Random measures on planar curves

R. Kaufman

Two theorems in this paper investigate Fourier—Stieltjes transforms of measures on curves in the plane; the first is more general in respect of the curves investigated and more precise in the inequalities obtained for Fourier transforms, while the second introduces a more powerful and flexible technique. The first is proved by elementary methods, insofar as it avoids the theory of stochastic processes and martingales.

A survey of Gaussian processes in related extremal problems is given by Kahane [3, ch. 13—15], who extends some results to stable processes in [4]. A set of the type S occurring in the first theorem is often called a *Salem set* of dimension β [8], [5, VIII]. Non-linear transformations and Hausdorff dimension are studied in [6].

1. Let Γ be a curve of class C^2 in the plane \mathbb{R}^2 , of positive curvature. An elementary proof is provided for the following *theorem*:

For each β in (0, 1) there exists a compact set $S \subseteq \Gamma$, of Hausdorff dimension β , and a positive measure μ on S, such that

$$|\hat{\mu}(u)| = o(1) ||u||^{-\beta/2}$$
 for u in \mathbb{R}^2 .

For definiteness we suppose that Γ is described by co-ordinates $-2 \le x \le 2$, and y=y(x), where y is of class C^2 and y''>0. Whenever λ is a measure on [-1,1] we denote by μ its transform by the mapping of [-2,2] onto Γ . For present purposes, μ is best defined by its Fourier—Stieltjes transform on \mathbb{R}^2 :

$$\hat{\mu}(u_1, u_2) = \int \exp(-iu_1 x - iu_2 y(x)) \lambda(dx), \quad u \in \mathbb{R}^2.$$

Lemma. Let f be an element of $C^2[-2, 2]$ and f=0 outside (-1, 1). For any $\varepsilon>0$ and integer $N>N_{\varepsilon}$ there is an element $g_1\geq 0$ of $C^2[-2, 2]$ so that

- (i) The closed support of g_1 is covered by $10N^{\beta} \log^2 N$ intervals of length N^{-1} .
- (ii) The measures μ and μ_1 corresponding to f(x)dx and $g_1(x)f(x)dx$ fulfil the inequality

$$|\hat{\mu}(u) - \hat{\mu}_1(u)| \leq \varepsilon (1 + ||u||)^{-\beta/2}, \quad u \in \mathbb{R}^2.$$

246 R. Kaufman

In the proof we use a special partition $1 = \sum h_k$, in which $0 \le h_k \le 1$, $h_k \in C^2(-\infty, \infty)$, $|h_k'| \le CN$ and $h_k = 0$ outside ((k-1)/2N, (k+1)/2N). The existence of a partition $1 = \sum H_k$, adapted to N = 1, is well known, and we have only to choose $h_k(x) = H_k(Nx)$. In the construction of $g_1 = \sum \xi_k h_k$, with certain random variables ξ_k , we need bounds for the partial integrals

$$b_k(u) = \int h_k(x)f(x) \exp\left(-iu_1x - iu_2y(x)\right) dx.$$

In fact we have the inequalities

- (a) $|b_k(u)| \leq CN^{-1}$ for all u.
- (b) $\sum |b_k(u)|^2 \le C ||u||^{-1}$ when $||u|| \ge N$.

Here C depends on f and y(x) but not on N; it is easy to see that $b_k(u)=0$ if |k|>2N, and (a) is a consequence of the properties of h_k . As for (b), we can easily dispose of the special case $|u_1| \ge 2A|u_2|$, where $A = \sup\{|y'(x)|\}$. For the analysis leading to van der Corput's inequality [9, p. 116] yields $|b_k(u)| \le C||u||^{-1}$, and then $\sum |b_k(u)|^2 \le C||u||^{-2}N \le C||u||^{-1}$. Henceforth, in the proof of (b) we assume $|u_1| \le 2A|u_2|$.

We let m_k be the minimum of $|u_1+u_2y'(x)|$ on the interval ((k-1)/2N, (k+1)/2N), and obtain $|b_k(u)| \le Cm_k^{-1}$ by the argument mentioned before. We also have the bounds $|b_k(u)| \le CN^{-1}$ and $|b_k(u)| \le C'|u_2|^{-1/2} \le C||u||^{-1/2}$ by [9, p. 116]. Suppose now that m_k attains a minimum at k=p; then $|m_{k+p}| \ge C'p|u_2|N^{-1} \ge Cp||u||N^{-1}$ if (say) $|p| \ge 3$. When $N \le ||u|| \le N^2$ we use the bound $|b_{k+p}(u)| \le CN^{-1}$ for the range $|p| \le 3||u||^{-1}N^2$, and the lower bound on m_k for other values of p. When $N^2 \ge ||u||$ we use the bound $|b_k(u)| \le C||u||^{-1/2}$ for $|p| \le 3N||u||^{-1/2}$, and Cm_k^{-1} outside.

To construct g_1 from all these preliminaries we set $p_N = N^{\beta-1} \log^2 N$, and take independent random variables ξ_k with law

$$P(\xi_k = p_N^{-1}) = p_N, \quad P(\xi_k = 0) = 1 - p_N.$$

Then $g_1 = \sum \xi_k h_k$.

For each fixed u in \mathbb{R}^2 , $\hat{\mu}_1(u) - \hat{\mu}(u) = \sum (\xi_k - 1)b_k(u)$, a sum of independent terms of magnitude $CN^{-1}p_N^{-1}$ and total variance $Cp_N^{-1}\sum |b_k^2(u)|$. Classical bounds for expected values of $\exp(t|\operatorname{Re}\hat{\mu}_1 - \operatorname{Re}\hat{\mu}|)$ and $\exp(t|\operatorname{Im}\hat{\mu} - \operatorname{Im}\hat{\mu}_1|)$ are valid provided $|t| \leq C^{-1}Np_N$. Choosing then $t = \eta N^{1-\beta/2}p_N$ for a small constant $\eta > 0$ we conclude

$$P(|\hat{\mu}_1(u) - \hat{\mu}(u)| \ge \varepsilon N^{-\beta/2}) \le 4 \exp\left(-\eta' N^{1-\beta} p_N\right) \le 4 \exp\left(-\eta' \log^2 N\right).$$

This inequality governs $\hat{\mu}_1(u) - \hat{\mu}(u)$ for each u in the ball $||u|| \leq N$, but we can obtain a similar, uniform, inequality for the entire ball by checking $\hat{\mu}_1 - \hat{\mu}$ at N^C points u; C is a constant whose exact value is immaterial in the presence of the strong bound on P. This remark is valid for the remaining estimation of $\hat{\mu}_1 - \hat{\mu}$.

In the range $N \le ||u|| \le N^2$ somewhat more care is required in the choice of t. The expected value of exp $t |\hat{\mu}_1 - \hat{\mu}|$ is bounded by $4 \exp(Ct^2 p_N^{-1} ||u||^{-1})$ if $0 \le t \le \eta N p_N$. For these numbers t we have

$$P(|\hat{\mu}_1(u) - \hat{\mu}(u)| \ge \varepsilon ||u||^{-\beta/2}) \le 4 \exp(Ct^2 p_N^{-1} ||u||^{-1} - \varepsilon t ||u||^{-\beta/2}).$$

The infimum, for unrestricted values t, obtained at $t_0 = \varepsilon(2C)^{-1}p_N ||u||^{1-\beta/2}$, equals $4 \exp(-\delta p_N ||u||^{1-\beta}) \le 4 \exp(-\delta \log^2 N)$. This is of course a sufficient bound, and can be used if $t_0 \le \eta N p_N$, that is, $||u||^{1-\beta/2} \le \eta_1 N$. If we assume the opposite inequality, $||u||^{1-\beta/2} \ge \eta_1 N$, and choose $t = \eta_2 N p_N$, then the negative term exceeds twice the positive, and the bound becomes $\exp(-\eta_3 N p_N ||u||^{-\beta/2}) \le \exp(-\eta_3 N p_N N^{-\beta}) = \exp(-\eta_3 \log^2 N)$.

In the range $||u|| > N^2$, we note that $|b_k(u)| \le C||u||^{-1/2}$ by the arguments used before in estimating variances, so the exponential bounds are valid for $0 \le t \le C^{-1}||u||^{1/2}p_N$. Now $||u||^{1/2}p_N||u||^{-\beta/2} \ge \log^2 N$ for these values u, and the bounds of $\hat{\mu} - \hat{\mu}_1$ can be extended to the ball $||u|| \le N^C$, $C = 4(1-\beta)^{-1}$. But $\sum \xi_k < 5N$ with probability near 1, so we have $\sum |\xi_k - 1| \cdot |b_k(u)| < C||u||^{-1/2} > N$ and this is $O(||u||^{-\beta/2})$ when $||u||^{1-\beta} > N^3$, for example. Thus we obtain the required inequalities for $\hat{\mu}(u) - \hat{\mu}_1(u)$ in four different regions, and the lemma is proved.

To prove the theorem in its entirety we begin with $f \in C^2[-2, 2]$, f = 0 outside of (-1, 1), f > 0 on (-1, 1) and apply the modification of the lemma successively, with numbers $\varepsilon_j = 3^{-j} \int f(x) dx$ so that the limit measure is positive. Its support S has finite Hausdorff measure for the function $h(t) = t^{\beta} \log^2 t^{-1}$, hence dim $S \leq \beta$. The method can be improved to cover any measure function h(t) such that $t^{\beta} \log t^{-1} = o(h)$ as $t \to 0+$. This approaches the theorem of Kahane [3, p. 13—15] in precision. In a certain sense, discussed briefly at the conclusion of [6], the set S is much more massive than some Salem sets of dimension β .

To obtain o(1) in place of O(1), we observe that each measure in our construction belongs to C^2 , so its Fourier transform is $O(||u||^{-2})$.

2. In the next theorem y is a function of class $C^{\infty}(-\infty, \infty)$ and y''>0 everywhere. Moreover λ is a probability measure on [0, 1] with a Lipschitz condition $\lambda(a, a+h) \leq Ch^{\alpha}$ for a certain α in (0, 1/2). The measure μ is now defined to be the image of λ by the mapping $t \rightarrow (X(t), y \circ X(t))$ so that μ is carried by the graph of y in the plane. X denotes Brownian motion.

Theorem. For almost all paths X, $|\hat{\mu}(u)| \le C||u||^{\delta-\alpha}$ for $u \in \mathbb{R}^2$, and each $\delta > 0$.

For the proof we fix a function Φ of class C^{∞} and compact support and investigate, instead of μ , the measure $\Phi(X(t))\lambda(dt)$, and its transform μ_1 . Our theorem will be a simple consequence of the next assertion:

(M) For each p=1, 2, 3, ... the p-th moment of $\hat{\mu}_1(u)$ admits a bound $\|\hat{\mu}_1(u)\|_p^p \le C\|u\|^{1-\alpha p}$.

248 R. Kaufman

We observe that $\Phi(x)=0$ outside a certain interval $|x| \le A$, and on this interval we have $|y'| \le A_1$. Now the transform $\hat{\mu}_1(u)$, $u=(u_1,u_2)$, involves a mapping $u_1x+u_2y(x)$, whose derivative has absolute value $\ge |u_1|-A_1|u_2|$. As we shall soon observe, the estimation of $\hat{\mu}_1(u)$ becomes much simpler if $|u_1| \ge 2A_1|u_2|$; a similar easy case occurred in the proof completed above. In the opposite case, $|u_2| > (2A_1)^{-1}|u_1|$, we can write $u_1x+u_2y(x)=\pm ||u||g_u(x)$, where $g_u'' \ge c>0$ and all derivatives of g_u are bounded on (-A,A) by constants independent of u. Until the conclusion of the demonstration of (M), we keep $g=g_u$ and write v in place of ||u||.

First of all we partition the interval 0 < t < 1 to isolate the small values of g'(X(t)). For this purpose we construct a function L of class C^{∞} , vanishing outside (1, 4) so that $0 \le L \le 1$ and $\sum_{-\infty}^{\infty} L(2^k x) = 1$ if x > 0. A function L can be obtained from an ordinary partition of unity $1 = \sum h(y+k)$ by the substitution $x=2^y$. We shall see that g'(X) = 0 only on a set of λ -measure 0, so we have $1 = \sum L(2^k g'(X)) + \sum L(-2^k g'(X))$ almost everywhere.

Let $0 < \varepsilon < (8p)^{-1}$; we intend to neglect all the terms in the sum in which $4^k \ge v^{1-\varepsilon}$. The error introduced is no larger than

$$\lambda\{t: |g'X(t)| \le Cv^{\varepsilon/2}v^{-1/2}\} \quad \text{or}$$
$$\lambda\{t: |X(t)-x_0| \le C'v^{\varepsilon/2}v^{-1/2}\} \quad \text{since}$$

 $g'' \ge c > 0$. The random variable $h(r) = \sup \lambda \{t : |X(t) - x_0| \le r\}$ has p-th moment $\le Cr^{-1+2\alpha p}$ [7], and therefore these terms can indeed be omitted from further calculations. We observe now that the number of terms remaining, in which $L(2^k g'(X)) \Phi(X)$ doesn't vanish identically, is at most $C \log v$. We complete the analysis for the integral containing $L(2^k g')$; the method for $L(-2^k g')$ is the same.

For each index k not already excluded we define $r=r(k,v)=4^kv^{\epsilon-2}$ and divide the interval [0,1] into adjacent subintervals of length r, denoting by $I_j=I_j(k,v)$ the corresponding partial integrals. (Precisely, I_j is extended over the range $jr \le t \le (j+1)r$). We shall use the theory of martingales to bound the moments of $\sum I_{2j}$; $\sum I_{2j+1}$ is handled in the same way. Now I_{2j} is measurable over the Borel field $F_{2j+1}=F\{X(t); t \le (2j+1)r\}$. Thus we obtain a series of martingale differences by writing $\sum I_{2j}-E(I_{2j}|F_{2j-1})$, with the convention that $F_{-1}=F_0$ is the trivial field. According to the Markov property $E(I_{2j}|F_{2j-1})=E(I_{2j}|X(2jr-r))$, and we shall give a bound for this, uniform with respect to all values b=X(2jr-r). We use the observation that when $2jr \le t \le (2j+1)r$, X(t) has conditional distribution $b+\lambda X(1)$, with $r \le \lambda^2 \le 2r$. We are led to integrals of the form

$$\int \Phi(b+\lambda s) L(2^k g'(b+\lambda s)) \exp(-ivg(b+\lambda s)) e^{-s^2/2} ds / \sqrt{2}\pi.$$

The factor $L(\cdot)$ vanishes outside the interval defined by the inequality $1 < 2^k g'(b + \lambda s) < 4$, and on this interval the derivative of $vg(b + \lambda s)$ falls in the interval

 $v2^{-k}\lambda < D < 4v2^{-k}\lambda$. The successive derivatives of $\Phi(b+\lambda s)$ remain bounded because $\lambda \le 2r^{1/2} = 2^k v^{-1} v^{\epsilon/2}$, and we excluded all indices k for which $4^k \ge v^{1-\epsilon}$. The m-th derivative of $L(2^k g'(b+\lambda s))$ remains bounded for $m=1, 2, 3, \ldots$, for the following reasons. For m=1 we have the inequality $2^k \lambda \cdot v2^{-k}\lambda = v\lambda^2 \le 2vr \le 4^{k+1} v^{\epsilon-1} < 4$. From $m\ge 2$ we observe that $2^k \lambda^2 \le 2^{k+1} r < 8^{k+1} v^{\epsilon-2} < 8v^{3/2} v^{\epsilon-2} < 8$.

We intend to use $z=2^k\lambda^{-1}g(b+\lambda s)$ as a new variable; throughout the domain of integration 1< z'<4. Moreover $|z''| \le C2^k\lambda \le C2^{k+1}r^{1/2} \le 2C4^kv^{\epsilon/2}v^{-1} < 2Cv^{-\epsilon/2}$. Similar estimates apply to the higher derivatives of z; the relations $vg(b+\lambda s)=v\lambda 2^{-k}z$, $v\lambda 2^{-k}>vr^{1/2}2^{-k}=v\cdot 2^kv^{\epsilon/2}v^{-1}2^{-k}=v^{\epsilon/2}$, allow us to obtain the bound $E(I_{2j}|F_{2j-1}) \le C_B\mu(2jr,(2j+1)r)v^{-B}$ for any constant B.

We are now in sight of the moment inequality (M). We have just obtained a uniform bound on $\sum E(I_{2j}|F_{2j-1})$, and it remains to obtain bounds on the sum $\sum I_{2j} - E(I_{2j}|F_{2j-1})$. By an inequality of Burkholder [1, 2], in case p > 1, it will be sufficient to obtain bounds for $\sum |I_{2j}|^2$ and $\sum |E(I_{2j}|F_{2j-1})|^2$. The second "square-function" is of course covered by the uniform estimates with a large exponent B. For the first sum we use the inequality $(\sum |I|^2) \le \max I \cdot \sum |I_j|$. Recalling the dependance on k and v, we have $\max I_j \le Cr^\alpha = C4^{ak}v^{(e-2)\alpha}$. The sum $\sum I_j$ doesn't exceed $\int L(2^{-k}g'X(t)) \Phi(X(t)) d\lambda$, and we saw before that this has p-th moment $\le C4^{-k\alpha p}2^k$. We find, then, that $(\sum |I_j|^2)^{1/2}$ has p-th moment $\le C2^kv^{(e-2)\alpha p} < Cv^{-2\alpha p}v$. Summation with respect to k involves a factor $\log^p v$, but this can be absorbed by Schwarz' inequality. Thus (M) is proved.

Now (M) easily implies that $|\hat{\mu}_1(u)| \leq C ||u||^{\delta-\alpha}$ for characters u of the special form $(\pm n_1^{1/2}, \pm n_2^{1/2})$, $(n_1, n_2 = 0, 1, 2, ...)$. But μ_1 has compact support, and a device from Fourier analysis [3, p. 165] enables us to extend an inequality of this type to all of \mathbb{R}^2 . By a suitable choice of a sequence $\Phi_1, \Phi_2, ...$, we then obtain the theorem for $\hat{\mu}(u)$.

The inequality of Burkholder concerns martingales Y_n , $1 \le n \le N$, their L^p -norm $\|Y_N\|_p$, and the L^p -norm of the square-function S, defined by $S^2 = |Y_1|^2 + |Y_2 - Y_1|^2 + \dots + |Y_N - Y_{N-1}|^2$. For $1 , <math>\|S\|_p$ and $\|Y_N\|_p$ are equivalent norms, with constants depending only on p.

References

- 1. Burkholder, D. L., Martingale transforms. Ann. Math. Statist. 37 (1966), 1494-1504.
- 2. Burkholder, D. L., Distribution function inequalities for martingales. *Ann. Probability* 1 (1973), 19—42.
- 3. KAHANE, J.-P., Some random series of functions. Heath, Lexington, Mass., 1968.
- 4. KAHANE, J.-P., Ensembles parfaits et processus de Lévy. Period. Math. Hungar. 2 (1972), 49-59.
- 5. KAHANE, J.-P. & SALEM, R., Ensembles parfaits et séries trigonométriques. Hermann, Paris, 1963.
- KAUFMAN, R., Hausdorff dimension and approximation of smooth functions. Michigan Math. J., 20 (1971), 65-71.

- 7. KAUFMAN, R., A metric property of some random functions. Bull. Soc. Math. France 99 (1971), 241—245.
- 8. SALEM, R., On singular monotonic functions whose spectrum has a given Hausdorff dimension.

 Ark. Mat. 1 (1951), 353—365.
- 9. ZYGMUND, A., Trigonometrical Series. Warsaw—Lwow, 1935.

Received April 9, 1975

R. Kaufman University of Illinois Dept. of Mathematics Urbana, Illinois 61801 USA