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Introduction 

This paper is a direct outgrowth of a conversation the author had with Professor 
V. G. Maz'ya in the Spring of 1974 concerning the existence of certain Lp estimates 
for the restriction of Riesz potentials of Lp functions to small sets. The main open 
question concerned the validity of the estimate llI,,f[]v,~ <= C[1 fllv for positive integers 
m > 2  (re<n, l < p < n / m )  given that the measure p satisfies I~(K)~C.R, , ,p (K ) for 
all compact sets K in R". (See section 1 for the definitions.) Maz'ya has shown ([11] 
and [12]) that this is valid for m = 1, 2. We now establish this estimate for the remaining 
integer values of m - -  Theorem 4 of section 4. The proof relies on the following 
theorem, which is the principal estimate of  this paper. 

Theorem 1. I f  re=positive integer<n, l < p < n / m ,  then 

f ;~ gm, p({x: llmf(X)l >= t})dt p <= Cllf[l~, 

for all fELp(R"). C is a constant depending only on n, p and m. 

Of course the "weak type" estimate 

R,,,p({x: ]Imf(x)l >= t}) <= Cllfllf, t - "  

is trivially valid (with C =  1) and so what is new is the existence of what we prefer 
to call a "strong type" capacitary inequality. These weak and strong type capacitary 
estimates oppose each other in much the same way as do the usual weak and strong 
Lp estimates. 

The author wishes to thank Professor Maz'ya for the interesting discussion and 
for pointing out this problem and his work on it. 

* Research partially supported by National Science Foundation Grant GP--42963. 



126 D.R. Adams 

1. Preliminaries 

The Riesz potential of order rn, O<m<n. is 

Imf(X) = f lx--yl'n-"f(y) dy (1.1) 

for any f for which the integral converges absolutely for almost every (a.e.) xCR'.  
Integration is taken over R". In particular, this is always the case wheneverfELp(R~), 
l<-p<n/m, the usual Lebesgue p-th power integrable functions on R ", [If lip= 
=(f[f(x)[Pdx)llP<~o. For a measure # other than Lebesgue measure we write 
Ilfllp,.=(flf(x)lPd~(x)) lip. The Sobolev inequality for Riesz potentials is 

I[Imfflp. -~ Cllfllp, 1 < p  < n/m, 

for all fEL~(Rn), C a constant depending only on n, p and m. 
The Bessel potential of  order rn>0  is defined as convolution over R n with 

the LI(R') function gm(x) whose Fourier transform is (l+[~[z) -m/~, ~R",  i.e. 
G=f(x)=fg=(x-y)f(y)dy. Also g~(x)<= C. Ixlm- ~ for  all xER ~, provided 0 < m < n .  

The Riesz capacity of order m and degre e p is defined by 

R=,p(A) = inf{[lfllg: fC Lp+(R n) and lmf(x) _-> 1 on A} 

for any set A c R  ~. Here the " + "  denotes the non-negative elements in Lp. Some 
properties o f  R,~,p will be useful ([13]): 

(i) monotonicity: Rm,v(A1)~_Rm, p(A2), AlcA~ 
(ii) subadditivity: Rm,p(Ui Ai)<=~i Rm,p(Ai) 

(iii) R,~,p (13) = 0, 0 = empty set 
(iv) R,~,p(A)=0 if and only if there is an fEL+(R n) such that lmf(X)= + oo 

on A. Also 
Rm, p({x; II~f(x)l >= t}) <_- t-Pl[flfg. (1.2) 

(v) R,~,p is an outer capacity, i.e. R,~,p(A)=infazaRm, p(G ), G=open  set in R". 
Furthermore, all analytic sets are capacitable, i.e. Rm, o (A) = supK=a Rm,p (K), K com- 
pact in R" and A analytic, 

(vi) Ifp>=n/m, there are no sets of positive Rm, p capacity. 
In particular, property (vi) implies that given any set A, there is an fEL + such that 
I~f(x)=+oo on A when p>=n/m. Hence the restriction p<n/rn is essential when 
working with Riesz potentials of Lp functions. 

The Bessel capacity of order m and degree p is defined by replacing 1,,f by 
Gmfin the definition of Rm,p. We write B~,p for the Bessel capacity and note that 
it too has properties (i)--(v). However, since gm(x) decays exponentially as lxl-~ 0% 
B,,,p does not satisfy (vi). For 1 <=p<n/m, R,~,p and B~,p are locally equivalent, i.e. 
there is a constant c > 0  such that c-XR~,p(A)<=Bm,p(A)<=CRm,p(A) for all sets A 
contained in a fixed ball (c depends on the radius of this bail). 
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C~(R") denotes the infinitely differentiable functions (C ~) on R" with compact 
support, 5:--S:(R"),  the class of rapidly decreasing C = functions on R n. wm'p(R"), 
m = Positive integer, denotes the usual Sobo!ev spaces, i.e. those uELp(R") which 
have distribution derivatives (O/Ox)'u of orders_<-m which belong to  Lp(R"). 
c~=(~ . . . .  , ~n) a multiindex, oh=positive integer, (O/Ox)~=(O/OxO'~... (O/cgx,)% 
x=(x  . . . .  , x , ) .  

The Lorentz spaces L(p, q)(l~) with respect to the measure It on R n consist 
of t h o s e f  for which (0<p,  q<oo) 

II/IIL(,,,)<,) = [/z({x; If(x)] >= t})l/"t]" ~o 

when/z=Lebesgue measure on R", we shall write L(p, q). F o r  q =  co, Ilfl]L(p,~.)(~) 
is supt>0#[lfl >=t]l/"t. 

Throughout  the paper, the letter C will denote various constants which may 
differ from one formula to the next even within a single string of  estimates. In gen- 
eral we make no attempt to obtain the best values for these constants. 

2. Smooth truncation 

If  H ( t )  is uniformly Lipschitz on R 1 with H ( 0 ) = 0  a n d  such that H'(t) has 
only a finite number of  discontinuities, then it is well known that H(u)C WI'P(R ") 
whenever uE WI'PR("), 1 <_-p<-~. (In particular, because of the choice H(t)=t, for 
[tl -< _ 1 and = sgn t, for It[ > 1, it is natural to refer to H(u) as a general " t runca t ion"  
operator on WI'P(R").) For  higher order derivatives, this is no longer the case, i.e. 
H(u)~ W"'P(R"), for m=>2. Indeed, O/OxjH(u) is not, in general, absolutely con- 
tinuous on lines and hence is not in wm-I'P(R"). This failure is due, of  course, to 
the fact that H is not sufficiently differentiable. Consequently, we might ask whether 
H(u)E wm'p(R ") given uC wm'p(R ") provided H(t) is a sufficiently smooth function 
which vanishes at the origin, or in otherwords, is the "smooth truncation" operator 
H(u) bounded on W"'P? When mp>:n, the results is true and well known. One 
needs only apply the Sobolev inequality [IDkul[q<--C[IDmu[[p,q=np/(n--(m--k)p), 
when mp=n and the Nirenberg inequality, I I D k u l [ ~ p / k < = C l l D " u l l ~ / "  �9 [lul[~-~/% when 
mp >n to the various terms that arise in estimating the Lp norms of the derivatives 
of H(u). However, when 1 <-p<n/m, little seems to be known regarding this problem, 
thongh it seems apparent that one will have to either restrict the class of H ' s  and]or 
the class of u's in this case. 

In this section, we give two results of this type. Note that they both avoid 
assuming that the u are bounded functions on R". The first result, Theorem 2, is 
the principle tool of  this paper. It applies only to functions u of the form l~f ,  where 
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f C L  +, l<p<n/m.  The second, Theorem 3, applies only to uEW~ v, or, for that 
matter, to any u~ W ~'p which is either bounded above or below. This last result is 
a simple modification of a technique due to Maz'ya [12]. We mention it here mainly 
because it does not seem to be generally known. It is exactly the technique of Maz'ya 
in his proof  of Theorem 1 for the case m=2 .  Whether or not theorem 3 remains 
valid for m > 2  remains open. 

Theorem 2. Let Hi( t ) , j=O,  • 1, +_2 . . . .  , be a doubly infinite sequence of Cm(R a) 
functions identically zero for t<  0 with H i having disjoint carriers on (0, ~)  and 
such that 

s u p  ItU-*H}k)(t)] _<- m < ~ (2 .1)  
t>0 

k = 0 ,  1 . . . .  , m. Then for all fE  L +, l<p<n/m,  there is a constant C depending only 
on n, m, p and M such that 

where a is a multiindex with loci =m. 

The proof  rests on the following 

Lemma 1. I f  u(x)=I , , f (x ) ,  re=positive integer<n, f E L  +, then for 1 <p<nlm,  
and all multi-indices fl, O< I/~1 < m ,  

( O V  "~ 

f ta;J ex- 
U ( x )  p(~-  1) = 

where a=m/[flf, and C is independent o f f  

Proof We begin by estimating the Riesz potential Imfpointwise by the method 
of Hedberg [10]. For  0 < 0 <  1, 

I . o f ( x )  = f~x- ,~<~ "" d x  + frx-,~--o "'" d x  = Z" + r ,  

for some 6 > 0  to be specified. 

C Z (2  - k - 1 ~ ) m o  - n (2  - k 6)nMf(x) = C~mOMf(x), 

where Mf(x)  is the usual Hardy--Lit t lewood maximal function. 

I" <= 6mO-mImf(X ). 
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Now choosing 6=6(x )=[Imf (x ) /Mf (x ) ]  lira, we have 

Imof(x) ~ C[Imf(x)l~ 1-~ 

Letting O = l / a ' = l - l / a ,  a=m/lfl[, and noting the estimate 

we have 

f t xJ u<x  f u(x),(~_l~ dx <= C [Im/~'f(x)]'~ dx < C f [Mf(x)]" dx < c f f ( x ) "  gx. 
[I. . f(x)F(~-l) = = 

by the well known Lp estimate for M f  

Proof  o f  Theorem 2. With U=Imf  and [/~l = m .  

where the last sum is over all multi-indices {ill . . . . .  ilk} such that f l l+ . . .+f lk=f l .  
Upon applying (2.1), we See that the Lp-norm of (a/ax).H,(,,) does not exceed the 
p-th root of 

( O ' l  ~" ' 0  ]'~ 'P 

o f lax] [-axJ 
~=* J ,,  u(x),~k-*> 

where sj denotes the carrier of Hi(u ) which are a priori disjoint. Summing over j 
gives 

O V 1 ( O V k i" 
3-yJ 03 P P m _ _ _ _ _ _  

For the terms in (2.2) corresponding to k > l ,  we have 0 < [ B q < m .  i=1 ,  . . . , k .  
Hence choosing pi=m/[fli[, then l < p i < ~  and ,~ 1/p~=l. H61der's inequality 
applied to those terms gives 

u(x)p'pl "" u(x)p'~;, 

< 17 ~ = i = 1  

dx (I/p; = 1 -- 1/p3 

fll PPi  

t J  

l / P i  

dx <= k p 1/p~ C/-/~=~ (lIfllp) = CllflIg 
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by Lemma 1. For the terms in (2.2) corresponding to k =  1, Ifll[ = m .  In this case 
(O/Ox)alu=Ko.f, a Calderdn--Zygmund transform of f, and consequently, 
IlK0*f[Ip<- - C [1 flip which gives the remaining required estimate to prove the theorem. 

Now the result of Maz'ya - -  we restrict ourselves to a single function H: 

Theorem 3. Let H(t) be a C2(R~_)function satisfying (2.1)for  k = 0 ,  1, 2, then 
for all u~ W~jP(Rn), l <p<n/2, there is a constant C depending only on n, p and M 
such that 

IIH(u)lh, p <= Cllulh, p. 
Proof. Because of  (2.1), it is clear that we need only concentrate on estimating 

the Lp-norm of DijH(u)=H'(u ) �9 Diju+ H"(u)D~u . Dju, Di=O/Ox ~, Dfi=O2/OxiOx j. 
The first term is clearly in Lp. It is the second that requires attention. By H61ders 
inequality, it suffices to show that [H"(u)l 1/2 [Dju[ EZ2p. To this end we claim 

f lOju[ ~p uP dx <= CIIOjjull~ (2.3) 

which by (2.1) gives the theorem. To show (2.3), we first consider uECo(Rn) + and 
show 

f lOjul ~'p , ~ a x  <= CllOjjultf, (2.4) 

with, of course C independent of u. (2.3) will then follow by taking a sequence 
ukECo(R0 + with Djjuk~Djju in Lp and Uk~U and Djuk~Dju a.e. (which is always 
possible for u6 W~'P), and then applying Fatou's lemma to the left side of  (2.4); 
and finally replacing u by u/e, e > 0  giving 

f lOju[ zp ~ d x  <= CIIOjjullN (~ + u) 
and letting e~0.  

To see (2.4) write 

I = f[Ojul~P(1 +u)-Pdx = f ( s g n  Dju)IDjuI2P-X(1 + u)-PDj(u+ 1)dx = 

= - ( 2 p -  1 ) f  ]DiuJZp-2Dj~u(1 + u)-p+~dx+pf (sgn Dju)1Djut2p-I(I + u)-PDju dx 
(2.5) 

upon integrating by parts. There are no  boundary terms since Dju has compact 
support and p > l .  But (2.5) is just 

Hence 

which gives the result! 

z =  (2p~]) f [Djul2<,_l)(1 +u)_(,_l).Djjudx" 

l ~ (2pLll ) .P/P '  IIDjjult~, 
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3. Proof of Theorem 1 

We first show that for l<p<n/m, the Riesz capacity Rm, p is equivalent to 

Cm, p(K) = inf ~'l~l=m -~x u uC C~(lt"),  u - 1 in a neighborhood of  , 

where K is compact in R". In particular, we give a new proof  of the following known 
result (see [11] or the author's paper with J. Polking, Proc. Amer. Math. Soc. 37 
(1973)). The proofs there rely on knowledge of  the boundedness of the Rm,p-capacitary 
potential I , , f  

Proposition 1. There is a constant c > 0  such that 

e-lRm, p(K) ~ Cm, p(K) ~ cRm, p(K) (3.1) 

for all compact K, c independent of K. 

Proof. For the first inequality in (3.t), recall the representation (uCCo(R~)) 

u(x) = ~f~l=m e~K~* u (x) (3.2) 

where K, is the convolution operator K~I . . . ,  . K , ,  a=(cq . . . .  , ~,), with K~, the 
convolution operator whose kernel is c9~-_~1 - xilx]-" convolved c~-times. See [15 p. 125]. 
Clearly, ]u(x)[ <= CIm(~l,l =,, ](O/OX)~Ul)(X), hence taking f =  C- ~1~1 =m[( O/Ox)'u[, we 
have Imf >- 1 on K which easily gives the result. 

For  the second inequality in (3.1), we apply Theorem 2 for one H-function. 
Namely, let H(t)=_O, for t~l/2,  and ---1, for t=>l, and C=(R 1) otherwise. Now 
choose a ~k E Co (R") + such that supp ~ = B 1 (0), f~9 dx = 1. And set tp~(x) = h-" t~ (x/h), 
h>0 .  Choose an open bounded set GDK and a n y f E L  + such that I , , f ~ l  on G. 
Then for sufficiently small h, tph.Imf>-I on G~, where, K=G~cG, G1 open with 
GI=G. Now set u(x)=H(I~(r Clearly u~C~(R") and u--1 on GI. And by 
Theorem 2 

Cm, p(K) "~ ~l. l=m {0--~} ~u i~ C[l~h* fl]~, ~ CI[f]l~ �9 

Thus Cm,v(K)~cR,,,v(G), for all such G. The result now follows since Rz,~, is an 
outer capacity. 

We extend the definition of Cm, p to the class of all subsets of R" as an inner 
capacity, i.e. for any A=R",  Cm,v(A) is defined to be sup~c=ACm,v(K), where K is 
compact. Clearly, this definition agrees with our earlier one when A is compact, 
since Cm,v is monotone. 



132 D.R. Adams 

Since Imf, f@O, is lower semi-continuous, the set {x: Imf(X)~=t} is a G0-set 
and hence Rz,p-capacitable. Thus, due to Proposition 1, there is no loss in proving 
Theorem 1 with Rm, p replaced by Cm,p. Furthermore, it suffices to consider only 
fC5 e+ in proving Theorem 1, since by taking a sequence fkE6e+, []fk--fllp-~0 as 
k-~oo, we can write R,,,p({x:Imf(x)>-2t})~t-P[If-f~[[~,+Rm,p({X:Imfk(x)~t}). 
Hence limk~ooRm,p( {x: Imfk(x)>=t})>=Rm, p( {x: Imf(X)>=2t }). 

With this done, we estimate as follows: with u=I~f,  

f : o  ~2J +1 - -  C=,p({x: u(x) _~> t})dt" = Z~':_.. J2, C=,.({x: u(x) ~> t})dt" <= 

<= 2 p Z ~  C~,p({x: u(x) >= 2/})2 x'. 

Now set H(t)=-O, for t<=0 and ~1 ,  ior t=>l, and C=(R ~) otherwise. Let Hi(t)= 
= 2J H (22-J t--1). Then Hj(u)~ Co (R" ) with 2-S Hj(u)=--1 on {x : u(x)> 2J-1}, a 
neighborhood of {x: u(x)~2J}, a compact set. Thus 

Z ~  C,,,p({x: u(x) ~ 2s})2 j ,  <= Z_~= ZI=I:,~ u CIIfllW 

by Theorem2, since Hj clearly satisfies (2.1). 

Remark 1. Using the H61der and Sobolev inequalities with l<p<n/m we can 
write 

IAI <= f I . , f  dx ~ IlS...t"ll..lAp -~/f ~ CIIfl l ,, lAI x - v f ,  

where A is a Borel set, with its measure [Al<oo and fEL  +, with l m f ~ l  on A, 
p*=npl(n-mp). Hence 

l A P - " "  <= CR=,.(A). 

This inequality also holds if ]A I= o~. Putting this into Theorem 1 gives 

f o  [1{ x:  ISmf(X)l >---- ,}p/"*t]" --at < t : c I I f l l ~ >  

which is O'Neil's Theorem [14], 

Ill~fllLrp*,p) ~ C IIflp, 

l < p < p * <  o% a sharpened form of the Sobolev inequality. In the next section, we 
pursue this idea further. 
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4. Applications 

We first consider "trace" theorems for Riesz potentials. 

Theorem4. For l<p<n/m,  l < q < ~ o ,  I~ a Borel measure, the following are 
equivalent: 

(a) #(K)<-A~Rm,p(K) qlp, for all compact sets K; 
(b) I[Imfllz(q, v) @)~A~ I1 flip, for all fELp; 
(c) IIImfllL(q, =)@)~A3 II flip. for all fELp; 
(d) IIIml~KIIp.<-A41~(g) 1/r for all compact K. (It s denotes # restricted to K). 

Furthermore, the constants A i satisfy: AI<=A4<-_q'As<-_q'A~<=q'p-IIP CA1, where C 
is the constant of  Theorem 1. 

In particular, (b) and (c) say that lm maps Lp into Lp(p) continuously if and 
only if it maps Lp into weak --Lp(/0, i.e. f ~ I m f i s  of strong type-p if and only if it 
is of  weak type-p. 

Proof. We show (a) =~ (b) ~ (c) ~ (d) =~ (a). The first of these is immediately 
,obvious by Theorem 1. (b)~(c)  is clear since [llmfllL(q,~)(u)~l]Imflir.(q,p)(~o. For 
(c):=~ (d), we write 

f IS,.fl d~,K ~ f o  #,dlSmfl ~ tl d t  = fo f .  

fro ~ A~llfll~, f ~  t_qd t : Ag 6~_~llfll~, 
q - 1  

and 

fo  ~ <- ~,(K). 6. 

Choosing fi = Aa Ilfl[p/l~(K) 1/q gives 

]f lmf dt,~] <= q'AzI[fIIp#(K) ~-~/a. 

But since f I m f d p K = f f .  1,,l~Kdx, the result follows by duality. 
Finally (d)=~(a): choose f E L  + such that I,,f>-I on K, then 

#(K) ~ f K I ~ f  d# <-- Ilfllp[llml~Kllp, <= IIf[lpAa#(g) 1-x/q. 

Hence #(K) _-< A4Rm, p(K) 11~. 

Remark 2. O) Note that for any F, IIFIIL(q.ot,)<-CIIFllz(a.p)(,). when q>-p, 
hence (a) is clearly sufficient for 

(b)' Illmfllq,~ <= A Ilf[lp, for all f ~  Zp, q _-> p. 
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That (a) is also necessary here follows by choosing f ~ L  + with Imf>=l on K and 
writing 

#(K) ~ f (I,.f)qd# ~ Aqllf[l~. 
Hence 

#(K) <= AqRm, p(K) q/v, 1 < p < n/m. 

(ii) When p<q<=p*=np/(n-rnp)< 0% (a) can be replaced by a simplier condi- 
tion (for any rnC(0, n)) 

(a') ~(BQ(x)) <= A'o("-zv~ q/v, fo r  all 0 > 0 and all xC R". 

(BQ(x) is the ball of radius 0 centered at x). 

The fact that (a)=*(a)' is a simple matter of calculating the Rm,p-capacity of  Bo(x ). 
For the implication (a)'=*(b)' (and hence (a)) see [3], where estimates of this kind 
are done in much greater generality. 

(iii) Also note that (a) and (a)' are no longer equivalent when q=p. Indeed, 
we need only take a Borel set K with O< H"-ZP (K)< 0o (H d __ Hausdorff mesaure 
of dimension d>0) ,  then by a well known theorem of Frostman [6], there is a Borel 
measure # 5 0  supported by K such that (a)' holds with q=p. But by [13] - -  see 
Theorem 21 - -  R,,, p (K) = 0. Hence there is a n f E L  + such that I ~ f =  + ~ on K. Thus 
(b)" fails (with q =p). 

Ov) In the case rap=n, for any mC(0, n), the condition 

#(B~(x)) <= Co ~, for all 0 > 0  and x E r  ~ and some d > 0 ,  

p a Borel measure with compact support, 

is at least sufficient for 
sup f exp (c [g~*flv') .  d# < ~o. 

IIfllp~l 
This is shown in [2]. 

(v) Using Theorem 1, it is not hard to find a sufficient condition of type (a) 
for (b)' to hold for 1 <=q<p. In fact, the condition 

(a)" sup ~ =  _ = [# (Gj)P/q/R,., p (G J)] "/("- r~ < ~ ,  
S 

where S={Gj} is any doubly infinite system of nested bounded open sets G j c R " ,  
implies 

(b)" I[/mfllL(q,,)r ~ C. IIf/Ip, for all f E L  v, 

when l<=r<p<n/m, l ~ q < o o .  
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To see this, we need only consider fESe+. Set G j={x :  Imf(X)>2Y}, then 

dt f U {l~[Imf >- t] 1/~ " t}" T <= Z~-*~ #(G J)'/q " 2J" ~ C (X~-= Rm' p(G j) * 2JP)r/P 

by H61der's inequality. Now apply Theorem 1. The interested reader should compare 
this with the corresponding result in [12]. 

When q = r =  1, (a)" can be replaced by a simpler necessary and sufficient con- 
dition for (b)" as has been pointed out in [12], namely 

(d)" IlIm/tll~, < ~ .  

Indeed, (d) '~(b)" ,  q = r = l ,  since 

f lI~fldm <- f l f l ' I ~ d x  <- IIfllp. II/~#llp,. 

And for (b)"~(d) ' ,  one simply uses duality. 

(vi) Finally, we remark concerning a relationship between the non-linear poten- 
tials of the measure #, 

u , . ,~ ;  x) = I.,(I,.~)l/c~-l)(x) 

and Theorem 4. These functions have been useful in the study of the pointwise 
regularity of the linear potentials Ira f ,  fCLp - -  see [5] and [9]. 

First of all, we note that the condition 

(e) Urn.p(#; x) ~ As, for all x ~ s u p p p  

for any m C (0, n), is strictly stronger than (b) with q =p. To see this, we need only 
show (e)=~(d) and this is obvious upon writing 

II/~t~KIl~: = f u.,.(.; x) <= As.(K).  

However, by Theorem 5 of [2], the measure d r =  [xl-'Pdx satisfies (b) with q=p, 
but U~,p(/~; x) is unbounded at x = 0 .  This last fact follows by estimate (3) of Theo- 
rem 2 in [2]. 

Motivated again by [12], we can, however, obtain a partial converse to the 
above, namely: (b)" with q=p implies U,,~,p/~(p; x) is bounded in R", provided 

l ~ r < p  and r ( 2 - ~ / < p < n / m .  (4.1) 

This will follow by showing that (b)" with q=p implies 

sup f ~ [O"~P-nlz(Be(x))] "/',-') ap < oo, 
x 

for p satisfying (4.1). See [2]. 
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To that end, let q~ E Co ~ (R") such that (p (x) = 1, Ixl ~ 1, and q~ (x) = 0, Ix[ ~ 2. 
Set q~k(X)= q~(x-xo)/2 k, xoER ", k =  0, _ 1 ,  . . . ,  i N ,  and Bk=B2k(Xo). Also let 
~(x) --- (%--Zk+l)~0k(X)-bZ,+l, for XCBk+I~ Bk, ~(x) =- Z_N, for xEB-N, and 
~k(x) = 0, for xE ~BN+I.  Here 

N z: = ~ j=~ [# (B y/P/2J("-mp)]l/(p-r). 

Clearly, ~EC~(R") and Bk = {x:  ~ k ( x ) > % } .  Thus 

(4.2) 
1 N 1 N 

-7 Z - ~  ~ (BD'/" (~k - ~+0" = 7- Z _ ~  [~ (~D/2~c"- m')] "/ ' '- '), 

since r => 1. Also for I~[ = m, 

N 
Z-N k+l~Bk 

(4.3) 

":- zN__N ( r  p (,O k = C t4 [[ ' l (Bk)/2k(n-mp)] H (p - ' )  

by the choice of q~k- 
But since (b)" is equivalent to 

for all ~ECo(R"),  the result follows by substituting in (4.2) and (4.3). 
Our next application of Theorem 1 concerns certain maximal operators that arise 

from sequences of (principal value) convolution operators. In particular, consider a 
sequence Ok, k----l, 2, ... and Tkf=ok*f ,  w h e r e f i s  initially taken to be of class St], 
say. We then set 

T ' f  (x) = sup ITkf(x)l. 
k 

We say that T* is of strong type-p or weak type-p if T* can be extended as a 
continuous sublinear operator from Lp(R") into Lp(R"), or respectively from LeOR" ) 
into weak Lp(R"), i.e. L(p, co). In order for these definitions to be meaningful, it is 
only necessary to know the value of the distribution function for T* f ,  I{x: T ' f  (x) ~ t }1. 
Thus in analogy with the above definitions, we replace the usual distribution func- 
tion by the Rm,:capacitary distribution function: 

Rm, p({x: T*(Imf)(x) :~ t}). (4.4) 

Then we shall speak of capacitary strong type-(m, p) or capacitary weak type- 
(m, p), respectively. 0 < r e < n ,  1 <p<n/m throughout. 
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Proposition 2. I f  T* is of strong type-p, then it is also of eapaeitary strong 
type-(m, p) for m positive integer. And for any mC(O, n), T* of strong type-p implies 
capacitary weak type-(m, p). 

Proof. For fEre, Tk(Imf)= I,,(Tkf), hence T*(Imf) <=lm(T*f). Thus by 
Theorem I, 

f o  R~,.({x: T*(Imf)(x) > }) dt IIT*fllg Ilfllg = t  P<=C <-C , 

which gives the first statement. For the second, just use (1.2) in place of Theorem 1. 
It might be noted here that if Rm,p is replaced by Bin,p, and I,, by Gm in (4.4), 

then it is known that T* is of strong type-p, for 1 <po<=p<=pl< ~o, if and only if 
it is of capacitary weak type-(m,p) uniformly for m>0 ,  and the same values 
of p. This is shown in [1]. The situation there is somewhat different, however, since 
gm E L1 (R"). 

Examples of T* in Proposition 2, might arise from sequences of singular integral 
operators, or merely from approximations to one. For example, we could take 

T*f(x) = sup f i~-rl>"k(x-Y)f(y)dy ' 

a Calder6n--Zygmund maximal operator, i.e. k is a homogeneous function of 
degree - n  with mean value zero on the unit sphere such that its modulus of con- 
tinuity there satisfies a Dini type condition (see [15]). For this operator, we can think 
of Proposition 2, as a capacitary version of the classical Calder6n--Zygmund Lp 
estimates for T*. 

We conclude this section now with a simple example of an operator T* which 
is of capacitary strong type-(m,p), m=(n-1)/2,  but not of strong type-p. The 
operator is the spherical summation operator T*, first defined for smooth f by 

T f(x) = f ,**<. (a-1 121R2)Zf( )e '~~ 

where 2_->0 and f denotes the Fourier transform o f f .  TO*f=supR IToRf[. 
C. Fefferman has shown in [7] that To is not bounded on Lp, 1 < p <  ~, unless 

p=2 .  Hence To* can not be bounded on Lp, p # 2 .  

Proposition 3. TO* is of eapaeitary strong type-((n-- 1)/2, p), for 1 <p<2n/(n-- 1), 
n = 3, 5, 7 . . . . .  

Proof. In view of Theorem 1, we need only show that if I , , (x)= Ix]"-", 

T~ S,,(x) < C. I,,(x) 
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for all x, C independent of x. To see this, we expand s -=/2, s>0,  in its Taylor expan- 
sion with remainder about s = R  2" 

s -~/2 = R - ~ -  R -=-2 ( s - -R~)+-~  -~-+1 f~=(s-t)t-~/~-~dt. 

Then 
ZoRIm(x) = c f tct<R t41-mei"r d~ = C.R-mZo R (x) -~- 

(4.5) 
+ CR-m T? (x) + c Io  R= t-=~/2-1T~'= (x) dt. 

Now we need to recall the estimate 

IT~(x)l <: CR"(1 +Rlxi)7"/~-l/~-L 2 :> 0. (4.6) 

See [16, p. 171]. (4.6) applied to the terms of (4.5) gives: 

ll=t terml =< CR-mRn(1 + R[xl) -"/2-1/2 ~ C[xl m-n, 

when m = ( n -  1)/2, 
12 "a term I < = CR . . . .  = Clx]"-" 

when R[x t ~ 1, and ~ CR-1tx[ -"/2-1/2-1 < Clxl m-n when RIx [ > 1 

13 "d term I =< c fo  n= t("-m)/2(1 + ?/2 ix1)-,/2-3/~ d t  <= Clxl,,_ . 
t 

since f o  f - m (  1 +t)-"/~-3/2dt/t  < ~ '  for m = (n-- t)/2. 

5. Some open questions 

(i) One rather intriguing question that remains open is whether or not Theo- 
rem 1 is valid for fractional values of m<n.  A natural way of approaching this 
might be via some fractional analogue of Theorem 2. In particular, one might study 
the Lp boundedness of the operators I _ , , H ( I m f )  using some form of interpolation. 
Here, for example, one can take I _ m = ~ = l  Rj  O/Oxj Ix_ z ,  for 0 < m < l ,  where 
Rj denotes the j-th Riesz transform. 

There is, however, an alternative approach that seems to produce some results 
on this question, at least for 0 < m < l .  The idea is to consider the Besov spaces 
Am, p(Rn), i.e. those uE Lp(R n) for which 

l u l = , ,  - {fI I z = " ( = ) L = t h l  - = ' - "  d =  < = .  
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Here Ahu(x) = u ( x + h ) - u ( x ) ,  0 < rn < 1. And if we set 

Sm, p(K) = inf{lOfm, p : ~0C C0=(R"), ~o ~ 1 on a neighborhood of K}, 

K a compact set of  R", and extended to all subsets of  R" as an inner capacity in 
the usual way, then one easily has 

f o  Sm,p({x : u(x) ~ t})dt p ~ ClulLp, (5.1) 

for all uCSe+, say. To see this, one merely proceeds as in the proof  of  Theorem 1, 
showing 

.~  j Inj(u)]~,v <- Clul ,  
as an analogue of  Theorem 2. 

The next task is to replace S,,,v in (5.1) by R,,,p, and this is done in the spirit 
of  [4] where similar results were obtained for Bessel capacities. In particular, we 
can show that there are constants cl and c2 such that 

R~),p(K) < , o~.+a) = ~, "m + x/p, p (K) <= c2 S~)p (K) (5.2) 

for all compact  K c R  ~, l<p<n/m.  Here the superscripts (n) and ( n + l )  refer to 
corresponding capacities for R" and R "+1. The second inequality in (5.2) is a con- 
sequence of the fact that every function u (which is the limit of  C o - -  functions) 
with [Ulm,p< ~o on R" can be extended to R "+1 as a Riesz potential of  order m+l /p ,  
of an Lp function on R "+~. This potential equals u on R". The first inequality in 
(5.2) is trivial. 

Thus we can replace (5.1) by the weaker inequality 

f o  Rm, p({x : .(x) ~ t})dt p <= C(llull."+ lulLp), 

for all uE6 e+. And now by the well known fact that L,,,p(R")cA~,p(R"), p >= 2, 
[15, p. 155], we have 

fo Rm, p({x: G.,N(N) >- t})dt" ~ Cll/llg, 

for a l l f E L  +(R"), 0 < r e < l ,  2 < _ - p < n / m .  

(ii) Throughout  this paper we have adhered to finding capacitary strong type 
estimates on R ~, the idea being that the global behavior of  potentials is of  interest 
as well as their local behavior. And so in this regard it would be of interest to know 
whether or not the Riesz capacities and Riesz potentials in Theorem 1 can be replaced 
by the corresponding Bessel capacities and Bessel potentials, even for integer values 
of  m. I f  so it would shed light on the global behavior of  Sobolev functions and 
perhaps even in the case rnp=n. 
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One can, however ,  t rea t  the  local  theory  in the case m p  = n  by defining Riesz 

capac i ty  using test  funct ions  f E L  + with suppor t s  in a fixed ball .  In  this respect,  

Theo rem 1 remains  valid with m i n o r  a l te ra t ions  in its p roof .  

(iii) A n d  finally, does T h e o r e m  3 have an  ana logue  for  integer  values of  m > 2 ?  

Such a resul t  wou ld  mos t  cer ta in ly  have immedia t e  appl ica t ions  in po ten t ia l  theory  

and  par t i a l  differential  equat ions ,  especial ly i f  the  res t r ic t ion to  non-negat ive  func- 

t ions could  be d r o p p e d  al together .  
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