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Modules of principal parts
on the projective line

Helge Maakestad

Abstract. The modules of principal parts P*(£) of a locally free sheaf £ on a smooth scheme
X is a sheaf of Ox-bimodules which is locally free as left and right Ox-module. We explicitly
split the modules of principal parts P*(O(n)) on the projective line in arbitrary characteristic, as
left and right Op1-modules. We get examples when the splitting-type as left module differs from
the splitting-type as right module. We also give examples showing that the splitting-type of the
principal parts changes with the characteristic of the base field.

1. Introduction

In this paper we will study the splitting-type of the modules of principal parts of
invertible sheaves on the projective line as left and right Opi-modules in arbitrary
characteristic. The splitting-type of the principal parts P*(O(n)) as a left Opi-
module in characteristic zero has been studied by several authors (see {1], [6] and [7]).
The novelty of this work is that we consider the principal parts as left and right
Op:i-modules in arbitrary characteristic. We give examples when the splitting-type
as left Opi-module differs from the splitting-type as right Opi-module. The main
theorem of the paper (Theorem 7.1), gives the splitting-type of P!(O(n)) as left
and right Op:-modules for all n>1 over any field /. The result is the following:
The principal parts P(O(n)) splits as O(n)@O(n—2) as right Opi-module. f the
characteristic of F divides n, then P1(O(n)) splits as O(n)®O(n—2) as left Op1-
module. On the other hand, if the characteristic of F' does not divide n, then
PL(O(n)) splits as O(n~1)&O(n—1) as left Opi-module. Hence the modules of
principal parts are the first examples of a sheaf of abelian groups equipped with two
non-isomorphic structures as locally free sheaves. In the papers [1], [6] and [7] the
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authors work in characteristic zero, and they only consider the left module structure.
In this work we split the principal parts explicitly as left and right modules and
the techniques we develop will be used in future papers to get deeper knowledge of
the principal parts in positive characteristic. In Sections 3-6 we develop techniques
to construct non-trivial maps of @-modules from O(n—k) to P¥(O(n)). The main
theorem here is Theorem 5.2, where we prove existence of certain systems of linear
equations with integer coefficients. Solutions to the systems satisfying extra criteria
determines the splitting-type of P*¥(O(n)). Theorem 5.2 is used in Proposition 6.3
to determine the splitting-type of P*(O(n)) for all 1<k<n in characteristic zero,
and we recover results obtained in [1], [6] and [7]. We also give examples where the
splitting-type can be determined by diagonalizing the structure matrix defining the
principal parts (Section 4).

2. Modules of principal parts

We will in the following section define and prove basic properties of the prin-
cipal parts: existence of fundamental exact sequences, functoriality and existence
of bimodule structure. Let X be a scheme defined over a fixed base scheme §. We
assume that X is separated and smooth over S. Let A in X xgX be the diagonal,
and let 7 in Oxx,x be the sheaf of ideals defining A. Let X k be the scheme with
topological space A and structure sheaf Oar =Ox y sx/Z*!. By definition, X* is
the kth order infinitesimal neighborhood of the diagonal. Throughout the section we
omit reference to the base scheme S in products. Let p and ¢ denote the canonical
projection maps from X x X to X.

Definition 2.1. Let £ be a quasi-coherent O x-module. We define the kth order
modules of principal parts of € to be

P5(E) =pu(Onr®q7E).

We write P% for the module P4 (Ox).

When it is clear from the context which scheme we are working on, we write
Pk(E) instead of PL(€).

Proposition 2.2. Let &£ be a quasi-coherent O x-module. There exists an exact

sequence
0-—SHQNRE—+PEE) —PELE) —0

of left Ox-modules, where k=1,2,....

See [4], Section 4, for a proof.
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From Proposition 2.2 it follows by induction, that for a locally free sheaf £ of
rank e, P%(€) is locally free of rank e(":k), where n is the relative dimension of X
over S.

Proposition 2.3. Let f: X =Y be a map of smooth schemes over S, and let £
be a locally free Oy -module. There exists a commutative diagram of exact sequences

0 ——SE(f QLR E —— [*PEE) — [*PEHE)—=0

| l l

00— S*(Qx)& f*E —> PL(f*E) —=PL 1(f*€) —=0

of left Ox-modules for all k=1,2, ....
See [b], for a proof.

From Proposition 2.3 it follows that for any open subset UU of X, the sheaf
P%(&)|v is isomorphic to PE(E|r), hence we can do local computations with the
principal parts.

Proposition 2.4. The principal parts P% define a covariant functor

P Mod(Ox ) —s Mod(P%),
where for all quasi-coherent Ox-modules £, the kth order principal parts P% () is
a quasi-coherent PY -module. The functor is right ezact and commutes with direct
limits. If P;“( is flat, the functor is exact.

See [3], Proposition 16.7.3, for a proof.

Note that since we assume X to be smooth over 3, it follows that P% is locally
free, hence the functor in Proposition 2.4 is exact.
We next consider the bimodule structure of the principal parts.

Proposition 2.5. Let f,g:U—V be morphisms of topological spaces, and let
s be a section of f and g with s(V) a closed set. Let furthermore A be a sheaf of
abelian groups on U with support in s(V). Then f«(A) equals g.(A).

Proof. We first claim that the natural map from s.s ' A4 to .4 is an isomor-
phism: Since s(V') is closed, and s is a section of f, we see that s is a closed map.
Both s,s71.A4 and A have support contained in s(V), hence we prove that the map
is an isomorphism at the stalks for all points p in s(V): The stalk (s.s7!'A)y) is
isomorphic to (s71A),, since s is a closed immersion. Furthermore we have that
(st A), equals As(p) since s~ 1 is an exact functor, and the claim follows. We see
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that f.A is isomorphic to f,s,s 1A, and since s is a section of f, we get that f..A
is isomorphic to s 71 A. A similar argument proves that g..A is isomorphic to s 14,
and the proposition is proved. [J

Let A be the diagonal in X x X, which is closed since X is separated over S.
The sheaf Oar®q*E has support in A, hence by Proposition 2.5 we get an iso-
morphism between P% (€)=p.(Oar ®q*E) and q.(Oar®¢*E). By the projection
formula, q.(Oar®q¢*E) equals ¢, (Oar)RE, hence by Proposition 2.5 the principal
parts P% (&) is isomorphic to ¢.(Oax)®E as sheaves of abelian groups. Identifying
3+ (Oar)RE with P%(E), we have defined two O x-module structures on P%(£). It
follows that P% (&) is a sheaf of Ox-bimodules, which means that for any open set
U of X, the abelian group P(’} (€|r) is an Ox (U)-bimodule and all restriction maps
are maps of bimodules satisfying obvious compatibility criteria. Let X* be the kth
order infinitesimal neighborhood of the diagonal. Then the two projection maps
p,q: X x X —X induce two maps l,r: Ox =P~ of Ox-modules. The maps ! and
r are the maps defining the bimodule structure on 7)@, and we see that P’% is a
sheaf of O x-bialgebras. The map d=I—7:Ox —P% is verified to be a differential
operator of order k, called the universal differential operator.

3. Transition matrices for principal parts as left modules

In this section we explicitly compute the transition matrices defining the princi-
pal parts P*(O(n)) on the projective line over the integers. We will use the following
notation: Define P! as Proj Z[zg, x1], where Z are the integers, and put U;=D(x;)
and Ugy=D(zqxy) for i=0, 1, where ; are homogeneous coordinates on P1. Con-
sider the modules of principal parts P* from Definition 2.1 on P! for k>1. On the
open set Uy, the modules of principal parts P* equals

Zlt, 1/t u, 1/ul/(u—t, 1 /u—1/t)F !

as an Oy,,-module, and Oy,, is isomorphic to Z[t,1/t].

Lemma 3.1. On the open set Ugy, as a left O-module, P* is a free Z[t,1/t]-
module of rank k+1, and there erists two natural bases. The bases are B=
{1,dt, ..., dt*} and B'={1,ds, ...,ds"}, where dt*=(u—1)" and ds*=(1/u—1/t)".

The proof is an easy calculation.
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Proposition 3.2. Consider P* as a left O-module on P with k=1,2,.... On
the open set Ugy the transition matriz [L|E  between the two bases B’ and B is
given by the formula

r 1 (itp—1
dsP =) (=1)"P— T )arte
8 ;( ) t1+2p ( p—l )

for all 0<p<k.
Proof. By definition ds? equals (1/u—1/t)P in the module

Zt, 1/t u, 1 /u)(u—t, 1/ u—1/t)FL,

1t follows that

3

u t uPtP tP uP

o (ALYt

and since u=1t+u—t=t+dt we get

1 1
dsP = (=1)P —dt? :
= N S
We have the equality
1 . 1

ds? = (—1)P —tP
=(-1) tQPdt (1+dt/eyp’

and using the identity

i=0
we get 4
1 ad (itp—1Y\ [dtY
dsP = (—1)P—dt* S (~1)’ @,
W S ()
We put dt*ti=dtkt2=_. =0 and get
k—p ,
, 1 [fi+p—1 -
— _ 1)+ i+

=0
and the proposition is proved. O

Consider the invertible sheaf O(n) on P!, with n>1. We want to study the
principal parts PF(O(n)) with 1<k<n as a left O-module.
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Lemma 3.3. On the open set Uy, as a left O-module, P*(O(n)) is a free
Z[t,1/t]-module of rank k41, and there erists two natural bases. The bases are
C={1®zl, dtQzl,...,dt"@zl} and C'={102}, ds®27?,...,ds* @17}, where dt'=
(u—t)* and ds*=(1/u—1/t)".

The proof is an easy calculation.

Theorem 3.4. Consider P*(O(n)) as a left O-module on P'. On the open set
Uoy the transition-matriz [L]S between the bases C' and C” is given by the formula

k

|
3

n 1 n—p i+ n
ds?P @zl = (—1)pﬁ.+2p_n’( ; )dt PRy,
i=0
where 0<p<k.
Proof. By definition
I 1Y (u—t)?
¥y n__f - _ = n,n_ (__1\P n n
ds? @] A<u t) Qt"xy = (—1) e ®xg.

Since n—p>0 and u=1{+dt we get
n 1 n— ¥¢3
ds? Q] = (—1)pt—pdt”(t+dt) PRuxq.

Using the binomial theorem, we get

1 TR o
dsP@ay = (—1)P—dt? " (nip)t”_p_ldt’@mg.

w
i=0
By assumption dt*t1=dt**t2=.. =0, which gives
hr 1 n—p
d8p®117?: (——1)p%m( i >dtz+p®$g,
=0

and the theorem follows. [

Ezample 3.5. By Theorem 3.4 the transition matrix [L]§ for PH(O(n)) is

C’ _ tn O
[L]C - <ntn~1 F_tn72 :

We compute the determinant |[L]g'| and find that it equals —#2"2.
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4. Splitting principal parts as left modules by matrix diagonalization

In this section we will explicitly split the modules of principal parts. We will
work over P! defined over F, where F is a field. By [3], Theorem 2.1, we know
that all locally free sheaves of finite rank on P! split into a direct sum of invertible
sheaves, and we want to explicitly compute the splitting-type for the sheaf P1(O(n))
as a left O-module. From Lemma 3.3 it follows that on the basic open set Uy,
PL(O(n)) is a free F[t]-module on the basis C={1®z2,dt®z}}. On the open set
Uy, PHO(n)) is a free F[s]-module on the basis C'={1®z7, ds®x]}, where s=1/t.
When we pass to the open set Up; =Up N Uy we see that P1(O(n)) has C and C’ as
bases as F'[t, s]-module. On Uy consider the new basis D={1®x%, tQx +ndt@zh}.
Consider also the new basis D'={1/t®a7+nds®z},1®2z7} on the open set Uj.
Notice that D and D’ are bases if and only if the characteristic of F' does not divide
n, hence let us assume this for the rest of the section. We first compute the base
change matrix for P1(O(n))|y, from C to D, and we get the matrix

R

115 = .
1

0 _

n

We secondly compute the base change matrix for P1(O(n))|y, from D’ to C’, and

get the matrix )
’ -1
© n 0

In Example 3.5 we saw that the transition matrix defining P*(O(n)) is given by

c’ _ tn 0
1€ = (s e

If we let D be a new basis for P1(O(n)) as F[t]-module on Uy, and let D' be a new
basis for P1(O(n)) as Fls]-module on Uy, the transition matrix [L]B becomes

[L1B = [1g(LIE (11E,

which equals

We get
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hence as a left O-module, the principal parts P1(O(n)) splits as O(n—1)&O(n—1).
By Proposition 2.3, it follows that the splitting P}(O(n))=2O(n—1)®O(n—1) is
valid on P, where A is any F-algebra.

5. Maps of modules and systems of linear equations

We want to study the splitting-type of the the principal parts on the projective
line P' over any field F as left O-modules. Given P*(O(n)) with 1<k<n, we will
prove existence of systems of linear equations {A,x,=b,}F_,, where A, is a rank
r+1 matrix with integral coefficients. A solution X, to the system A,x,=b, gives
rise to a map ¢, of left O-modules from O(n—k) to P*(O(n)). The main result
is Theorem 5.2 where we prove the following: If there exists, for all r=0,..., k,
solutions x, of the systems A,x,=b, with coefficients in a field F', satisfying certain
explicit criteria, then we can completely determine the splitting-type of the principal
parts on P! defined over the field F.

By Proposition 2.2 we know that P*(O(n)) is locally free of rank k+1 over P*
defined over Z, hence by base extension, P¥(O(n)) is locally free over P! defined
over any field F. By [2], Theorem 2.1, we know that on P! every locally free sheaf
of finite rank splits uniquely into a direct sum of invertible O-modules. Recall from
Lemma 3.3 that P*(O(n)) has two natural bases on the open set Ug;:

C={1®az?,...,dt"®z}} and C' ={1®a},...,ds*®27}.
By Theorem 3.4, the transition matrix [L]§ from the basis C' to C' is given by the
relation
k—p

n 1 n—p i+ n
(5.1) dsp®x1§(—1)pti+2p_n( ; )dt PRy .

We will use relation (5.1) to construct split injective maps O(n—k)—P*(O(n)) of
left O-modules. On the open set Ug, the sheaf O(n—k) is isomorphic to F[tzj *
as an O-module. On the open set Uy, O(n—k) is isomorphic to F[1/tjz7~*. For
1=0, 1 we want to define maps

r: O(n—k)y, — P*(O(n))

U;»

of left Oy,-modules, agreeing on the open set Uy, where r=0,..., k. The maps
{#%}izo1 will then glue to give k+1 well-defined maps ¢,: O(n—k)—P*(O(n))
of left O-modules. Let ¢}(z7 *)=10z%. On the open set Uy we have 2§ "=
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k=g F We want to define ¢9(x2 ). Since zhF=tF~"z"* it follows that
GQ(xp Ry =tF1 g} (27 F) =t F (1227 7F). We now use relation (5.1) which proves
the equation

n
0

n

1&a] = (
®] L

)t"®x3+ (?)t"‘ldt®x8+...+( )t"*’“dt”*’“@:zg.

We define ¢Q(xh~*)=t*""(1®z}), and it follows that

dhs ™) =t (O )emeag+ (| )t dtwag +ot (1) b @)

which equals
k

S (T_l)t"*idti@xg.
1

i=0

Define = (7:) and xgo=1. We get

k
Rt ) =Y i eat and Gl ) =aoo(1wa).
=0

We see that we have defined a map of left O-modules ¢o: O(n—~k)—P*¥(O(n)), which
in fact is defined over the integers Z. We want to generalize the construction made
above, and define maps of left O-modules ¢,: O(n—k)—P*(O(n)) for r=1,..., k.
Define

_ 1 1
(5.2) (o T m ®xy I, Fds@x?—l—...—l—xr,rds‘r@x?,

where the symbols x; , are independent variables over F for all ¢ and r. Simplifying,
we get

T
qzb,ln (m?ik) = Z xj’rtjgrdsj ®zy.
=0

We want to define a map ¢2 on Ug, such that ¢° and ¢} glue together to define a
map of left O-modules
ér: O(n—k) — P*(O(n)).

For ¢, to be well defined it is necessary that ¢! and ¢, agree on Ug;. On Up; we
see that 27 % equals th=7277F hence we get

G B G i B H
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We get from equation (5.2),
r - .
O (xh Ry =tk Z zj 7 Tds? @t
§=0
which equals
”
(5.3) Z i TR T @t
7=0

Using relation (5.1), we substitute ds?®2% in formula (5.3) and get the expression

T k_j .
ey =) xj,rt”’“”‘r(g (—1yeni2( Z,j)dt”JQ@xg).
=0 i=0

Let [=i47 be a change of index. We get the expression

r k .
R =Y et (e (T a et ).
=0 :

i=7 2—3
Since ( %)=("%)=...=0, we get the expression
r ' k e
¢8<w8-’€>:2xﬁ,rﬂ*’“”‘T(ZHW”*”(Z 7>d’f‘®f‘*>~
; -]
=0 =0

Simplify to obtain

k .
> (=1t (7_;) 2 dtt QI

Change order of summation and simplify to get

k T .
=3 e (v (1 o et
=0

=0

Let

64 =30y e
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for r=1,...,k and [=0, ..., k. We have defined maps

k
(5.5) oplag ™) =Dttt @
=0
and
(5.6) Gr(ay ) =D a0 T ds @at,
j=0

Note that the definitions from (5.5) and (5.6) are valid for 7=0, ..., k since c?=(7)
and zg,0=1.

Lemma 5.1. Let r=1,...,k. The maps ¢° and ¢. glue to a well-defined map
of left O-modules
ér: O(n—k) — PHO(n))

if and only if cg=c;_,=...=c;_,.1=0 and c_,=1.
Proof. Consider the expression from (5.5):
k—r—1

g F)= Y Gl wag
=0

1 1
+c£7rdtk_r®x8+czfr+1 Zd?fk_r+1 ®xg+...+cg, gr—dtk ®xf.
We see that the maps ¢¥ and ¢! glue if and only if we have
CL=Ch_1=.=Ch 1 =0 and c¢p_,.=1,

and the lemma follows. O

Let r=1,...,k, and consider the equations from the proof of Lemma 5.1. We
have ¢ =c}_=..=c}_,, ;=0 and ¢},_,=1. We get from the equation c;,=0 that

(Z)ﬂfo,r— <Z_Dx1,r+ (Z_§> xz,r+...+(—1)r(z::)$m =0.

Writing out ¢ _; =0 we get the equation

(o )aor= (g Jorr= (105 amr et e ([ =
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The equation c},_,=1 gives

(n)x - n-—1 n n—2 n +(n~r)x 1
k—r ) 0" N\ p—p—1 )"0 k—r—2 T2 e k—or/) 0"

We get a system of linear equations A,x,.=b,, where A, is the rank r+1 matrix

@ -G G - UG
O B () B (i I G L (Rl

G2 =670 G52 - (TG

x, is the vector (2o, %1,r, ..., 2Zr,), and b, is the vector (0,0,...,0,1). Clearly the
coefficients of A, and b, are in Z. Also, assume that x, is a solution to the system
ArXy=b, with coefficients in a field F', then by construction and Lemma 5.1, the
map
¢,: O(n—k) — P*(O(n))
defined by
k—r
P2z F) = Z ctb=r=latl @ap
=0
and
S} ™) = @t ds @a]
=0

is a well-defined and nontrivial map of left @-modules. We can prove a theorem.

Theorem 5.2. Assume that there exists a field F' with the property that for
all k=1,...,r there exists o solution x, to A.x,=b, satisfying Hf:o 2;:70, then
Pk(O(n)) splits as @fzo O(n—k) as a left Op1-module over F.

Proof. Assume that there exists a field F' and k solutions Xi,...,xx to the
systems A,x,=b,, with coefficients in F satisfying the property that Hf:o 2;,;70.
On the open set Ug, the module @,’;0 O(n—k) is a free k[t]-module on the basis
{xg*keo, ,xg”kek}. Define the map

k
¢ P O(n—k)lu, — P O, ¢"(a5 Fer) = iaf ).

=0
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On the open set Uy the module @f:o O(n—k) is a free k[1/t]-module on the basis
{7 F fo, o, 277" fr}. Define the map

k

0P Om-ku, —PHOM)v,, ¢ @ L) =dr 1),

=0

Then by construction, the maps ¢° and ¢ glue to a well-defined map ¢ from
EB?ZO O(n—k) to PE(O(n)) of left O-modules. We show explicitly that the map ¢
is an isomorphism: Consider the matrix corresponding to the map ¢|u,,

thed  thldd L tclg_1 ck
i 2l L 0
0
(7=
tcg_l c,lc_1 0 0
o 0 0 0

We see the determinant |[¢°]| equals Hf:o ¢t _, which equals 1 by construction,
hence the map ¢° is an isomorphism. Consider the matrix corresponding to ¢!|u,,

1 1 1
Zo,0 To,1 Z 9L“07/!c—1t,€—71 xo,kt*k
1 1
[¢1]: 0 1‘1’1 xlfk_ltk_—Q :Z?thT_—l
0 0 0 Tk,k

The determinant |[¢!]| equals H?:o x;,; which is non-zero by hypothesis. []

6. Application: The left module structure in characteristic zero

In this section we use the results obtained in the previous section to determine
the splitting-type of P¥(O(n)) for all 1<k<n on the projective line defined over
any field of characteristic zero.

Lemma 6.1. Let n,k,a,b>0, and put ((1)):0. Then we have the equality

a—1 n—a+1
( n—a-+1 ) nk—i—b( n—a+1 >W 1 k—a—b+2

k—a—b+2) k—b+1\k—a—b+1 (k;berl)
1

The proof is an easy calculation.
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Proposition 6.2. Let n,k>1, and consider the matriz A, from Theorem 5.2,

with r=1,2,.... Then the determinant
G -G G2 (=722 _
DD 6D e oy ()
IA'I“I = == (k‘——l) .
1=0
r—I
(kir) _(kﬁ:ﬂ (ki;EQ) (=17 (/?—_27;)

Proof. We prove the formula by induction on the rank of the matrix. Assume
first that r=1. Adding —(n—k+1)/k times the second row to the first row of A;
and applying Lemma 6.1 with a=1 and b=1, we see that the formula is true for
r=1. Assume the formula is true for rank r matrices A,_;. Consider the matrix

® G G2 (:=)

") o) (G5 (2070

|

n—2
k—r—2

n—1
k—r—1

n
k—r

n—r

k~2r>

P O (R B V) (

which is the matrix A, with signs removed. Add —(n—k+1)/k times the second
row to the first row. Continue and add —(n—k~+1+4)/(k—1) times the (i+1)th row
to the ith row, for ¢=2,...,r—1. Apply Lemma 6.1 to get the matrix

1
1

(

) (v

)

2
1

(

) (i)

)

0

)
n—1
k—2

)

2
1

(

)(

)
n—2
k=3

(

) (

)(%:i

=

1

)

(

D) (

(

kfl)

1

o B

D

()G
()
)(

1
(kfl

r

n—r
1
1

)

n—r

)

k—r—1

)

(
(W(
0 k
N, = (
§
0 &
()

The determinant of N, equals

k—r

r+1
1

*

)

n

)(

1
1

(

)

k—r—1 k—2r+1
B 1)
* *
)-(0)
1)\
A4;—1L

(~1)" ( (

1

k—r+1

)

)0




Modules of principal parts on the projective line 321

where M, _, is the matrix

’

(79 I ) I (O
I ' !
PR T () I vy
)
(o) (2D o (B

and n'=n—1 and k'=k—1. By the induction hypothesls we get modulo signs

() (i

and the proposition follows. O

Proposition 6.3. Let F' be a field of characteristic zero. The maps ¢, from
Theorem 5.2 exist for r=1, ..., k, and the induced map qzﬁ:@z:o ¢, defines an iso-

morphism
k

PHO(n)) =P O(n—k)

i=0
of left O-modules.

Proof. Consider the systems A,x,=b, for r=1,...,k, from the proof of Theo-
rem 5.2. By Proposition 6.2 we have that
n—I
k—r

IATIZIIE (k,_l>

r—|{

modulo signs. Since the characteristic of F is zero, the determinant |A,| is different
from O for all r=1, ..., k, hence the system A,x,=b, has a unique solution x,= A b,
for all r. It follows from Theorem 5.2 that the maps

¢r: O(n—k) — P*(O(n))
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of left O-modules exist, for r=1, ..., k, and we can consider the map
»=EP ¢:1: P O(n—k) — P*(O(n)).
i=0 =0

We want to prove that ¢ is an isomorphism. Again by Theorem 5.2, ¢ is an isomor-
phism if and only if z; ;70 for =0, ..., k. Assume that z,,=0, and consider the
system A,x;=b,. If z,,=0 we get a new system A, _1y,_1=0, where y,_; is the
vector (Zq.p, ..., £r—1,). Since the matrix A, ; is invertible, it follows that the sys-
tem A,_1yr—1=0 only has the trivial solution y,_1=0, hence g ,=...=x,_1 =0,
and we have arrived at a contradiction to the assumption that x, is a solution to
the system A,x,=b,, where b, is the vector (0,...,0,1). It follows that z,,#0 for
all r=0, ..., k, and the proposition follows from Theorem 5.2. [

7. Splitting the right module structure

In this section we consider the splitting-type of the principal parts as left and
right O-modules on P! defined over F', where I is any field. We prove that in
most cases the splitting-type as left module differs from the splitting-type as right
module. We also show how the splitting-type of the principal parts as a left Op:-
module changes with the characteristic of the field F. Consider P1(O(n)) on PL,
where F' is any field and n>1. It is easy to see that P1(O(n)) is locally free as a
right O-module.

Theorem 7.1. If the characteristic of F does not divide n, then P(O(n))
splits as O(n—1)®O(n—1) as a left O-module and as O(n)®O(n—2) as a right O-
module. If the characteristic of F divides n, then P1(O(n)) splits as O(n)®O(n—2)
as left and right O-modules.

Proof. Recall from Section 4, that the splitting-type of P1(O(n)) as a left
O-module is O(n—1)®O(n—1) if the characteristic of F does not divide n. We
next consider the right O-module structure. Let p and ¢ be the projection maps
from P! xP! to P'. By definition, P}(O(n)) is p.(Oa1®¢*O(n)), where Oa: is
the first order infinitesimal neighborhood of the diagonal. By Proposition 2.5 we
get the right O-module structure, by considering the module ¢.(Oa1 ®q¢*O(n))=
¢:(0Oa1)®0O(n). One checks that &|y, is a free k[u]-module on the basis E=
{1®2f, duezf}, where du=t—u. Similarly, €|y, is a free k[1/u}-module on the ba-
sis B'={1®z?,d(1/u)@x7}, where d(1/u}=1/t—1/u. On Ugy; the module £ is free
on F and E’ as an Flu,1/u]-module. We compute the transition matrix [R]gl. We
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see that 1®z7 equals «”®x]. By definition, d(1/u)®a] equals (1/t—1/u)u"Qxf.
We get

1 1 s, U—t " ne 1 "
<¥—5>Un®.’)30 = _&t_un®$0 = —1U ldu(¥> ®{EO.

By definition, t=u-+du, and hence we get

—1 -
- du Qxy=—u""2du ®x; -

1
utdu 1+du/u

Since du?=du’®=...=0, we get
1 n n—2 n
d| — | @] = —u"""duuxy,
u

hence the transition matrix looks as

y u" 0
[RJE;- ;( O un2> 3

and it follows that & splits as O(n)®O(n—2) as an O-module. Recall the transition
matrix for P1(O(n)) as a left O-module,

’ tm 0
C
[L]C - (ntn~1 _tn;2> -

Clearly if the characteristic of F' divides n, the splitting-type of P1(O(n)) is O(n)®
O(n—2) as left and right O-modules, and we have proved the theorem. [
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