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John E. MCCarthy 

Abstract. We prove that there is a unique way to construct a geometric scale of Hilbert spaces 
interpolating between two given spaces. We investigate what properties of operators, other than 
boundedness, are preserved by interpolation. We show that self-adjoinmess is, but subnormality 
and Krein subnormality are not. On the way to this last result, we establish a representation theo- 
rem for cyclic Krein subnormal operators. 

Introduction 

The basic idea of  interpolation theory is as follows: one is given a linear oper- 
ator T with some property P on two different topological vector spaces, X0 and X1, 
and one constructs a family of  spaces X, "between" X0 and X1, such that T also has 
property P on each Xs, 0 < s <  1. Normally, X0 and Xx are Banach spaces, and P 
is the property of  being bounded. 

One of  the first such theorems was proved by M. Riesz [Ri], who showed that 
if T is bounded from LPo(u) to Lpo(p) and from LP~(p) to LP,(p), then it is bounded 
from LP(#) to LP(j.t), for  all l~_po<-p~_pl~_ ~.  Since then, several methods have 
been developed for producing interpolating families X~, the principal ones being 
the complex method due to Calder6n [Ca] and the real method due to Lions and 
Peetre [LP]. Although these methods always produce interpolation spaces when- 
ever (X0, X1) is a compatible couple, they are useful only in so far as the spaces Xs 
can be concretely realised. Thus Riesz' theorem above can be proved by showing 
that for either of  these methods, the interpolation spaces are isomorphic to LP(#); 
but in general, it is far f rom clear what the interpolation spaces look like, or whether 
they are naturally occurring spaces at all. 

If  one is working with Hilbert spaces (which we always assume to be separable), 
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one would expect the situation to be more transparent, and indeed W. Donoghue 
gave a classification of all Hilbert spaces that can interpolate exactly between two 
given Hilbert spaces [Do]. Our first result is that if one makes an additional log- 
convexity assumption, the interpolating spaces are unique, and there is a canonical 
way of finding them. 

Specifically, let (W0, 9r be a compatible couple of Hilbert spaces, i.e. they 
both embed continuously in some Hausdorff topological vector space V, and 
~:=W0n~cg~ is dense in both spaces (a typical example of a compatible couple is 
two spaces of  analytic functions on a domain, e.g. the Hardy space and the Bergman 
space). Let W be another Hilbert space contained in V in which ~ is dense, so any 
linear operator defined on o~r and 9r is at least densely defined on ~ .  Then, for 
0 < s <  1, we shall say J~ is a geometric hTterpolating space of  exponent s between 
oeg 0 and J/g~ if it satisfies the following three properties for linear operators T: 

i) If  T maps ~ to ~ and satisfies IlZ~l[~ ~20 It~ll~, and I[T~l[~e,-<-2111~lI~,, then 
<: 1--s  s II Tr ;~1 I[~ll,r. 

ii) If  T maps @ into some Hilbert space ~ ,  11T~ll,r_<-2olI~It,ro and llZ~llx<= 
IIZ~llx=,~0 /-1 II~ll~e 2111r then < 1-~,, . 

iii) If  T maps some Hilbert space ~ into ~ and [I T~llWo<=2o II~llx and II T~II~,, -<- 
2111~IIx, then IIT~ll,r-<_20~-~;.x [l~ll~c. 

In Section 1 we show that for any compatible couple (Jr0, ~1), a geometric 
interpolating space of exponent s exists and is unique. In the language of category 
theory, this says that for each 0 < s <  1 there is a unique functor o~ mapping the 
category of compatible couples of  Hilbert spaces to the category of  Hilbert spaces, 
with the property that, for any two compatible couples (~0, ~r and (ego, ~ ) ,  
if T is a linear operator that maps Yt' 0 to X0 with norm )-0, and maps ~ to ~ with 
norm 21, then T maps ~(og~ o~r to ~()F0,  ~r with norm less than or equal 
to 1-, ,s ~0 A1 " 

In Section 2 we consider what properties other than boundedness are also 
preserved by geometric interpolation. We believe that this should be a valuable 
tool in building examples of operators that have certain properties, but not others. 
Specifically, consider the question of the existence of an operator that is polynomially 
hyponormal but not subnormal. This was open for a long time; recently R. Curto 
and M. Putinar [CP] have proved that such operators exist, but their proof is non- 
constructive, and no concrete examples are known. Now suppose interpolation pre- 
served polynomial hyponormality (we cannot, alas, prove this); it does not preserve 
subnormality (see below), so one would get an easy example of an operator that 
was polynomially hyponormal but not subnormal. 

Although we cannot answer the question of  whether hyponormality is preserved 
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by interpolation, we can answer the question, subject to one space being contained 
in the other, for normality (yes), subnormality (no) and Krein subnormality (no). 
On the way to the last result, we establish a representation theorem for cyclic Krein 
subnormal operators. 

1. Geometric interpolation 

Let (ogf0, Jeff) be a compatible couple of Hilbert spaces. Because the inner 
product for o~176 (. ,  .)1, is a Hermitian form on a dense subspace of ~0,  there is a 
(not necessarily bounded) operator A on o~0 such that, for any ~, r/ in o~f0c~)fr 
(4, ~/)1=(~, At/)0. For 0 < s <  1, define a new inner product on ,~0nNex by (4, r/)s= 
(~, A~/)0 . The closure of ~0c~gf' 1 with respect to the norm given by the inner 
product we will call Jr,. 

We remark that using powers of  a positive operator to define interpolation 
spaces seems to have first appeared in a paper by J. L. Lions [Li], where, under 
the assumption that one of the Hilbert spaces is contained in the other, he proves 
essentially that the norm of an operator on an intermediate space will be bounded 
by some constant times the weighted geometric mean of the norms on the end- 
spaces. That the constants can be chosen to be one (again assuming that one Hilbert 
space contains the other) was proved by Krein and Petunin [KP] as part of  their 
general theory of scales of Banach spaces (letting s range over R gives a natural 
scale of Hilbert spaces); see also the book by Krein, Petunin and Semenov [KPS]. 

Thus the fact that ~ is a geometric interpolating space is really already known; 
the significance of our proof is that it is simple and short, and that the operator 
theoretic approach naturally leads to the (new) result that the space is unique. 
This unicity, and the canonical construction of the spaces, make the geometric 
interpolating spaces natural objects of study for operator theory. 

We note that the proof of  existence is based on an idea of P. Halmos [Ha]. 

Theorem 1.1. Let (J/C 0, o~fl) and (~0, ~ )  be compatible couples of Hilbert 
spaces. Suppose T is a linear operator that maps ~t~ to ~o with norm 20, and maps 

1--s  1 to ~ with norm 21. Then T maps ~ to ~ with norm less than or equal to 20 2~ . 
Moreover, ~ is the unique geometric interpolathTg space of exponent s between 2/to 
and ~ .  

Proof. (Existence) Let A be the positive operator on Jef0 that gives the ~X~~ 
inner product, and B be the positive operator on ~0 that gives the )if1 inner product. 

1 First, suppose A -x and B are bounded, and that s=-~. Then we have 

IITII~o~r,, = ;-o 
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The norm of T f rom g~/,  to ~ / ~  equals the norm of  S:=B1/4TA -1/4 from g0  to 
~0. Letting Q denote the spectral radius, we have 

IlSll ~ = IIs*su = Q(S* S) 
= Q(A 1/4 S* SA-114) 

~- [IA1/~ S* SA-1/~ll ~- IIT*llxo-.,eo IIBa/ZTA-1/21lJeo-.X, 
=< 20 )-1. 

1 So the theorem is true for s=~-. Now interpolating between g0 and g~/2 gives the 
1 theorem for s = T ,  and interpolating between ~ / 2  and g l  gives the theorem for 

3 s=-i-. Similarly, the theorem holds for any dyadic rational in [0, 1], and, by con- 
tinuity of IIF/*TA-~/~ any real s in [0, 1]. 

The assumption that A -1 and B be bounded can now be dropped by approx- 
imating them by the "truncated" operators A~ -1 :=f0  tdEA-1(t) and B,:=fo tdEB(t), 
where E,t_l(. ) and Es(.)  are the respective spectral projections, for it is easy to 
check that Il F/~ TA-'/~II = l i m , ~  II B~ ;2 TA2":2[I. 

(Uniqueness) Let cg be another geometric interpolation space. Let E( . )  be the 
spectral measure of  A. Fix b > a > 0 ;  let o,~ b be the space E[a, b)~o with the ~0 
norm. Let T be the operator of orthogonal projection onto )g',b, and R be the in- 

1 
clusion of ~ b  into ~0c~.g' 1. Then the norm of  T on ~ is at most afl_~)/---------- ~ ,  and the 

norm of R into ff is at most b c1-~)/'. So it follows that 

(1.2) alX-')/2 II~-[l~o <= II~ll~ -<- Ilb"-~)/211~r0- 

If  we can show that whenever [a0, b0)n[al, bl) is empty, E[ao, b0)~0 and 
E[ax, bOgo are orthogonal in fg, then (1.2) yields, as a tends to b, that the fg-norm 
and the g , - n o r m  coincide. But those two subspaces must be orthogonal, or else 
the projection E[ao, b0), of norm one on both g0 and ~ ,  would have norm greater 
than one on c~. [] 

We remark that Calder6n's complex method of interpolation also yields a 
geometric interpolation space, so by uniqueness it must be the same space as above. 

2. Normality and subnormality 

Interpolation theory started as an effort to prove operators were bounded on 
a range of spaces, knowing how to prove this directly on the end-spaces. But it is 
of  interest to ask what other properties of  linear operators are preserved by geometric 
interpolation. It is known that compactnes is preserved - see [Cw]; we now prove 
that so is normality, provided one space is actually contained in the other (we don't  
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believe this stipulation is actually necessary, but we cannot prove the result in 
general). 

For the rest of the paper, (o~0, .~ )  will be a compatible couple of Hilbert 
spaces, and A will be the (perhaps densely defined) positive operator satisfying 
(~, ~l)w,=(AX/~, A1/2~/)~oo for all ~, t/ in o~f'0n.,~,. The geometric interpolating 
space ~ will be as in the previous section, and s will always lie in the interval [0, 1]. 
Note that A is bounded if and only if ~0 is contained in ~1. 

Theorem 2.1. Suppose o~~ is contained in ~,4:~, and the operator N: M'o--,,~o is 
normal on both -~o and oY# 1. Then iV is normal on o~ for all s. 

Proof. The operator N: ~1~o~r is unitarily equivalent to the operator 
M : = A I : N A  -112 on o~0. So M and N are normal operators, satisfying MA*/*= 
A1/zN. By the Fuglede-Putnam theorem [Co, p. 81], we also have M*A~I2=A~I*N *, 
and taking adjoints gives A1/2M=NAI/~. Therefore 

A N  = A I / ~ M A I I 2  = NA1/SA 11~ = NA. 

So N commutes with A, and hence all powers of A. Therefore on each 0~6~, the oper- 
ator N is unitarily equivalent to N on a'~0, and hence is normal. [] 

Note that if one assumes that N is actually self-adjoint on both Y:0 and i f , ,  
one does not have to appeal to the Fuglede-Putnam theorem, so therc is no re- 
striction that A be bounded above or below. 

An operator is subnormal if it is thc restriction of a normal operator to an 
invariant subspace. If ~ is a compactly supported measure on C, and P~(p) is the 
closure of the polynomials in L2(/~), multiplication by the independent variable 
on P~(/~) is a cyclic subnormal operator, denoted S,; moreovcr all cyclic subnormal 
operators arise this way [Co]. The domain of  analyticity of PS(/~) is the largest open 
set U c C  such that if a sequence of polynomials converges in norm in p2(~), it 
converges uniformly on compact subsets of U. It then makes sense to assign values 
to elements of PS(~) at points of U. Moreover, if Ps(p) has no L2-summand (equiv- 
alently, S,  has no reducing subspace on which it is normal), then an element of 
p2(#) is uniquely determined by its values on U, and PS(/~) can be thought ot as a 
space of analytic functions on U - -  Thomson [Th]. So given two pure spaccs p2(p) 
and P*(v), with each component of the domain of anatyticity of one intersecting 
the domain of analyticity of the other, they form a compatible couple (embcdded 
in the space of analytic functions on the intersection of their respective domains). 
One can ask what the interpolation spaces look like, though they seem somewhat 
inaccessible in general. A special case was considered in [CM'CW]. 

t 1 Let us look, however, at radial measures, dp(re~ Then 
t-L-,~ f z~:~dz(r)dO=~5..,~ where {~.} is the moment sequence of z (let us call z 
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the radial part of/~). The domain of  analyticity is a disk centered at 0. Suppose v 
is another radial measure, and let/~, be the moments of  its radial part. Then the 
interpolating space of  exponent s between P2(l 0 and P2(v) is again a space of  ana- 
lytic functions, in which the inner product of  two polynomials ~ a,z" and Z,  b,,z" 
is ~'a,/;,(~2,)x-s(fl2,) ~. The operator of  multiplication by z on this interpolation 
space is subnormal if and only if (~2,)1-'(fl2,,) s are the even moments of  some 
measure compactly supported in R +. 

If we take all the fl,'s to be 1, then P2(v) is the Hardy space H 2, and S, is the 
unilateral shift. If, for all 0 < s <  1, {~} is a moment sequence, the measure z is 
called infinitely divisible (notice that, for a measure supported on [0, L], the even 
moments determine the odd moments). Thus we have: 

Theorem 2.2. Let I~ be a radial measure, with radial part z, let 9ff0=P2(p), 
and ~ = H " .  Then the operator of  multiplication by z is subnormal on every inter- 
polating space ..r ~ and only i f  z is bfnitely divisible. 

Infinitely divisible measures have been studied by R. A. Horn [Ho]. 

Example 2.3. Let r be Lebesgue measure on [0, 1]. This is infinitely divisible, 
as can be checked by Hausdorff's moment theorem. So is the measure "rdr", so 
interpolating between the Bergman shift and the Hardy shift always yields a sub- 
normal operator. 

and an atom at 1 both of  weight 1. Example 2.4. Now let z have an atom at ~- 
1 

Then cz,,= 1 +-~- .  The sequence { ( ~ }  is not a moment sequence, as the 3-by-3 

Hankel matrix 

is not positive. Thtls we have alr example of interpolating between two subnormal op- 
e~'ators to get an operator that is not subnormal (in the language of Curto and Putinar, 
it is not even 2-hyponormal). As we interpolate between J~ffo and ~r we get a family 
of  weighted shifts given by 

We, = ( 4"+I+I ] 1-s/2 
4,+1+4 e,+l .  

For  s equal to 0 or 1, these shifts are subnormal. Are they polynomially hyponorma) 
for all s? If so, they would provide an example of  an operator that is polynomially 
hyponormal but not subnormal (the existence of  such operators has recently been 
proved by Curto and Putinar [CP]). 
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3. Krein subnormality 

A Krein space is a Hilbert space ~ ,  (. ,  .) with an additional indefinite inner 
product  ( . , . )  defined, where this indefinite form is given in terms of  a symmetry 
(a self-adjoint unitary) J by 

(x, y) = (x, Jy). 

Recently, operators on Krein spaces have attracted much attention - -  see e.g. the 
book by Azizov and Iokhvidov [AI] and the review of  it by Rodman [Ro]. C. Cowen 
and S. Li initiated the study of  Krein subnormal operators and their connection with 
moment problems [CL]. 

A linear operator T~ on a Krein space oUx is a Krehz extension of the operator 

To on ~ff0 if 

(i) ~r is a closed subspace of  ~ff~; 
(ii) (x ,y )o=(x ,y ) l  for all x, y in ~0; and 

(iii) To x = Tx x for all x in Z(0. 

There is a natural decomposition J4{'=~r+@oU- into the positive and negative 
eigenspaces of  J. A linear operator T on off is called fundamentally reducible if it 
leaves these spaces invariant (and in this case the adjoint of T is the same with respect 
to either inner product). An operator on a Hilbert space ~ is called Krein subnormal 
if  it has a continuous fundamentally reducible Krein extension that is normal (i.e. 
commutes with its adjoint). Note that Yg need not be contained in gr it can be 
at an angle to it; but it can't  intersect ~ff- because the inner product on ~ is posi- 
tive. Let us also remark that Wu J. has studied a weaker form of subnormality, in 
which ~ffo is not  required to be closed in ~,~ff~, and the extension need not  be funda- 
mentally reducible; he proved that every bounded operator is subnormal in this 
weaker sense [Wu]. 

Let F = / t + - / t _  be a real measure. Then L2(I/~I) is a Krein space with inner 
product 

( f ,  g) = f f g  d/,+ - f f~, d~_ . 

Call this space K~(/0. Just as all cyclic subnormal operators can be represented as 
multiplication by z on P2(v) for some positive measure v, Cowen and Li proved 
that all cyclic Krein subnormal operators can be represented as multiplication by 
z on some Q2~), the closure of  the polynomials in K2(p) [CL, Theorem 9]. How- 
ever, not  all real measures F can be obtained; here is a characterization of  those 
that can. 

Theorem 3.1. Let It have Jordan decomposition / 1+ -F- .  Multiplication by the 
independent variable on Q~(It) is Krein subnormal i f  and only i f  there exists some 
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constant c< 1 such that, for all polynomials p, 

(3.2) f tplaa#_ ~_ c f lp[~d#+. 

Proof. (=~) By [CL, Theorem 5] the "forgetful map" from K~(p) to L~(I#I) that 
forgets about  the Krein space structure implements a similarity between Mz on 

Q2~) and Mz on P2(IPl). Therefore there is some constant ct such that 

f lPl~dl#l ~_ cl f lpl~d,, 
and so 

f lpl~dl,_ c1-1 ~- c1+1 f Ipl~d€ 

(~=) Multiplication by z on K ~ )  is clearly a normal fundamentally reducible 
Krein extension. So all that remains is to prove that Q2~)  is a I-Iilbert space, i.e. 
that the sesquilinear form %f, g)= f fg d# is positive definite. So suppose p~ are 
polynomials that converge to some non-zero e l e m e n t f  of  Q2(~u). Then Pn converges 

to f i n  L'(I#I),  so IP, I ~ converges to Ifl" in LI(I#I), and hence 

f fyd~, = ~m (f lp~l'a.§ f lp~l'd~,-) 

=> (I-c) lira f IP.l~d~+ 

~_ (1-c) f lfl~d#+ 

1 -c  f lfl2dl, I 
- -  l + c  

> 0 .  [] 

Note that i f /z_  is non-zero, the operator cannot be subnormal, because if a 

measure v satisfies f Ipl~dv=f Ipl~dp for all polynomials p, then v=p. 
I f  we take/ t+ to be normalized area measure on the disk, and p_ to be an atom 

of  weight ~ at zero, we get a Krein subnormal weighted shift for c~< 1. Direct 
calculation shows that this operator is hyponormal if ~_~ 1/4. This shows that the 
answer to Question 4 of  [CL], whether a hyponormal Krein subnormal operator 
must be subnormal, is no (Cowen and Li say in a note added in proof  that they have 
also found an example). 

Obviously a theorem similar to 2.2 holds if one wants interpolation between 
H"  and Q ~ )  to preserve Krein subnormality for multiplication by z - -  the powers 
o f  the moments o f  the radial part of  p must themselves be moments of  the radial 
part  of  a measure satisfying (3.2). That  this does not  always hold is shown by the 
following example. 
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Example 3.3. Let 2 be linear measure on the multiplicative semi-group [0, 1], 
and let �9 denote the convolution of  measures with respect to the semi-group. Let 

x=0 .58  (which is slightly greater than 1/1/3). Let z=2+~5o-6  x, where 6~ is a 
point mass at x, and let t r=z,z .  

Claim: The measure/~ given by dp(z)=~.~ da(r)dO satisfies (3.2) for c=.99996. 

Proof. We must show that for any polynomial "r p(z) = Z ~ = o  a,,z", 

f Ipl ~ d(26x* 2 + 6o)(r) dO ~_ c f Ipl 2 d(2 �9 2 + 22 �9 6o + fix,-)(r) dO. 

x x n for n>0 ,  and 1 for n =0 ,  and because the As the moments of  z are -ff~-- 

moments of  tr are the squares of  the moments of  r, this is equivalent to: 

,,ao,'§ [ ( ' )]  Z . = l l a . I  z ~ c 4laol ~ x.,v I, 2 n + l  ) - -  +~"=xlanl2 x U - ~  ( 2 n + l )  ~ " 

The verification of  this inequality is elementary. 
Claim: The measure v given by dv(z)=--~-dtr(r)dO does not satisfy (3.2) for 

any c~_ 1. 

Proof. Let p(z)=z. Then f Izl~dr+ 1 =-~, which is smaller than f Izladv_ =x ~. 
Claim: Let ~r176 and ~fe~=H a. Then the operator of  multiplication by 

z is Krein subnormal on ~'~f'0 and Y~'I but not on ,~ff~/2. 
Deny. Then there would be a radial real measure z with radial part Q satis- 

fying 

z ~ II II.,,e,/, = f to,13,'~" de(r) 

= I/llz'll~ro 

= ~/ f to.llr2"da(r) 

But all of  T's moments, except for the first and second, are positive. So 0 must equal 
z, and hence g equals v and does not satisfy (3.2). [] 
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