Random measures on planar curves
R. Kaufman

Two theorems in this paper investigate Fourier—Stieltjes transforms of measures
on curves in the plane; the first is more general in respect of the curves investigated
and more precise in the inequalities obtained for Fourier transforms, while the
second introduces a more powerful and flexible technique. The first is proved by
elementary methods, insofar as it avoids the theory of stochastic processes and
martingales.

A survey of Gaussian processes in related extremal problems is given by Kahane
I3, ch. 13—15], who extends some results to stable processes in [4]. A set of the type
S occurring in the first theorem is often called a Salem set of dimension f [8], [5, VIH]..
Non-linear transformations and Hausdorff dimension are studied in [6].

1. Let I' be a curve of class C2 in the plane R?, of positive curvature. An ele-
mentary proof is provided for the following theorem:

For each in (0, 1) there exists a compact set SSTI', of Hausdorff dimension B,
and a positive measure p on S, such that

A@w)] = o()|lu)~*2 for u in RZ

For definiteness we suppose that I' is described by co-ordinates —2=x=2,
and y=y(x), where y is of class C? and y”>0. Whenever 1 is a measure on [—1, 1]
we denote by p its transform by the mapping of [—2, 2] onto I'. For present purposes,
1 is best defined by its Fourier—Stieltjes transform on R2:

fuy, u) = f exp (—iuyx — ity (x)) 2(dx), uéR>

Lemma. Let f be an element of C3*[—2,2] and f=0 outside (—1,1). For any
£>0 and integer N>N, there is an element g, =0 of C*[—2, 2] so that
() The closed support of g, is covered by 10N log® N intervals of length N™'.
(ii) The measures i and py corresponding to f(x)dx and g,(x)f(x)dx fulfil the
inequality
|2@) — 21 ()] = e(1+ Jul)~P2,  ucR™
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In the proof we use a special partition 1=2>4,, in which 0=h=1,
I € C2(—~ oo, o), |l |=CN and k=0 outside ((k—1)/2N, (k+1)/2N). The existence
of a partition 1= > H,, adapted to N=1, is well known, and we have only to
choose 7 (x)=H,(Nx). In the construction of g;=2> &/, with certain random
variables £,, we need bounds for the partial integrals

by(w) = f I () f(x) exp (—iuy x — fup y (%)) dx.
In fact we have the inequalities
(@) b)) =CN-t forall u.
() 2@ = Clu|™ when [ul = N.

Here C depends on f and y(x) but not on N; it is easy to see that &, (u)=0 if [k[=2N,
and (a) is a consequence of the properties of k. As for (b), we can easily dispose
of the special case |u|==2A|u,], where A=sup {|)’(x)|}. For the analysis leading
to van der Corput’s inequality [9, p. 116] yields |, ()| =C|u|| =, and then > (b, (u)[?=
=C|u| " 2N=C|u]|~". Henceforth, in the proof of (b) we assume |u;|=24u,).

We let m,, be the minimum of |u; +u,y"(x)| on the interval ((k—1)/2N, (k+1)/2N),
and obtain |b, ()| =Cm;* by the argument mentioned before. We also have the
bounds |, (4)|=CN~* and |b,(w)|=C’|uy| 2= C|jul| =% by [9, p. 116]. Suppose now
that my, attains a minimum at k=p; then |my, |=C plu]N"'=Cp|lu| N~* if (say)
|p|=3. When N=|u|=N? we use the bound |b,, ,(u)|=CN~" for the range [p|=
=3|lul "*N? and the lower bound on m, for other values of p. When N2=|lu| we
use the bound |b, (w)|=C|u| Y for |p|=3N|u|~Y2 and Cm;?* outside.

To construct g; from all these preliminaries we set py=Nf"log? N, and take
independent random variables &, with law

P =py") =pvs PG =0)=1—py.
Then g,=2> &by
For each fixed « in R? g (uw)—fG)=2/(&,—1)b, (1), a sum of independent
terms of magnitude CN'py' and total variance Cpy' > |b;(u)|. Classical bounds
for expected values of exp(#|Re;,—Ref]) and exp (#[Im i—Im g;|) are valid
provided [t|=C~'Npy. Choosing then t=nN'"#2p, for a small constant >0 we
conclude

Py () — p(u)] = eN~F1%) = dexp (—n' N*~Fpy) = 4exp (—n’log? N).

This inequality governs f,(u)— fi(u) for each u in the ball ||u]| =N, but we can
obtain a similar, uniform, inequality for the entire ball by checking fi,—/i at N€
points u; C is a constant whose exact value is immaterial in the presence of the
strong bound on P. This remark is valid for the remaining estimation of g,— fi.
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In the range N=|lu|| =N? somewhat more care is required in the choice of .
The expected value of exp ¢ |2, — 2| is bounded by 4 exp (Ce2pytlu| Y if 0=¢t=nNp,.
For these numbers ¢ we have

P(iim )~ p()| =elul =P =4 exp (Cr2pylul = —et|lu] =5,

The infimum, for unrestricted values ¢, obtained at 7,=g2C) pyllul*~#2, equals
dexp (—opyllull*~#)=4 exp (—0 log? N). This is of course a sufficient bound, and can
be used if #,=nNpy, that is, |u|*~P2=g, N. If we assume the opposite inequality,
[u]|*~#”z=n, N, and choose t=#, Np,, then the negative term exceeds twice the positive,
and the bound becomes exp (—#; Npy|ul| “#2)=exp (—n; Npy N~ F)=cexp (—n3log? N).

In the range ||u| >N?, we note that |b,(u)|=C|u}~Y? by the arguments used
before in estimating variances, so the exponential bounds are valid for O0=¢=
=Cu|"py. Now |[u]Ppyllull ~#2=log? N for these values u, and the bounds
of fi—f,; can be extended to the ball |u|=NC¢, C=4(1—p)~% But > &~<5N with
probability near 1, so we have > |&,—1|+ b, ()| <C|u] ~*25N and this is O (Jul| ~*/)
when |u|*"#>=N3, for example. Thus we obtain the required inequalities for
f(u)— fi; (w) in four different regions, and the lemma is proved.

To prove the theorem in its entirety we begin with fe C2[—2, 2], f=0 outside
of (—1,1), f=0 on (—1, 1) and apply the modification of the lemma successively,
with numbers sj=3”j f J(x)dx so that the limit measure is positive. Its support S
has finite Hausdorff measure for the function h(z)=¢*log? ¢, hence dim S=p.
The method can be improved to cover any measure function 4 (¢) such that t#log ¢ ~*=
=o0(h) as t—~0+4-. This approaches the theorem of Kahane [3, p. 13-—15] in precision.
In a certain sense, discussed briefly at the conclusion of [6], the set S is much more
massive than some Salem sets of dimension 8.

To obtain o(1) in place of O(1), we observe that each measure in our construc-
tion belongs to C?, so its Fourier transform is O (JJul| ~3).

.

2. In the next theorem y is a function of class C”(— oo, =) and y” =0 every-
where. Moreover 1 is a probability measure on [0, 1] with a Lipschitz condition
/(a, a+h)=Ch* for a certain o in (0, 1/2). The measure u is now. defined to be the
image of A by the mapping t—»(X (1), yo X (1)) so that p is carried by the graph of
¥ in the plane. X denotes Brownian motion.

Theorem. For almost all paths X, |fi(u)|=C|u|’~* for ucR2, and each 6=0.

For the proof we fix a function @ of class C* and compact support and inves-
tigate, instead of y, the measure ®(X(¢))A(dr), and its transform p;. Our theorem
will be a simple consequence of the next assertion:

(M) Foreachp=1, 2,3, ... the p-th moment of f}; («) admits a bound || 2, ()|} =
=Clluf*~*.
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We observe that @(x)=0 outside a certain interval |x|=4, and on this interval
we have |y’|=4,. Now the transform fI; (u), u=(y,, u,), involves a mapping u;x-+
+u,y(x), whose derivative has absolute value =lu;|—A4,|u,]. As we shall soon
observe, the estimation of fi;(u) becomes much simpler if |u,|=24,|u,|; a similar
easy case occurred in the proof completed above. In the opposite case, |uy| > (247) vy,
we can write u;x+u,y(x) = £ |lullg,(x), where g, =c>0 and all derivatives of g,
are bounded on (—A4, 4) by constants independent of u. Until the conclusion of
the demonstration of (M), we keep g=g, and write v in place of |u].

First of all we partition the interval 0<?=<1 to isolate the small values of g'(X (1)).
For this purpose we construct a function L of class C*, vanishing outside (1, 4)
so that 0=L=1and >~ _L(2*x)=1 if x>0. A function L can be obtained from
an ordinary partition of unity 1= > 4(y+k) by the substitution x=2". We shall
see that g’(X)=0 only on a set of A-measure 0, so we have 1= L(2“g"(X )+
+ 3 L(—2*g’(X)) almost everywhere.

Let 0<¢<(8p)™*; we intend to neglect all the terms in the sum in which 4*=v
The error introduced is no larger than

Mg’ X(@®)| = Cv*?p~12}  or

At X (1)~ x| = C’v*2v~1%  since

1—z

g’=c¢=0. The random variable A(r)=sup A{t: |[X(t)—xo|=r} has p-th moment
= Cr~1+22 [7], and therefore these terms can indeed be omitted from further calcula-
tions. We observe now that the number of terms remaining, in which L(2*g’(X))®(X)
doesn’t vanish identically, is at most Clogv. We complete the analysis for the
integral containing L(2*g’); the method for L(—2%g’) is the same.

For each index & not already excluded we define r=r(k, v)=4*v*"2 and divide
the interval [0, 1] into adjacent subintervals of length r, denoting by I;=1I;(k, v)
the corresponding partial integrals. (Precisely, I; is extended over the range jr=t=
=(j+1)r). We shall use the theory of martingales to bound the moments of >'I,;;
21y;.1 is handled in the same way. Now I,; is measurable over the Borel field
Fpj11=F{X(t); t=(2j+1)r}. Thus we obtain a series of martingale differences by
writing > I,;—E(l;| Fy;_y), with the convention that F_,=F; is the trivial field.
According to the Markov property E(ly;|Fy;-1)=E(Iy;|X(2jr—r)), and we shall
give a bound for this, uniform with respect to all values b=X(2jr—r). We use the
observation that when 2jr=r=(2j+1)r, X (¢) has conditional distribution b+ 1X (1),
with r=42=2r. We are led to integrals of the form

[ BB+ is)L(2*g (b + hs)) exp (—ivg(b+ As))e~ 2 ds/} 2 m.

The factor L(-) vanishes outside the interval defined by the inequality
1<2*g’(b+)s)<4, and on this interval the derivative of vg(b+As) falls in the interval
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02 ¥A<D<4v27*). The successive derivatives of @ (b+ As) remain bounded because
A=2r"2=2%p=1p*% and we excluded all indices k for which 4*=v'"%. The m-th
derivative of L(2*g’(b+ As)) remains bounded for m=1, 2,3, ..., for the following
reasons. For m=1 we have the inequality 2°A.027*A=0A2=2vr=4**1y"""1<4,
From m=2 we observe that 2¥J2=2k+1p «gk+1p2—2 _g3/22—2 8

We intend to use z=2¥A"1g(b+s) as a new variable; throughout the domain
of integration 1<z'<4. Moreover [z”|=C2*A=C2+1P 1 2=2C4 v <2Cv*2,
Similar estimates apply to the higher derivatives of z; the relations vg(b+4is)=
=0A27%z, A2 *=urP 2k =p. 2Fp* 2y 12 k=¢*2 allow us to obtain the bound
E(Lyj| Fp;)=Cpu(2jr, 2j+1)r)v~2 for any constant" B.

We are now in sight of the moment inequality (M). We have just obtained a
uniform bound on 2 E(l|F,;_,), and it remains to obtain bounds on the sum
2 Lj— E(I;|Fy;_1). By an inequality of Burkholder [1, 2], in case p>1, it will be
sufficient to obtain bounds for > |I;[? and ¥ |E(Iy;|F,;-;)>. The second “square-
function” is of course covered by the uniform estimates with a large exponent B.
For the first sum we use the inequality (3|I|*)=max I- 3 |I;|. Recalling the depend-
ance on k and v, we have max I;=Cr*=C4%p®~?% The sum >'I; doesn’t exceed
fL(27%g’ X (¢)) @ (X ())dA, and we saw before that this has p-th moment = C4 P2k,
We find, then, that (3|7;{%)/* has p-th moment = C2*y~2*P < Cp~*7y. Summation
with respect to k involves a factor log? v, but this can be absorbed by Schwarz’
inequality. Thus (M) is proved.

Now (M) easily implies that |f,(u)|=C|ul|°"* for characters u of the special
form (+n}2, +ni®), (n,, n,=0, 1,2, ...). But y; has compact support, and a device
from Fourier analysis [3, p. 165] enables us to extend an inequality of this type to
all of R2. By a suitable choice of a sequence @,, ®,, ... , we then obtain the theorem
for p(u).

The inequality of Burkholder concerns martingales Y,, 1=n=N, their L?-norm
| Yyl > and the LP-norm of the square-function S, defined by S2=|Y;[*+|Y,— Y;|2+
+...+|Yy—Yy_4[% For l<p<ee, |S|, and [[¥y|l, are equivalent norms, with
constants depending only on p.
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