an ordinary partition of unity l=-z~h(y+k) by the substitution x = 2 L  We shall 
see that g ' (X) =0  only on a set of 2-measure 0, so we have l=~L(2kg'(X))+ 
+~L(-2kg' (X))  almost everywhere. 

Let 0 < e < (8p)-1; we intend to neglect all the terms in the sum in which 4k~ v 1-". 
The error introduced is no larger than 

2{t: lg'X(t)[ <= Cv~12v-1/2} or 

2{t:lX(t)-Xol ~_ C'v~/2v -I/2} since 

g">=c>O. The random variable h(r)--sup2{t: Ix(t)-Xol~r} has p-th moment 
<= Cr -1+2~p [7], and therefore these terms can indeed be omitted from further calcula- 
tions. We observe now that the number of terms remaining, in which L(2kg'(X))~b (X) 
doesn't vanish identically, is at most Clog  v. We complete the analysis for the 
integral containing L(2kg'); the method for L(--2kg ') is the same. 

For  each index k not already excluded we define r=r(k, v)=4% "-2 and divide 
the interval [0, 1] into adjacent subintervals of  length r, denoting by lj=Ij(k, v) 
the corresponding partial integrals: (Precisely, Ij is extended over the range jr<=t~ 
~ ( j +  1)r). We shall use the theory of martingales to bound the moments of ~12j ;  
~I2j+1 is handled in the same way. Now I2j is measurable over the Borel field 
F2j+I=F{X(t); t<-(2j+l)r}. Thus we obtain a series of martingale differences by 
writing ~I2j-E(I2jIF2j_I), with the convention that F_~=Fo is the trivial field. 
According to the Markov property E(I2jlF2j_I)=E(I2jIX(2jr-r)), and we shall 
give a bound for this, unifolm with respect to all values b=X(2jr-r). We use the 
observation that when 2jr <= t<= (2j+ 1) r, X(t) has conditional distribution b + 2Y(1), 
with r~2e<=2r. We are led to integrals of the form 

k ~ s~/2  f ~(b+2s)L(2g (b+2s))exp(-ivg(b+2s))e- ds/r 

The factor L ( - )  vanishes outside the interval defined by the inequality 
1 <2kg'(b +2s)<; 4, and on this interval the derivative of vg(b § 2s) falls in the interval 
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v2-  k 2 < D < 4v2-k 2. The successive derivatives of  # (b + 2s) remain bounded because 
2<--2rl/2=2kv-lV ~12, and we excluded all indices k for which 4k>--V ~-~. The m-th 

derivative of  L(2kg'(b+2s))remains bounded for m = l ,  2, 3 . . . . .  for the following 
reasons. For  m = l  we have the inequality 2k2.v2--k2=v).2<=2vr<--_4k+~v"--~<4. 
From m_-->2 we observe that 2k22<=2k+Xr<8k+~v"--2<8V3/2V"--2<8. 

We intend to use z=2k2-1g(b+2s) as a new variable; throughout the domain_ 
of integration l < z ' < 4 .  Moreover [z" t<-C2k2~C2k+lrl/2<=2C4kv~/~v-x<2Cv -~1~. 
Similar estimates apply to the higher derivatives of  z; the relations vg(b+2s)= 
=v22-kz ,  V22-k>vr~I22--k=v'2kv"/2V--12--k=v"/2, allow us to obtain the bound 

E(I2j[F2j_I)<=CBp(2jr, (2j+l)r)v  -n for any constant B. 

We. are now in sight of  the moment  inequality (M). We have just obtained a 
uniform bound on z~,E(I2jtF2j_~), and it remains to obtain bounds on the sum 
Y,I~j--E(I2jIF2j_~). By an inequality of  Burkholder [1, 2], in case p > l ,  it will be  
sufficient to obtain bounds for ~]Iejl2 and ~,IE(I2jIF2j_I)[ 2. The second "square-  
function" is of  course covered by the uniform estimates with a large exponent B. 
For  the first sum we use the inequality ( ~  i/IS)<_-max I .  z~ tlj]. Recalling the depend- 
ance on k and v, we have max lj<--Cr~=-C4~kv (~-2)~. The sum .~I j  doesn't  exceed 
fL(2-~g'X(t)) ~,(X(t))dL and we saw before that  this has p-th moment  <--c4-k~v2 k. 
We find, then, that ( ~  [Ijle) 1/2 has p-th moment  <_-C2kv(~-2)~P<Cv-~PV. Summation 

with respect to k involves a factor log p v, but this can be absorbed by Schwarz" 
inequality. Thus (M) is proved. 

Now (M) easily implies that [Pl(U)I<=fltull ~-~ for characters u of  the special 
form (+_nl/2, +_nile), (n~, n2=O, 1, 2 . . . .  ). But p~ has compact support, and a device 

f rom Fourier analysis [3, p. 165] enables us to extend an inequality of  this type to  
all of  R 2. By a suitable choice of  a sequence #~, #2 . . . .  , we then obtain the theorem 
for /~ (u). 

The inequality of  Burkholder concerns martingales Y~, 1 <=n<=N, their LP-norm 
II YNII~, and  the LP-norm of the square-function S, defined by S 2= I Y~l~+ IY~ - Y~I~+ 
+.. .+[YN--YN_I[ 2. For  l < p < o %  IlSllp and IIYNI[p are equivalent norms, with 
constants depending only on p. 
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