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Introduction

This paper is a direct outgrowth of a conversation the author had with Professor
V. G. Maz’ya in the Spring of 1974 concerning the existence of certain L, estimates
for the restriction of Riesz potentials of L, functions to small sets. The main open
question concerned the validity of the estimate ||, /1, ,=ClI f|, for positive integers
m=2 (m<n, 1<p<n/m) given that the measure p satisfies u(K)=C-R, ,(K) for
all compact sets K in R". (See section 1 for the definitions.) Maz’ya has shown ([11]
and [12]) that this is valid for m=1, 2. We now establish this estimate for the remaining
integer values of m — Theorem 4 of section 4. The proof relies on the following
theorem, which is the principal estimate of this paper.

Theorem 1. If m=positive integer<n, 1 <p<n/m, then

I3 Ry (52 1L, f )] = 8)) drr = CIf13,
Sor all feL,(R"). C is a constant depending only on n, p and m.

Of course the “weak type” estimate

Ry p({x: Il f @) = 1) = CISIGe7"
is trivially valid (with C=1) and so what is new is the existence of what we prefer
to call a “strong type” capacitary inequality. These weak and strong type capacitary
estimates oppose each other in much the same way as do the usual weak and strong
L, estimates.
The author wishes to thank Professor Maz’ya for the interesting discussion and
for pointing out this problem and his work on it.

* Research partially supported by National Science Foundation Grant GP—42963.
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1. Preliminaries

The Riesz potential of order m, 0<=m<n. 1s

L) = [e—y""f(n) dy (1.1)

for any f for which the integral converges absolutely for almost every (a.e.) x€R".
Integration is taken over R”. In particular, this is always the case whenever /¢ L,(R"),

=p-<nfm, the usual Lebesgue p-th power integrable functions on R”, [ f{,=
=(f [ f(X)|Pdx)/? <. For a measure u other than Lebesgue measure we write
I, =( f | f(x)[Pdu(x))"?. The Sobolev inequality for Riesz potentials is

I fllps = Clfllps 1 <p<njm,

for all f¢L,(R"), C a constant depending only on n, p and m.

The Bessel potential of order m=0 is defined as convolution over R* with
the L;(R" function g,(x) whose Fourier transform is (1+[E®~™2, EcR”, ie.
G, f(x) =fgm(x—y)f(y)dy. Also g, (x)=C-|x|" " for all x¢R", provided O0<m—<n.

The Riesz capacity of order m and degree p is defined by

Ry, o(4) = inf{| f12: f€ L} R") and I, f(x) = 1 on 4}

for any set ACR" Here the “+” denotes the non-negative elements in L,. Some
properties of R,, , will be useful ([13]):

() monotonicity: R, ,(4)=R,, ,(4;), 4,C4,

(i) subadditivity: R, ,(U; 4)=2>; R, ,(4)

(iii) R, ,(@)=0, 0=empty set

(iv) R, ,(4)=0 if and only if there is an fGL;,r(R”) such that I, f(x)= 4o
on A. Also

R, p({x: (L f(0)] = 1)) = 77| 5. (1.2)

(v) R, ,is an outer capacity, i.e. R, ,(4)=inf;_ R, ,(G), G=open set in R™.
Furthermore, all analytic sets are capacitable, i.e. R,, ,(4)=supg 4R, ,(K), K com-
pact in R” and 4 analytic. '
(vi) If p=n/m, there are no sets of positive R, , capacity.
In particular, property (vi) implies that given any set 4, there is an f€ L. such that
I, f(x)=+< on 4 when p=n/m. Hence the restriction p<n/m is essential when
working with Riesz potentials of L, functions.

The Bessel capacity of order m and degree p is defined by replacing I, f by
G, f in the definition of R, ,. We write B, , for the Bessel capacity and note that
it too has properties (i)—(v). However, since g,,(x) decays exponentially as x|~ o,
B,, , does not satisfy (vi). For 1=p<n/m, R, , and B, , are locally equivalent, i.c.
there is a constant ¢>0 such that ¢c™*R, (4)=B, ,(4)=cR, ,(4) for all sets 4
contained in a fixed ball (¢ depends on the radius of this ball).
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C(R™ denotes the infinitely differentiable functions (C*) on R" with compact
support, &= (R"), the class of rapidly decreasing C= functions on R". W™?(R"),
m = positive integer, denotes the usual Sobo'ev spaces, i.e. those u€L,(R") which
have distribution derivatives (9/0x)*u of orders=m which -belong to L,(R".
a=(a, ..., ,) a multiindex, o;=positive integer, (9/0x)*=(0/dx))™...(d/0x,)*,
X=(Xgy oony Xp)- lt]=03+ ... +a,.

The Lorentz spaces L(p, g)(¢) with respect to the measure p on R" consist
of those f for which (0<p, g< )

1/q
oo = {5 [alte: 1) = e 2) < o

when ,L¢=Lebesgue’ measure on R", we shall write L(p, q). For g=-<o, | fll (5, ey
is sup,»op[| flz=e]"71.

Throughout the paper, the letter C will denote various constants which may
differ from one formula to the next even within a single string of estimates. In gen-
eral we make no attempt to obtain the best values for these constants.

2. Smooth truncation

If H(¢) is uniformly Lipschitz on R with H(0)=0 and such that H’(t) has
only a finite number of discontinuities, then it is well known that H(u)€ W*?(R")
whenever u€ WHPR(*), 1=p= . (In particular, because of the choice H(¢)=t, for
[t|=1 and =sgn ¢, for |¢|=>1, it is natural to refer to H(u) as a general “truncation’.
operator on W? (R").) For higher order derivatives, this is no longer the case, i.e.
H@w)§ W™F([R"), for m=2. Indeed, 8/0x; H(u) is not, in general, absolutely con-
tinuous on lines and hence is not in W™ ?(R™). This failure is due, of course, to
the fact that H is not sufficiently differentiable. Consequently, we might ask whether
H(u)e W™P(R™ given uc W™?(R" provided H(¢) is a sufficiently smooth function
which vanishes at the origin, or in otherwords, is the “smooth truncation” operator
H(u) bounded on W™?? When mp=n, the results is true and well known. One
needs only apply the Sobolev inequality {D*ull,=C|D™ul, g=np/(n—(m—k)p),
when mp=n and the Nirenberg inequality, || D*ul,,u=C | D™ul%™ ||ul:7*™, when
mp=>n to the various terms that arise in estimating the L, norms of the derivatives
of H(u). However, when 1=p-<n/m, little scems to be known regarding this problem,
thongh it seems apparent that one will have to either restrict the class of H’s and/or
the class of #’s in this case.

In this section, we give two results of this type. Note that they both avoid
assuming that the u are bounded functions on R”" The first result, Theorem 2, is
the principle tool of this paper. It applies only to functions u of the form I,, f; where



128 D. R. Adams

fEL;, l<p<n/m. The second, Theorem 3, applies only to ue WZh?, or, for that
matter, to any u€ W*? which is either bounded above or below. This last result is
a simple modification of a technique due to Maz’ya [12). We mention it here mainly
because it does not seem to be generally known. It is exactly the technique of Maz’ya
in his proof of Theorem 1 for the case m=2. Whether or not theorem 3 remains
valid for m=>2 remains open.

Theorem 2. Let H;(t), j=0, £ 1, +2, ..., be a doubly infinite sequence of C™(R?)
Sunctions identically zero for t<0 with H] having disjoint carriers on (0, =) and
such that

sup [F*HP (@) = M < @.n
>

k=0,1, ..., m. Then for all fcL}, 1<p<n/m, there is a constant C depending only
on n, m, p and M such that
a -4
2 j [&’] HJ(I

where o s a multiindex with |u|=

= C|f15,

The proof rests on the following

Lemma 1. If u(x)=1, f(x), m=positive integer<n, f€L}, then for 1<p<nm,
and all multi-indices B, 0<|B|<m,

| ]u(x)
f G — 4 = CIFIE,

where a=m/|B|, and C is independent of f.

Proof. We begin by estimating the Riesz potential I, f pointwise by the method
of Hedberg [10]. For 0<0<1,

Lof(x) = flx—yl<5 arer’[b‘_yI%‘s dx=TI+T,
for some 6 =0 to be specified.
I'= 2’10 fz-k~la§|x—y1<z~ka ]x—y]'""""f(y)dy =
= C 3 Q7k1oy"-n(2-% 5" Mf (x) = CO™ Mf(x),
where Mf(x) is the usual Hardy—Littlewood maximal function.

I = 6™, £().
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Now choosing &=5(x)=[1, f(x)/ Mf(x)]'", we have
Lo f(x) = CIL, f)P[Mf ()] ~°.

Letting 6=1/c"=1—1/0, o==m/|B|, and noting the estimate
we have

(2o
o

f St e =€ | el dv = [y de = ¢ e,

= CIm~|ﬁlf(x) = CIm/a'f(x)>

po

by the well known L, estimate for Mf.
Proof of Theorem 2. With u=I, fand |f|=m
ﬁk

[;’ ]H(u) S HPW 3G, [a]ﬂum [i] u(®)

where the last sum is over all multi-indices {f, ..., B*} such that pl+...+p*=p.
Upon applying (2.1), we see that the L,-norm of (9/8x)" H;(u) does not exceed the
p-th root of

u ()7 dx

B B
‘[%] u(x) ... [—a-] u(x)
—

where s5; denotes the carrier of H(u) which are a priori disjoint. Summing over j
gives

(o e
P — ulx)...|5=] ulx
=c3m / 9x 0x dx. (22

u (x)p(k -1)

[(«%J BH ()

For the terms in (2.2) corresponding to k>1, we have O0<|B|<m, i=1, ..., k.
Hence choosing p;=m/|p|, then 1<p,<e and > 1/p,=1. Hoélder’s inequality

applied to those terms gives
9 gt r P Bx
/ [B_x] u(x) [332] u(x)

u(x)?'r " u(x)?/ P

2;

p

dx (1/pi =1-1/p)

PP 1Yp;

e
= Hz 1 ,/ u(x)?®: 1) —dx| = CH?:I (|lf|l§)”’"' =CIflI
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by Lemma 1. For the terms in (2.2) corresponding to k=1, |f'|=m. In this case

0/0x)" u=K,x f, a Calderén—Zygmund transform of f, and consequently,

Ko f1,=C|l £, which gives the remaining required estimate to prove the theorem.
Now the result of Maz’ya — we restrict ourselves to a single function H:

Theorem 3. Let H(t) be a C2(RY) function satisfying (2.1) for k=0, 1, 2, then
Sor all u¢ W3?(R"), 1<p<n/2, there is a constant C depending only on n, p and M
such that

IH @)z, , = Cllullz, -

Proof. Because of (2.1), it is clear that we need only concentrate on estimating
the L,-norm of D;; H(u)=H’'(u)+D;;u+H"(u)D;u- D;u, D;=0/0x;, D;;=0%0x;0x;.
The first term is clearly in L,. It is the second that requires attention. By Holders
inequality, it suffices to show that |H”(w)['2|D;u|€L,,. To this end we claim

f 2 g < i yuiy @3

which by (2.1) gives the theorem. To show (2.3), we first consider € Cy(R")™ and
show

|Dju*® »

—dx = " 2.

a +u)"dx = C|D;;ulh (2.4)
with, of course C independent of u. (2.3) will then follow by taking a sequence
u,€Cy (R™* with D;;u,—~D;;uin L, and u,—~u and D;u,—~D;u a.e. (which is always
possible for u€ W*?), and then applying Fatou’s lemma to the left side of (2.4);
and finally replacing u by u/e, =0 giving

|D; ul*
(e+u)?

dx = C|Dj;ull}
and letting e—~0.
To see (2.4) write
I= [|DuP?(1+u)-rdx = [ (sgn D;w)|DuP?~*(1+u)~? D;(u+ 1)dx =

=—@p—1) [ |D;uP?~*Dj;u(1+u)y~?**dx+p [ (sgn D;u)|Djuf* (1 +u)~? Dyudx
2.5)
upon integrating by parts. There are no boundary terms since D;u has compact

support and p=1. But (2.5) is just

(2p—1) - -o-
I= T_Tf[DjuP(” Yl +u)= @Y. Djudx.
Hence
2p—-1) ,
I= '—pTl"II/P ”Diiu”g

which gives the result!
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3. Proof of Theorem 1

We first show that for 1<p<n/m, the Riesz capacity R, , is equivalent to

l[i P
|[Lox

where K is compact in R”". In particular, we give a new proof of the following known
result (see [11] or the author’s paper with J. Polking, Proc. Amer. Math. Soc. 37

(1973)). The proofs there rely on knowledge of the boundedness of the R,,, p-capacitary
potential I, 1.

5P

p

:u€ CE(RY, u =1 in a neighborhood of K},

r

Cm,p(K) = inf{ZM:m

Proposition 1. There is a constant ¢=0 such that
¢'R,, ,(K) = Gy, (K) = R, ,(K) (ER))

Jor all compact K, ¢ independent of K.
Proof. For the first inequality in (3.1), recall the representation (#€Cy (R™)

u(®) = 2 o CaKa® [[%]au] x) 3.2

where K, is the convolution operator K, *...*K, , a=(ay, ..., o,), with K, the
convolution operator whose kernel is e, %, - x;|x| ™ convolved a;-times. See [15 p. 125].
Clearly, [u(x)|=CL,(Z|a)=m |(0/0x)*u])(x), hence taking f=C- 3 ;| =nl(0/0x)*ul|, we
have 1, f=1 on K which easily gives the result.

For the second inequality in (3.1), we apply Theorem 2 for one H-function.
Namely, let H(#)=0, for t=1/2, and =1, for r=1, and C~(R') otherwise. Now
choose a Y € C;°(R™* such that supp < B;(0), fl[/ dx=1. And set Y, (x)=h""Y (x/h),
h=0. Choose an open bounded set G->K and any fEL; such that I, f=1 on G.
Then for sufficiently small 4, ¥,*I,f=1 on G,, where, KCG;CG, G, open with

G, G. Now set u(x)=H(L,(f, /) (x)). Clearly uc C;°(R") and u=1 on G,. And by

Theorem 2
[9 [
ox

Thus C,, ,(K)=cR,, ,(G), for all such G. The result now follows since R,,, is an
outer capacity.

We extend the definition of C,, , to the class of all subsets of R" as an inner
capacity, i.e. for any ACR", C,, ,(4) is defined to be supg. ,C,, ,(K), where K is
compact. Clearly, this definition agrees with our earlier one when A4 is compact,
since C,, , is monotone.

p

= Cliw*fl5 = CIA15.

Cm,p(K) = 2]a]=m
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Since I, f, f=0, is lower semi-continuous, the set {x:I,f(x)=¢} is a G,-set
and hence R, ,-capacitable. Thus, due to Proposition 1, there is no loss in proving
Theorem 1 with R, , replaced by C,, ,. Furthermore, it suffices to consider only
Je€&t in proving Theorem 1, since by taking a sequence f,€ %, || fi—f 1,~0 as
k—~oco, we can write R, ({x:L,f(x)=2t)=t"?(| f—fil 2+ R, ,({x: L, fr(x)=1}).
Hence limy, ., R, ,({x: I, fi(x)=t})=R,, ,({x: I, f(x)=2t}).

With this done, we estimate as follows: with u=1, f,

2j+1

f: Cop({x:ux) = ef)dt? = 37 __ | Cup({x: ux) = })di* =
=22 37 Cp o({x: u(x) = 27})27r,
Now set H(t)=0, for t=0 and =1, tor =1, and C”(R?) otherwise. Let H;(t)=

=2/H(2*/t—1). Then H;(u)cCyR" with 277 H;(w)=1 on {x:u(x)>2"1}, a
neighborhood of {x:u(x)=2’}, a compact set. Thus

p
= ClIfI5

P

2 Cnp({xiu(x) =227 = 37 _ 30

3 o
[

by Theorem 2, since H; clearly satisfies (2.1).

Remark 1. Using the Holder and Sobolev inequalities with 1 <p<n/m we can
write
] = [ Lo fdx = S |+ AP7" = C| £, 417,
where A is a Borel set, with its measure |4|<<e and f€L}, with I,,f=1 on 4,
p*=np/(n—mp). Hence
|4[t=m#" = CR,, ,(4).

This inequality also holds if |4]= . Putting this into Theorem 1 gives

- .1, At
J7 s )l = B < = Cisig,
which is O’Neil’s Theorem [14],

Mo f o, 2y = CILF N

l<p=<p*<-oo, a sharpened form of the Sobolev inequality. In the next section, we
pursue this idea further.
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4. Applications

We first consider “trace” theorems for Riesz potentials.

Theorem 4. For 1<p<n/m, 1<q<o, u a Borel measure, the following are
equivalent:

(@) p(K)=A4R,, ,(K)"®, for all compact sets K;

®) 1Sz S Aall fllp, Jor all fEL,;

©) 1 Sflliq ey =Asl flip, for all feL,;

(d) ]lImuK[Ip,§A4u(K)1/"', Jor all compact K. (uy denotes p restricted to K).
Furthermore, the constants A; satisfy: Ay=A,=q’A;=q’A,=q'p"YP CA,, where C
is the constant of Theorem 1.

In particular, (b) and (c) say that 7, maps L, into L,(u) continuously if and
only if it maps L, into weak —L,(n), i.e. f~1I,f is of strong type-p if and only if it
is of weak type-p.

Proof. We show (a)=(b)=(c)=>(d)=(a). The first of these is immediately
obvious by Theorem 1. (b)=>(c) is clear since ||, fllL ¢ wy=ImfllL@, pw- For
(c)=(d), we write

[ fldue = [7 uxlilnf] = Adt = [o+[7.

[ =470 [7 0 d = = 8070
and
[? = uy-s.

Choosing & = Ay | 1/n(K)"* gives
| B fdu| = 4/ 431 £, GRR -,

But since f L, fdug= f /- I, ugdx, the result follows by duality.
Finally (d)=(a): choose fcL; such that I,f=1 on K, then

WK) = [ Infdi = | £l Mty = 111, Aap (K1,

Hence u(K) = AR, ,(K)'>.

Remark 2. (i) Note that for any F, |Fllrg »w=CIIFlr@»nw> When g=p,
hence (a) is clearly sufficient for

() MaSllgu = AlSfl,, forall feL,, q=p.
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That (a) is also necessary here follows by choosing f€L} with I, f=1 on K and
writing
p(K) = @ fydu = A1) 14

p(K) = AR, ,(K)?, 1=p<njm.

Hence

(i) When p<g=p*=np/(n—mp)=< =, (a) can be replaced by a simplier condi-
tion (for any me(0, n))

(@") u(B,(x)) = A’g"~™n4/?_ for all ¢ > 0 and all xR
(B,(x) is the ball of radius ¢ centered at x).

The fact that (a)=(a)’ is a simple matter of calculating the R,, ,-capacity of B,(x).
For the implication (a)’=>(b)" (and hence (a)) see [3], where estimates of this kind
are done in much greater generality.

(iii) Also note that (a) and (a)’ are no longer equivalent when g=p. Indeed,
we need only take a Borel set K with 0<H" ™F(K)< o (H* — Hausdorff mesaure
of dimension d>0), then by a well known theorem of Frostman [6], there is a Borel
measure pZ0 supported by K such that (a)’ holds with g=p. But by [13] — see
Theorem 21 — R, ,(K)=0. Hence there is an f€ L such that I,, == + < on K. Thus
(b)’ fails (with g=p).

(iv) In the case mp=n, for any m€(0, n), the condition
p(By(x)) = Cg?, forall ¢ >0 and x€R" and some d > 0,

i a Borel measure with compact support,
is at least sufficient for
sup [ exp (c|gn* f17) - dp < o.

=1
This is shown in [2].

(v) Using Theorem 1, it is not hard to find a sufficient condition of type (a)
for (b) to hold for 1=g<p. In fact, the condition

@ sup 27 (G Ry, p (G070 < oo,

where S={G;} is any doubly infinite system of nested bounded open sets G,CR”,
implies

) MnSlr@na = C-1fll,, forall feL,,

when 1=r<p<n/m, 1=qg<co,
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To see this, we need only consider fe&*. Set G;={x:1, f(x)=27}, then

- dt - N - e
Sl f = ety < = 32 p(Gy'n2F = C(Z7. Rep(G)-27)7

by Holder’s inequality. Now apply Theorem 1. The interested reader should compare
this with the corresponding result in [12].

When g=r=1, (a)” can be replaced by a simpler necessary and sufficient con-
dition for (b)” as has been pointed out in [12], namely

(d), ”Imnu'”p‘ < oo,
Indeed, (d)'=(b)", g=r=1, since

[afldp = [1f]-Lapdx = £l 1 nitly-
And for (b)”=-(d)’, one simply uses duality.

(vi) Finally, we remark concerning a relationship between the non-linear poten-
tials of the measure p,
Um,p(ﬂ; x) = Im(Im”)l/(p—l) (x)

and Theorem 4. These functions have been useful in the study of the pointwise
regularity of the linear potentials I, f, f€L, — see [5] and [9].
First of all, we note that the condition

() Uy, p(u; x) = A4;, for all xcsupppu

for any m€(0, n), is strictly stronger than (b) with g=p. To see this, we need only
show (e)=-(d) and this is obvious upon writing

ombixll = [ U, o015 %) dpg (%) = A5p(K).

However, by Theorem 5 of [2], the measure du=|x|"*?dx satisfies (b) with g=p,
but U, ,(u; x) is unbounded at x=0. This last fact follows by estimate (3) of Theo-
rem 2 in [2].

Motivated again by [12], we can, however, obtain a partial converse to the
above, namely: (b)” with g=p implies U,, .. (u;x) is bounded in R", provided

l=r<p and r[2——’%£] <p<nm. @.1)
This will follow by showing that (b)” with g=p implies

w dj
sup [ e u(B, ()0 L < =,

for p satisfying (4.1). See [2].
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To that end, let @€ C5°(R*) such that ¢(x) =1, |x|=1, and ¢(x) =0, |[x|=2.
Set ¢, (x) = p(x—x0)/2%, x€R", k=0, +1, ..., £ N, and By, = Byx(x,). Also let
Y (xX) = (T —Tp1) Qu(X) + Tieyy, for X€Biyy~ By, Y(x) =1_y, for x€B_y, and
Y(x) =0, for x€~ By,,. Here

T = ZjY:k [p(B,)!p[2i¢—mo/(p=r),

Clearly, Y€ C5(R") and B, = {x: ¥(x) > 1;}. Thus

- d 1
Syl = a0t S= — 3V, pBY G ) =

. | 4.2
=— ZIXN pBY P (i — ) = 7 Z{V_N [ (B 2k =mp}rl(p=r),

¥
3 o€
[a—] v

p
dx = C 37 [w(BY[2- o)/

3 a
[,
for all Y€ Cy°(R™), the result follows by substituting in (4.2) and (4.3).

Our next application of Theorem 1 concerns certain maximal operators that arise
from sequences of (principal value) convolution operators. In particular, consider a

sequence 0, k=1, 2, ... and T*f=0,x f, where f is initially taken to be of class <,
say. We then set

since r = 1. Also for |a| = m,
a -4

I

= ZN (’C —7T )pf '—a— )
N T~ Tt o P

by the choice of ¢;.
But since (b)” is equivalent to

”lp“L(p,r)(u) =C- 2[a|=m

p P
— N —
dx = 3V, f3k+1~3k dx

@4.3)

T*f(x) = sup [T*f(x).

We say that T is of strong type-p or weak type-p if T* can be extended as a
continuous sublinear operator from L,(R") into L,(R"), or respectively from L,(R")
into weak L,(R"), i.e. L(p, <=). In order for these definitions to be meaningful, it is
only necessary to know the value of the distribution function for 7*f, [{x: T*f(x)=¢}|.
Thus in analogy with the above definitions, we replace the usual distribution func-
tion by the R,, ,-capacitary distribution function:

R, p({x: T*If)(x) = 1}). 4.4

Then we shall speak of capacitary strong type-(m, p) or capacitary weak type-
(m, p), respectively. 0<m=<n, 1<p<n/m throughout.
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Proposition 2. If T™* is of strong type-p, then it is also of capacitary strong
type-(m, p) for m positive integer. And for any me(0, n), T™ of strong type-p implies
capacitary weak type-(m, p).

Proof. For fe¢¥%, T*(,f)=L,(T*f), hence T*(I,f) =L, (T*f). Thus by
Theorem 1,

[ R o (§x: T* @ )() = 1)) di? = C|THf|15 = CIl 3,

which gives the first statement. For the second, just use (1.2) in place of Theorem 1.

It might be noted here that if R,, , is replaced by B,, ,, and , by G,, in (4.4),
then it is known that 7* is of strong type-p, for 1<p,=p=p, =<, if and only if
it is of capacitary weak type-(m, p) uniformly for m=0, and the same values
of p. This is shown in [1]. The situation there is somewhat different, however, since
gn€ L, (R").

Examples of T* in Proposition 2, might arise from sequences of singular integral
operators, or merely from approximations to one. For example, we could take

/() = swp| [, k=21

a Calder6n—Zygmund maximal operator, i.c. k is a homogeneous function of
degree —n with mean value zero on the unit sphere such that its modulus of con-
tinuity there satisfies a Dini type condition (see [15]). For this operator, we can think
of Proposition 2, as a capacitary version of the classical Calderon—Zygmund L,
estimates for T,

We conclude this section now with a simple example of an operator 7* which
is of capacitary strong type-(m, p), m=(n—1)/2, but not of strong type-p. The
operator is the spherical summation operator 7y, first defined for smooth f by

TRF(x) = [0 (1~ E}R (&) i< dt

where A=0 and f denotes the Fourier transform of f. T f=supg |TR f].
C. Fefferman has shown in [7] that T}, is not bounded on L,, 1<p< <o, unless
p=2. Hence T can not be bounded on L,, p#2.

Proposition 3. T, is of capacitary strong type-((n—1)/2, p), for 1<p<2n/(n—1),
n=3,517,....

Proof. In view of Theorem 1, we need only show that if I,(x)=|x|""",

I3 1 (x) = C- 1, (),
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for all x, C independent of x. To see this, we expand s~*2, s=0, in its Taylor expan-
sion with remainder about s= R?:

-af2 . p-a f‘_ —a— % 1 s _ —a/2-2
s~%2 = R —2R z(s—R2)+3[2+1]fRz(s Nt dt.

Then
TRL) = ¢ [y gl e e dE = CRTMTR() + “s
+CR™TRE) +c [ 21T (x) dt.
Now we need to recall the estimate
ITR(x)] = CR*(1 + R|x))—*2-2-4 ) = 0. (4.6)

See [16, p. 171]. (4.6) applied to the terms of (4.5) gives:
[1% term| = CR™™R"*(1 + R|x[)~"*~** = C[x"~",

when m = (n—1)/2,
2" term| = CR*~™ = C|x"~"

when R|x| =1, and = CR~!|x|~"/2-12-1 = C|x/" " when Rlx| =1,

dt
|3'd term] =c ffz t("-—m)/2(1 L2 !xl)—n/z—s/z_

= Clxj
t

since f:’ (L4232 gt < oo, for m = (n—1)/2.

5. Some open questions

(i) One rather intriguing question that remains open is whether or not Theo-
rem 1 is valid for fractional values of m<n. A natural way of approaching this
might be via some fractional analogue of Theorem 2. In particular, one might study
the L, boundedness of the operators I_,, H ([, f) using some form of interpolation.
Here, for example, one can take I_,=2"_, R;d/0x; L,_,,, for 0<m<1, where
R; denotes the j-th Riesz transform.

There is, however, an alternative approach that seems to produce some results
on this question, at least for O<m-1. The idea is to consider the Besov spaces
Ay, ,(RY), ie. those ucL,(R") for which

[ulm,p = {ff |Ahu(x)]P!h!—MP—n dx dh}1’p< .
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Here A u(x) = u(x+h—u(x), 0 <m<1. And if we set

S, p(K) = inf{|qo|,€,,p.: @€ C°(RM, ¢ =1 on a neighborhood of K},

K a compact set of R”, and extended to all subsets of R" as an inner capacity in
the usual way, then one easily has

J& S p(§x: u(x) = ) di* = Clulp, (5.1

for all uc¢ %™, say. To see this, one merely proceeds as in the proof of Theorem 1,
showing

Zj IHj(u)‘rI:z,p = C|u|r€n,p
as an analogue of Theorem 2.

The next task is to replace S, , in (5.1) by R, ,, and this is done in the spirit
of {4] where similar results were obtained for Bessel capacities. In particular, we
can show that there are constants ¢; and ¢, such that

RP(K) = e, Ry, »(K) = ¢, S™ (K) (5.2)

m, p

for all compact KcR", 1<p<n/m. Here the superscripts (n) and (n-+1) refer to
corresponding capacities for R* and R**'. The second inequality in (5.2) is a con-
sequence of the fact that every function » (which is the limit of Cy> — functions)
with [ul,, ,< - on R” can be extended to R**' as a Riesz potential of order m+1/p,
of an L, function on R"*'. This potential equals » on R". The first inequality in
(5.2) is trivial.

Thus we can replace (5.1) by the weaker inequality

S R (i u(x) = ) de? = C(JulB+ luls, )

for all u€¢ &*. And now by the well known fact that L, ,(R)c A4, ,(R), p=2,
[15, p. 155], we have

[& Rup({x: Guf () = 1)) dr? = C| £,
forall feLF(R"), 0 <m <1, 2=p <n/m.

(ii) Throughout this paper we have adhered to finding capacitary strong type
estimates on R”, the idea being that the global behavior of potentials is of interest
as well as their local behavior. And so in this regard it would be of interest to know
whether or not the Riesz capacities and Riesz potentials in Theorem 1 can be replaced
by the corresponding Bessel capacities and Bessel potentials, even for integer values
of m. If so it would shed light on the global behavior of Sobolev functions and
perhaps even in the case mp=n.



140 D. R. Adams: On the existence of capacitary strong type estimates in R”

One can, however, treat the local theory in the case mp=n by defining Riesz
capacity using test functions f€L} with supports in a fixed ball. In this respect,
Theorem 1 remains valid with minor alterations in its proof.

(iti) And finally, does Theorem 3 have an analogue for integer values of m=2?
Such a result would most certainly have immediate applications in potential theory
and partial differential equations, especially if the restriction to non-negative func-
tions could be dropped altogether.
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