
Ark. Mat., 37 (1999), 183 210 
(~) 1999 by Institut Mittag-Leffler. All rights reserved 

Radial rearrangement, harmonic measures 
and extensions of Beurling's shove theorem 

A l e x a n d e r  R.  P russ (1 )  

A b s t r a c t .  Let I be a union of finitely many closed intervals in [-1,0).  Let I ~ be a single 
interval of the form [-1, - a ]  chosen to have the same logarithmic length as I. Let D be the unit 
disc. Then, Benrling [8] has shown that the harmonic measure of the circle 0D at the origin in 
the slit disc D \ I  is increased if I is replaced by I ~ .  We prove a number of cognate results and 
extensions. For instance, we show that Beurling's result remains true if the intervals in I are 
not just one-dimensional, but if they in fact constitute polar rectangles centred on the negative 
real axis and having some fixed constant angular width. In doing this, we obtain a new proof of 
Beurling's result. We also discuss a conjecture of Matheson and Pruss [25] and some other open 
problems. 

1. B e u r l i n g ' s  s h o v e  t h e o r e m  a n d  i n t r o d u c t i o n  

Le t  I be  a u n i o n  of  f in i te ly  m a n y  c losed  in t e rva l s  in [ - 1 ,  0). W r i t e  

0 ( I )  = / '  ~ l i ( x ) d x ,  

for t h e  logarithmic length of  I ,  w h e r e  11 is t h e  i n d i c a t o r  f u n c t i o n  of  I .  L e t  I ~- 

be  t h e  i n t e r v a l  [ - 1 ,  - e - e ( 1 ) ] .  N o t e  t h a t  ~ ( [ " - - ) = 0 ( I ) .  T h e  effect  o f  t r a n s f o r m i n g  I 

i n to  I ~ is to  d i l a t e  al l  t h e  i n t e rva l s  of  [ t o g e t h e r  un t i l  t h e y  t o u c h  t h e  p o i n t  - 1  a n d  

t h e n  to  i n d i v i d u a l l y  d i l a t e  each  i n t e rva l  un t i l  i t  t o u c h e s  t h e  i n t e rva l  to  t h e  lef t  of  

it,  p r o c e e d i n g  unt i l  a s ingle  i n t e rva l  is fo rmed .  

G i v e n  a d o m a i n  D a n d  a B o r e l  set  ACOD, wr i t e  co(z, A; D) for t h e  h a r m o n i c  

m e a s u r e  of  A a t  z in D .  T h i s  is t h e  va lue  a t  z of  t h e  so lu t i on  t o  t h e  D i r i c h l e t  p r o b l e m  

on  D w i t h  b o u n d a r y  va lue  1 on  A a n d  0 o u t s i d e  A. E q u i v a l e n t l y ,  w(z, A; D) is t h e  

(1) Much of the present paper has been adapted from Chapter IV of the author's doctoral 
dissertation. The research was partially supported by Professor J. J. F. Fournier's NSERC Grant 
r 
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probabili ty tha t  a Brownian motion, s tar ted at z and stopped as soon as it leaves 
D, first hits the set A before hitt ing any other part  of the boundary of D. 

Beurling in his thesis [8] has shown that  if D is the unit disc, while T = 0 D  and 
I is a union of finitely many  closed intervals in [ -1 ,  0), then 

( i . i )  w(0, D \ I ;  T)  < ~(0, D \ I ~ ;  T).  

This result can be called Beurling's shove theorem. The name "shove theorem" 
was suggested by Albert Baernstein II  because of the way that  the intervals in I 
are "shoved" to the left to form I ~ .  An account of the theorem may be found in 

Beurling's original thesis [8, pp. 58-62] or in Nevanlinna's book [26, w Esshn 
and Haliste [15] have generalized Beurling's theorem to higher dimensions and have 
also managed to replace the unit disc D in (1.1) by some more general domains. 

Pruss [31] has extended Beurling's theorem to some even more general domains, 
but only in two dimensions. 

The main purpose of the present paper  is to discuss extensions of Beurling's 
shove theorem, all the t ime working in two dimensions. For instance, we will show 

that  Beurling's theorem extends in a natural  way to the case where I consists of a 
finite union of polar rectangles centred on the negative real axis and having some 
fixed constant angular width (Theorem 2.1, below). We shall formulate a number 
of conjectures, discuss their relation to questions of Sakai [32] and Matheson and 
Pruss [25], and present some evidence for the conjectures. 

The reader who would like to know more about  symmetrizat ion methods may 
wish to examine the work of Baernstein [3], [5] as well as [7], [12], [17], [19], [27], [28]. 
Further results on some of the topics in the present paper  can also be found in [31]. 

We shall use the terms "increasing", "decreasing", "positive", etc., in their 
non-strict senses, i.e., "non-decreasing", "non-increasing", "non-negative", etc., re- 

spectively. We write D ( r ) = { z e C :  ]z I < r }  and put W ( r ) = { z E C :  Izl = r} .  Note that  
if r > 0  then W(r)=cOD(r), while W(0)={0}. We then define D - - D ( 1 )  and T - - T ( 1 ) .  

Henceforth all domains are assumed to be connected open Greenian subsets 
of C, i.e., connected open sets on which there exist nonconstant positive superhar- 
monic functions. In fact, in the cases which interest us most,  the domains will have 

finite area, and such domains are well known to be automatically Greenian. Like- 
wise, domains which are simply connected proper subsets of C are automatical ly 
Greenian. 

2.  M a r c u s  ~ r a d i a l  r e a r r a n g e m e n t  a n d  s o m e  r e s u l t s  

Let D be a domain in the plane containing the origin and choose c > 0  such 



Radial rearrangement, harmonic measures and extensions of Beurling's shove theorem 185 

that  D(e) CD. Define 

/2 R~(O; D) = l{~e~cDip -1 do, 

where l{p} is 1 when P is true and is 0 when P is false. The quantity R~(O; D) is 
then the logarithmic length of {Oc [e, oc):ge i~ cD}.  Note that  logarithmic length is 
dilation invariant in the sense that  Ra~(O; ID)=R~(O; D) for all l > 0 .  

The set 

D * =  rei~ g-ldo<Rc(O;D),r>_O 

is then called the (Marcus) radial rearrangement of D [22]. Note that D (e )CD *  
and that  if D is open, then O~-~R~(O; D) is lower semicontinuous and hence D* is 
open. It is easy to verify that  D* is independent of the choice of e (subject to the 
constraint D(e )C  D) and that  Area(D*)<_Area(D) with equality if and only if D* 
and D coincide almost everywhere with respect to Lebesgue area measure. 

A domain D containing the origin is said to be star-shaped if for every zED, the 
line segment joining z with 0 lies inside D. Note that  D* is always star-shaped and 
that  D*=D if and only if D is star-shaped. A star-shaped domain is automatically 
simply connected and it is the simple connectivity of D* which makes for much of 
its interest to us, since simply connected domains are often much easier to work 
with than multiply connected ones because of the Riemann mapping theorem. 

Note that  if I is a finite union of closed intervals as in Beurling's shove theorem, 
then 

(D\ I )*  = D\F-.  

It is this connection that  lets us say that  the transformation D~--,D* is a general- 
ization of Beurling's shoving operation I~--~I ~. 

Example 2.1. At first one might confidently conjecture that  inequality (1.1) in 
Beurling's theorem generalizes to the inequality 

(2.1) w(0, TN.D; D) _< ~(0, TAD*;  D*), 

whenever D is a domain containing the origin and contained in D. However, this 
conjecture would be false. Let D_CD be any domain with the following properties 
for some positive ~, where e is such that D@)CD:  

(i) the harmonic measure of T A D  at zero in D does not vanish; 

(ii) Re(0; D)< f~ -~ 0 -1 do for every 0. 
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Figure 2.1. A multiply connected domain D for Example 2.1, together with its radial 
rearrangement D*. 

Figure 2.2. A simply connected domain for Example 2.1. The radial rearrangement of 
this domain will be contained in the disc D(r) for some rE(0, 1). 

Such a domain can easily be exhibited; see Figure 2.1 (left) for a multiply-connected 
example, and Figure 2.2 for a simply-connected example. 

Given such a domain, (ii) implies that  we will have D*C_D(r), where r=1-5  
(see Figure 2.1, right), and hence 

w(0, TAD*;  D*) =0 .  

But (i) guarantees tha t  w(0, T A D ;  D ) > 0 ,  and so (2.1) cannot be true. 

On the other hand, we can obtain a few positive results. Recall that  a polar 
rectangle of angular width 00 centred on the negative real axis is a set of the form 

{ 7"r _~/" _~ 7"2, 1~-TTI ~ 1~0}, 

where O<rl<_r2~oo. Given any domain D, we write 

w~(D) = a~(0, T ( r )  ND; D( r )ND) .  

Note that  if DCD, then Wl(D) coincides with w(0, T A D ;  D),  a quanti ty that  we 
have already studied. 

The following result then generalizes Beurling's shove theorem. In fact, the 
shove theorem is the special case 00=0 of this result. 
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T h e o r e m  2.1. Fix 00El0, 21r). Let H be a finite union of polar rectangles of 
angular width Oo centred on the negative real axis. Put D = D \ H .  Then, 

wl(D) ~ w~(O*). 

A more general result will be given as Corollary 7.1 in Section 7.2, below, 
and will provide a new proof of Beurling's shove theorem. Note that  according to 
the referee, the weaker inequality wl(D)<(const.)Wl(D*) under the conditions of 
Theorem 2.1 follows from [13]. 

The following result is not a generalization of Beurling's shove theorem because 
Beurling's theorem does not appear to follow from it, but it is very much in the 
same spirit. 

T h e o r e m  2.2. Let D be a simply connected domain which is reflection sym- 
metric about the real axis and which contains the interval [0, R). Then, 

w,(D)  <_w,(D*), 

whenever O<r< R. 

The proof will be given in Section 8.1 as a consequence of a more general result, 
and will proceed by the method of Haliste [17, Proof  of Theorem 4.1]. 

3. Least  h a r m o n i c  m a j o r a n t s  

Let 5 be the collection of all continuous functions ~P: [O, cx~)--+[-ao, cx~) for 
which t~-~O(e t) is convex and where O ( x ) > - o c  for all x>O. (Note that  the convex- 
ity and continuity conditions together with the requirement that  ~ ( 0 ) < ~  imply 
that  �9 is increasing.) Then, .Y coincides with the collection of all functions 4p on 
[0, oo) for which z~--~(Izl) is subharmonic on C. 

Given ~ EY,  and given a domain D, let h be the least harmonic majorant  of 
z ~ ( I z l )  on D. Put  

r (D) =h(0) 

An alternate description of F~ is that it is the value at 0 of the solution to the 
Dirich]et problem in D with boundary values ~(Iz]). These kinds of functionals 
were studied by, e.g., Burkholder [9], Ess6n, Haliste, Lewis and Shea [16], Sakai [32], 
and Ess6n [14]. 

We then have the following result of the same type as the shove theorem. 
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T h e o r e m  3.1. Fix 00E[0, 27c). Let H be a finite union of polar rectangles of 
angular width Oo centred on the negative real axis. Put D = D \ H .  Then, 

F (D) 

While formally this is apparently new even if 00 0, in that  case it can be 
proved by the methods used in Beurling's original proof [8, pp. 58 62] (see also [26, 
w of his shove theorem. See also [21] for a closely related result. Theorem 3.1 
follows from the more general Corollary 7.1 in Section 7.2, below. 

Example 2.1 can also be used to show that  Fr  can sometimes be strictly 
larger than Fr (In the setting of that  example, just let 45(t)=max(0, t r) and 
note that  ~ ( r ) = 0  so that  F r  while F r  since 4)(1)>0 0 

4. C i r c u l a r  s y m m e t r y  a n d  s o m e  c o n j e c t u r e s  

Let D be a domain in the plane. Fix r E [0, oc) and if T ( r )  C D, then let O(r; D)= 
ec, while otherwise let O(r; D) = [{0 C [0, 27c):re ~~ C D}[, where [. ] indicates Lebesgue 
measure on R. Let 

0 ~ ={rei~ 101 < �89 

be the circular symmetrization of D. Note that  Area(D o) =Area(D) .  Furthermore, 

(4.1) r (O) < r (o o) 

for every q)C~; this can be proved directly by mirroring the proof of Baernstein [3, 
Theorem 7], though it is also a consequence of [3, Theorem 5] together with the 
well-known Theorem 6.1, below. Baernstein has also proved [3, Theorem 7] that  

(4.2) w,(D) < wr(D | 

for all r > 0. 

We say that a domain D is circularly symmetric if D| Note that  if D is 
circularly symmetric then so is D* though the converse does not in general hold. 
It is easy to see that  no domain DC_D with D(c)C_D and satisfying (i) and (ii) 
of Example 2.1 can be circularly symmetric. The domains D \ H  in Theorems 2.1 
and 3.1 are circularly symmetric. Any bounded circularly symmetric simply con- 
nected domain containing the origin satisfies the hypotheses of Theorem 2.2 with 
R=sup{x>O:xED}. In light of these observations, we make the following two 
conjectures. 
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C o n j e c t u r e  4.1. Confined to the class of circularly symmetric domains, ra- 
dial rearrangement increases the functionals Fr for q~EF, i.e., F r 1 6 2  
whenever D is a circularly symmetric domain containing the origin and (~ ~ 2 =. 

C o n j e c t u r e  4.2. Let D be a circularly symmetric domain with OcD. Then 
w~(D)_<w~(D*) for every r > 0 .  

Remark 4.1. In fact, to prove Conjecture 4.2 in general, it suffices to prove 
that  w~(D)<w~(D*) whenever D is a circularly symmetric domain with 0 ED  
and DC_D(r). To see this, assume that  we do have w~(D)<_w~(D*) under these 
circumstances, and suppose that  D is now a general circularly symmetric do- 
main containing the origin. If we define U,.=D(r)NU for any domain U, then 
(D,.)*C_D*ND(r)=(D*)~ and so 

w~(D) = w~(D~) < w~((Dr)*) <_ w~(D*), 

since D ,  C D(r ) ,  and where we have used the definition of w~ and the maximum 
principle. 

In fact, as will be seen in Section 6, Conjecture 4.2 is a special case of Con- 
jecture 4.1. Unfortunately, both conjectures remain open, but they do provide 
prototypes for the kinds of results that  we are looking for. In light of (4.1) and 
(4.2), Conjectures 4.1 and 4.2 would also imply the inequalities 

(4.a) *) for aU CEY-, 

and 

(4.4) w,~(D) <w~((D| *) for all r > 0 ,  

respectively, for any domain D containing the origin, whether circularly symmetric 
or not. 

Finally, we wish to indicate a modified version of Conjecture 4.2 which is false. 
Given a domain D and r>0 ,  let 

(4.5) v,.(D) = co(0, OD\D(r) ;  D). 

In general v,.(D)<_w,(D) by the maximum principle. If D ~ D ( r )  then v~(D)= 
w,.(D). If D ~ D ( r )  and w~(D)>0,  then in fact v,(D)<w~(D). One might conjec- 
ture that  

(4.6) v (Ju) < v,.(D*) 
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for all circularly symmetric domains D and all r > 0. As a piece of positive evidence 
one might cite the fact that  this inequality is indeed true for all r > 0  if D D \ H  
where H is a polar rectangle (this follows from Lemma 8.1 in Section 8.2, below). 
To see that  (4.6) cannot be true for all circularly symmetric domains D, let 

1 1 D = D \ [ ( - 1 , - g l  u T ( 5 ) ] .  

1 Clearly, Evidently D is circularly symmetric and D * = D \ ( - 1 , - 1 ] .  Set r ~. 

Define 

and 

vl/2(D) w(0, T ( � 8 9 1 8 9  - 1  

1 1 a(z)  = co(z, T (�89 D (�89 \ ( - ~ ,  - 5 ] ) ,  

fl(z)=~(z, OD*\D(�89189 
1 1 Then, it is easy to see that /3(z)<1 for every z e T ( ~ ) \ { - ~ }  and that  f l (z)=0 

for every z E ( - � 8 9 1 8 9  On the other hand a ( z ) = l  for each zCW(�89 and again 
1 1 a ( z ) = 0  for zC(-~,-5]. Hence the maximum principle applied in the domain 

1 1 D ( � 8 9  implies that  oz(z)>fl(z) for every z in this domain. In particular 
vl/2(D)=a(O)>fl(O)=Vl/2(D*). Of course, one might say that this is not really 
a counterexample to (4.6) since D is not connected and domains are taken to be 
connected in this paper. But we can make D connected! Fix a small 6>0. Let 

D~ D\[(--1,--gju/~ell-rl i 0 : e < 0 < 2 7 r _ e } ] .  

The D~ are connected (in fact, also simply connected) and circularly symmetric 
for every positive e. But as e-~0, we have Vl/2(Dc)---~vl/2(D), and certainly D * =  

1 * D \ ( - 1 , - ~ ] = D  , so that for sufficiently small e we have Vl/2(D~)>vl/2(D*)= 
Vl/2(D*) and we truly have a counterexample to (4.6). 

5. Consequences of conjectures 

Conjectures 4.1 and 4.2 would have a number of interesting consequences be- 
cause they would allow one to reduce some questions about arbitrary domains to 
questions about simply connected domains. 

Let ~ be the unit ball of the Dirichlet space, i.e., let ~ be the set of all 

holomorphic functions f on D with f(0)  0 for which 

1 //D If'(x+iy)12 dxdy< 1. 
7F 
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Note that  this inequality is equivalent to asserting that  the area of the image of 
f ,  counting multiplicities, does not exceed 7r. If f is univalent and f ( 0 ) = 0 ,  then it 
follows that  f E ~  if and only if Areaf[Dl<Tc. Given a measurable function ~ on 
[0, oc), let 

1 f02"~ A~(f)  = ~ ~(If(ei~ dO 

for f E ~ .  For some concrete functions ~, these As funetionals on ~ have been 
studied to various degrees by Beurling [8], Chang and Marshall [10] (see also [23]), 
Andreev and Matheson [2], and Cima and Matheson [IIJ. For more general classes 
of functions ~, the functionals have been studied by Matheson and Pruss [25]. 

Remark 5.1. A crucial and well-known result (Ess~n [14] gives it in a concrete 
case) connecting the Fs  and Ar functionals is that  if ~E5 r ,  then 

(5.1) Fs ( f [D] )  >_ As ( f ) ,  

and that  equality holds if f is univalent (see the discussion following Open Problem 1 
in [25]). 

Now recall the following conjecture. 

C o n j e c t u r e  5.1. (Matheson and Pruss [25]) For any domain D containing 

the origin and having finite area there exists a star-shaped domain D with Area / )  < 
AreaD such that rr for every eeJ: .  

L e t t i n g / 9 =  (D| * (which is always simply connected and satisfies the inequal- 
ity Areal(D| *] <Area D), based on the discussion around the conjectural inequal- 
ity (4.3) we see that Conjecture 5.1 is a special case of Conjecture 4.1. A weaker 
conjecture but still very much of interest would be as follows. 

C o n j e c t u r e  5.2. Given a domain D containing the origin and having finite 
area and given a function ~ c J  z, there exists a simply connected D with A r e a / ) <  
AreaD and Fc~(/9)_>Fs(D). 

This conjecture is still open, too. It is weaker first of all because any star- 
shaped domain is necessarily simply connected (but the converse is obviously false), 
and secondly because the domain D is allowed to depend on ~. 

A slightly stronger version of Conjecture 5.2 would be to require this D to also 
be star-shaped (but continuing to allow it to depend on q)). There is actually some 
indirect evidence for ~his slightly stronger version. Star-shapedness is the same thing 
as radial convexity for a domain containing the origin, where we say that  a domain 
D is radially convex if the line segment joining z with w lies inside D whenever z and 
w are in D and lie on the same ray from the origin. Note that  Fs  was defined as the 
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value at 0 of the least harmonic majorant  of a subharmonic function q~(lz[) which 
changes only radially. Suppose we wanted to look at least harmonic majorants  
of subharmonic functions which change only horizontally. These last would be 
functions of the form ~b(Rez) for a convex ~b on R. We could then define F~~ 

to be the value at 0 of the least harmonic majorant  of qS(Re z) on D. The analogue of 
our slightly stronger version of Conjecture 5.2 would be that  for a domain D of finite 
area and any given convex ~b on R,  there exists a horizontally convex domain /~  of 
no bigger area than D and such that  F~~176 In fact this analogue is 

true [30, Theorem 3.1]. (Here, a domain D is said to be horizontally convex if given 
any two points z and w in D which lie on the same horizontal line, the line segment 
joining z and w is contained in D.) The correspondence between F~ and radial 
convexity on the one hand and U~ ~ and horizontal convexity on the other hand 

then provides some evidence for our slightly stronger version of Conjecture 5.2, and 
in a very indirect way for the much stronger Conjecture 4.1. 

Let 13 be the set of all domains of area at most 7r which contain 0. 

P r o p o s i t i o n  5.1. Suppose that Conjecture 5.2 holds for some q~C5 such that 

�9 (t)=o(et2), as t--~c~. Then F~ attains its supremum over 13. Moreover, there 

exists a simply connected extremal domain in 13 at which F~ is maximized. 

Pro@ Applying the Chang Marshall inequality [10] as well as [25, Corollary 2] 

with ~ ( t ) = e  t2 and the methods of [25, Section 1], it follows that  there exists an 

f ~ 3  such that  Am( f )>A~(g  ) for all g G ~ .  Let g = f [ D ] .  Let D be an arbi trary 
domain in 13. Then by Remark  5.1 and Conjecture 5.2 we have 

Fm (D) ~ Fm (D) = Am (g), 

where g is a Riemann map from D onto / )  with g(0)=0.  But Area/~<Tr so that  
gc~3 (using the univalence of g) and hence Ar162 By (5.1) we then have 

a~(f)<Fm(U), and so 

re(D) < A~,(g) < A.(f )  < Fo(U) 

for all DC13. Hence F~ attains its maximum over 13 at U. Moreover, if it at tains 
this maximum at U, it likewise at tains it at U and hence there exists an extremal 
simply connected domain. [] 

Sakai [32] had conjectured that  Pep at tains a maximum over B where o~v(t ) = t  v 

for 0 < p < o c .  Hence, an affirmative answer to Conjecture 5.2 implies an answer to 
Sakai's conjecture. 
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Propos i t i on  5.2. Let ~p(t)=t  p. Then 

F% (D) _< Fq, (D) 

for every DCB providing pE[O, 2]. If Conjecture 5.2 holds for (Pp then this inequality 
is also true for pE(2, 4]. 

Pro@ The case of p~[0,2] is the well-known Alexander-Taylor-Ullman in- 
equality [1] (see Kobayashi [20] for another proof). (More precisely, the Alexander- 
Taylor-Ullman inequality is the case p=2, and, as Sakai [32] notes, the case p<2 
follows from H6lder's inequality.) 

The case p~(2,4] follows from Conjecture 5.2 and the fact that the inequality 
is valid for simply connected domains D. To see the validity for simply connected 
domains, it suffices to use Remark 5.1 and the fact that Aep(f)_<Ae~(Id) for pE 
[0, 4], where Id is the identity function on D and f is any function in ~3. This latter 
inequality has been proved by Matheson [24[. Professor Makoto Sakai has kindly 
informed the author that the desired inequality in the simply connected case was 
also obtained by Professors N. Suita aa~d S. Kobayashi. [] 

The inequality in the above proposition was conjectured for pE(2, 4] by Sakai 
[32]. Hence, an affirmative answer to Conjecture 5.2 would imply an affirmative 
answer to yet another conjecture of Sakal. It would also simplify the proof of 
the Alexander Taylor-Ullman inequality, since the inequality A~p ( f )<A% (Id) for 
f E ~  is quite easy to prove for p~[0, 2] using the fact that ~ consists precisely of 
the functions of the f o r m / ( z ) = ~ = l  a~z ~ where 2~__1 nla~l~<l. 

Remark 5.2. If p>4  then there do exist simply connected domains DEB with 
F% (D) >Fe~ (D) [32, Proposition 7.4]. 

Finally, we note that if Conjecture 5.2 were to hold, then the Ess6n inequal- 
ity [14] 

sup r e ( D )  < oc, 
DEN 

where ~ ( t )=e  t~ , would follow from the Chang-Marshall inequality [10] (see also 
Marshall [23]) which says that 

sup A~ (f) < oo, 

also with ~ ( t )=e  t2. Indeed, it would follow from the Chang-Marshall inequality 
for univalent functions f.  Since the proof of the Chang Marshall inequality given 
by Marshall [23] is simpler than the proof of Ess6n's inequality [14] and since the 
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proof in [23] itself simplifies in the univalent case, we see that  an affirmative answer 
to Conjecture 5.2 would imply simpler proofs of the Ess6n and Chan~Marsha l l  
inequalities. 

Actually, Conjecture 4.2, despite being weaker than  Conjecture 4.1, is also 
interesting in connection with the Ess6n inequality, because Ess~n's proof [14] would 
also be greatly simplified if one could prove that  for any domain D there is a simply 
connected doma i n / 9  such that  wr(L))>w~(D) for all r > 0  and a r e a / 9 < A r e a D .  

6. G r e e n ' s  f u n c t i o n s  a n d  l eas t  h a r m o n i c  m a j o r a n t s  

Given a (Greenian) domain D, let g(z, w; D) be Green's  function for D. Then, 
for fixed wED, the function z ~ g ( z , w ;  D) is harmonic on D\{w}  and the func- 
tion z ~ g ( z ,  w; D)- log(1/ lz  wl) is harmonic in a neighbourhood of w. Moreover, 
g(z, w; D) vanishes unless both  z and w are in D. Now we would like to note a 
well-known result which was alluded to before. 

T h e o r e m  6.1. For any pair of domains D and D', the following are equiva- 
lent: 

(a) 
(b) 

For every ~ 'E~ we have r |174  
For every r >0 we have 

~0 27r ~0 2"a- g(re ~~ O; D') dO > g(re i~ O; D) dO. 

Proof. The Riesz decomposition theorem for subharmonic functions (see, e.g., 
[18, Theorem 5.25]) implies that  if hD is the least harmonic majorant  of (I)([z[) on 
D where opC9 ~, then 

hD(W) = ~(Iwl)+//C g(z, w; D) d~(z ) ,  

where pc  is the Riesz measure corresponding to the subharmonic function z~+(I)(lzl). 
But #~ is rotation invariant since (P([z]) is rotation invariant, and hence we may 
write d#~(re~~ for some measure us on [0, cx~). Then, 

Thus, 

(6.1) 

g(re i~ w; D) de d.~(r). hD(w)=~(Iwl)+jo JO 

fc~ f27r 
Jo g(rei~ dOd  (r)" 
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In exactly the same way we see that 

(6.2) F~(D')  = 02(0) +ao ao 9(re i~ 0; D') dO due(r). 

Since u~ is a positive measure, it follows from (6.1) and (6.2) that  if (b) holds then 
(a) must likewise hold. 

Conversely, if (a) holds then we may fix r and let 02(t)=max(O, log t- log r). 
Then, tile support of #~ lies on the circle T ( r )  because #~(z)=(27r)-1A02(Iz[) on 
any open set on which z~+02(]zl) lies in C 2 while our choice of 02 satisfies A02(Izl)--0 
for z E C \ T ( r ) .  Therefore ue is a measure concentrated at the one point r so that  

F,~ (D) = c 9(re i~ 0; D) dO, 
dO 

where c=u~({ r} )>0 .  The same expression holds with D ~ in place of D and so (a) 
implies (b) as desired. [] 

It might be the case that  in the setting of Conjecture 4.1 it would be easier 
to prove condition (b) of Theorem 6.1 with D'=D* than to prove condition (a). 
Nonetheless, Conjecture 4.1 remains open, even given this reformulation. 

Remark 6.1. To see that  Conjecture 4.1 implies Conjecture 4.2, note first that  
by Remark 4.1 we may assume that  D_CD(r). Then, harmonic measures on the 
boundary of a domain correspond to normal derivatives of Green's functions, so 
that (at least if D C D ( r )  is sufficiently nice) 

(6.3) w~(D) = - Or dO = ~'~r-lim ( r - r ' )  1 g(r'e i~ 0; D) dO, 

as noted in [4, p. 146]. Now if Conjecture 4.2 holds, then by Theorem 6.1 we have 
an inequality between the right-hand side of (6.3) and the same right-hand side but 
with D replaced by D ~, so that the desired inequality w~(D)<_w,,(D*) follows. 

Assuming D C D ( r ) ,  in light of (6.3), Conjecture 4.2 is in effect an inequality 
between g ( . , 0 ;  D) and 9 ( ' , 0 ;  D*) near T(r ) .  Let us consider such inequalities 
near 0. Given a domain D containing the origin, its Green's function with pole at 
0 can be written in the form 

1 g(z, 0; D) log ~ +log ~+o(1), as ~-~ 0, 

where Q p(D) is a constant known as the inner radius of D (about 0). Then, 
asymptotic inequalities between 9(",  0; D) and g(- ,  0; D*) at the origin correspond 
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to inequalities between L)(D) and Q(D*). Marcus [22, Theorem 3] had shown that 
for any domain D (not necessarily simply connected or circularly symmetric) we 
have 

(6.4) Q(D) _< ~(D*). 

(See [31] for some generalizations of this fact.) 
By Theorem 2.2, then, in the simply connected circularly symmetric case (as- 

suming D C_ D (r)) we know that we do have the correct inequality between g ( ' ,  0; D) 
and g ( . ,  0; D*) near T ( r )  and near 0; for general domains we only know that  we 
have it near 0. 

7. The cutt ing procedure 

7.1. Procedure  and conjectures 

Given a domain D and given numbers 0 < r l < r 2 < o c ,  we now define a new 
domain Cut(D; r l ,  r2) which is obtained by cutting out the ring D ( r a ) \ D ( r l )  and 
then dilating D N D ( r l )  by a factor of r2/rl in order to fill up tile gap. More 
precisely, 

Cu t (D ; r ] , r 2 )  I n t [ ( D \ D ( r 2 ) ) U ( r 2 / r l ) ( D n D ( r l ) ) ] ,  

where Int S indicates the topological interior of a set S CC and where AS={Az:zE 
S}. 

Remark 7.1. Using the dilation invariance of logarithmic length, it is not dif- 
ficult to verify that  in general 

Cut(D; r l ,  r2)* _D D*. 

Moreover, if the annulus D ( r 2 ) \ D ( r l )  is contained in D, then 

Area Cut(D; rz, r2) < Area D 

and 
Cut(D; r l ,  r2)* = D*. 

Finally, it is easy to see that  Cut(D; r l ,  r2) will be circularly symmetric whenever 
D is circularly symmetric. 

In general the set Cut(D; rz, r2) may be disconnected even if D is connected. 
This will be the case, for instance, if D is as on the left-hand side of Figure 2.1, 
while r l  is the outermost radius of the inner hole and r2 is the innermost radius of 
the outer hole. In the same example we would have wr(Cut(D; rl, r2))=O<wr(D). 
However, if D is circularly symmetric and connected, then it easily follows that  
Cut(D; rx, r2) nmst be connected. 
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C o n j e c t u r e  7.1. For any OcJ:  and any 0 < r l < r 2 < o c  we have 

r ~  (Cut(D; "1, ,'2)) _> F| (D), 

if D is circularly symmetric. 

C o n j e c t u r e  7.2. For any 0 < r i < r 2 < o o  and any r > 0  we have 

w,.(Cut (D; "1, r2)) _> w~(D), 

if D is circularly symmetric. 

Remark 7.2. Conjecture 7.2 implies Conjecture 4.2. To see this, note that  by 
approximation it suffices to prove Conjecture 4.2 for a hounded finitely connected 
and circularly symmetric  domain D. Assume Conjecture 7.2 and proceed by induc- 
tion on the number n of components in C \ D .  If n 1 then D is simply connected 
and we are done by Theorem 2.2. Suppose n >  1 and that  the result has been proved 
for n -  1. Let 

r2 = I inf{x : x e ( - c o ,  0]nD}l.  

The infimum is finite since D is bounded. Because of circular symmetry,  it is easy 
to see tha t  n - 1  is equal to the number of components of ( - r 2 ,  0]\D. Since n >  1 it 
follows tha t  ( - r2 ,  0] cannot be contained inside D. Let 

r l  = l i n f { x : x ~ D ,  - r ~  < x < 0 } l .  

We then have 0 < r l  <r2 <oo  and the interval ( - r 2 ,  - r l )  is contained in D. Circular 
symmet ry  implies tha t  the whole annulus D ( r 2 ) \ D ( r l )  must be contained in D so 
that  

(7.1) Cut(D; r l ,  r2)* = D*, 

by Remark  7.1. Moreover, - r l  and -7"2 lie in the boundary of D. Let D~= 
Cut(D;  r l ,  r2). The construction of D ~ then implies that  the number of components 
of C \ D  ~ is one less than  the number of components of C \ D .  This is because the 
component  containing - r l  has been dilated so as to meet and touch the component  
containing - r 2 .  

Thus C \ D  ~ has n - 1  components,  and so 

(7.2) w~.((D')*) > w,-(D') 

by the induction hypothesis. If  Conjecture 7.2 is true, then 

(7.3) w~ (D') _> w~ (D). 
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Combining (7.1), (7.2) and (7.3) we see that  w,-(D*)>_wT(D) as desired. 

Remark 7.3. Conjecture 7.1 implies Conjecture 5.2. The argument  here is 
slightly involved because of a difficulty with handling domains D for which DN 
( -oo ,  0) is of fractal-type. However, if C \ D  has finitely many components and D 
is connected, then the argument in Remark  7.2 shows that  by a finite number of 

cutting operations we may reduce D to a simply connected domain D ~ with (D~)*= 
D and, as can be easily verified (cf. Remark  7.1), also with AreaD~_<AreaD. We 
now prove our remark. Fix a domain D containing the origin, as in Conjecture 5.2. 
Without  loss of generality, Area D =7r. 

Let B as before denote all domains of area at most 7r which contain the origin. 

Let S be the subclass of all domains from B which are circularly symmetric  and 
simply connected. Finally, let B1 be the collection of all domains U in B which are 
circularly symmetric and for which C \ U  has finitely many components. Because 
circular symmetr izat ion increases the F~ and because one may approximate an 

arbi t rary circularly symmetr ic  domain in 13 by ones in 131, we have 

sup F ~ ( U ) :  sup F~(U),  
UGB UC131 

The above-mentioned construction of D~CS given DC131 shows 

(7.4) 

whenever q~ E5 r. 
that 

(7.5) 

Moreover, 

(7.6) 

sup r |  = sup 
UEI31 UE~S 

sup F~(U) = sup A~,(f), 
UES fEl /  

by Remark  5.1, where i I  consists of all univalent functions in ~ .  If r is such that  A~ 
attains its maximum over g,  then we may suppose it at tains this maximum at f and 
let U = ( f [ D ] )  | Then, F .  at tains its supremum over ~ at, g by (7.4)-(7.6) together 
with Remark  5.1 and (4.1), while U is simply connected since f[D] is. This is the 

desired conclusion. Note that  Ae does at ta in its maximum over t / i f  ~(t)--o(e t2), 
as t--~cc. This is so because in tha t  case A~ is weak upper semicontinuous on ~3 

by [25, Corollary 2] together with the Chang-Marshal l  inequality [10], while ~ is 
weakly compact  and tlU{0} is weakly closed by a normal families argument since 
weak convergence in ~ implies uniform convergence on compact  subsets of D (this 
last fact follows from a much more general result of Cima and Matheson [11]). 

If  ~5(t) is not of the form o(e t~) then a careful and somewhat involved approx- 
imation argument is needed. Such an argument is given in a rather similar setting 

in [30]. 
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7.2. A partial  result on  the  c u t t i n g  procedure  

We are able to prove the following partial  result. 

T h e o r e m  7.1. Fix 0 < r l < r 2 < o c .  Let D be a circularly symmetric domain 
such that D ( r 2 ) U D  is star-shaped. Then for any ~C.T we have 

P~(Cut(D; rl ,  r2) ) ~ rqb(D), (7.7) 

and for any r>O we have 

(7.8) wr (Cut(D; rl,  r2) ) > w~( D). 

The proof will be given in Section 8.2. We now note that  Theorems 2.1 and 3.1 
follow from Theorem 7.1. In fact, we shall inductively prove a somewhat more 

general result which is a corollary of Theorem 7.1. 

C o r o l l a r y  7.1. Let H C D  be a finite union of polar rectangles of fixed angular 
width 0o centred on the negative real axis. Let U C_D be a circularly symmetric star- 
shaped domain with the property that there exists an r0 ~ (0, 1] such that 

(7.9) 

and 

(7 .m) 

Put D = U \ H .  

(r.11) 

and for any r > 0  we have 

(7.12) 

D(r0) _< U 

1 {rei~ : r0 <_ r < le-=l  _< ZOo} C_ D\U. 

Then for any ~ E J  z we have 

F~(D*) _> P~ (D), 

Letting U = D  and r 0 = l ,  Theorems 2.1 and a.1 follow fi-om this result. The 
proof of the corollary uses the methods of Remark  7.2. 

Proof of Corollary 7.1. Without  loss of generality we can assume HGD(ro) ,  
since otherwise we may replace H by HnD(ro)  and this will not change U \ H  in 
light of (7.10). 

Let n be the number of components in H.  If  n = 0  then D = U  is s tar-shaped 
so that  D*=D and the result is trivial. Proceed by induction, assuming that  n > 0  
and that  the result has been proved for n - 1 .  Let r2=ro. Let 

r l  = ( inf{x : x c ( -oo ,  0]NH}I. 
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This is finite as n>0.  Then the annulus D(r2) \D(r l )  is contained in D so that 

(7.13) Cut(D; r l ,  r2)* = D* 

by Remark 7.1. Moreover, (7.7) and (7.8) hold by Theorem 7.1. Let H1 be the 
component of H containing - r t  and let H 2 = H \ H 1 .  We then have 

(7.14) Cut(D; r l ,  r2) = U \ A H  = U'\AH2, 

where U'=U\AH1 and A=r2/r l .  Note that by (7.10), since H1 is a polar rectangle 
of angular width 00 centred on the negative real axis and containing the point - r l ,  
it follows that  U' is star-shaped. Moreover, if U satisfies (7.9) and (7.10), then U' 
will likewise also satisfy them with 

, dee, inf{x : z C (--o o, O] N AH2 }l r0=  ] 

in place of r0. Moreover, AH2 has n 1 components so that  

(7.15) Fr (U'\AH2) <_ Fr ((U'\AH2)*) = Pc (Cut(D; r l ,  r2)*) = Pc (D*), 

by the induction hypothesis and by (7.13) and (7.14), where ~Cb ~. But by (7.7) 
and (7.14) we have 

r e ( D )  _< Fr (Cut(D; 7"1, r2) ) - -  Fr (U'\AH2). 

By (7.15) we then obtain (7.11). The proof of (7.12) is analogous. [] 

8. P r o o f s  and  g e n e r a l i z a t i o n s  

8.1. T h e  s imp ly  c o n n e c t e d  c a s e s  

Theorem 2.2 follows from the following more general result, the proof of which 
takes only a little more effort. Given zEC,  write [0, z )=[ t z : tC  [0, 1)}. 

T h e o r e m  8.1. Let D be a simply connected domain which is symmetric with 
respect to reflection about the real axis and satisfies [c~, r ) C D C D ( r ) ]Or some a <_O. 
Let C be a symmetric arc in T ( r )AOD,  centred on the point r. Let 

C ' = { z c C :  [0, z ) c D } .  

Assume C' is connected. Then 

(8.1) w(~, C; D) _< w(c~, C ;  D*). 
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It is easy to see that  C'C]D~OD*. Theorem 2.2 then follows by applying The- 
orem 8.1 to the domain D(r )ND with C : T ( r ) A 0 D  and ~ : 0  and by the reasoning 
of Remark 4.1. 

It is easy to see that  (8.1) need no longer hold if c~>0. To see this, consider 
the circularly symmetric and simply connected domains 

D ~ = D \ [ ( - 1 , � 8 9 1 7 6  : ~ - - 3, r  

for r 7 0 and note that  

. z < r < l ,  D ~ = D \ [ ( - [ , - ~ ] U { r e ' ~  

Fix c~�9 (�89 1). Then, it is easy to see that  w(e, TNOD~;D~) is bounded away from 
zero, as s--+0, while ~(c~,TNOD~*; D*)--+0, as s-+0, so that (8.1) will not hold if c 
is sufficiently smMl. 

Finally, note that C' will automatically be connected in Theorem 8. ] if D is 

circularly symmetric and simply connected. 

Now we proceed to the proof of Theorem 8.1. First however we need some 

background results so that we can use a special case of a quite general result of 

Baernstein [5]. The reader interested in the many different kinds of rearrangements 

which all yield analogous results is referred to [5]. Let I be the interval (-Tr, ~r], 

and let F be a positive Lipschitz function on I x R .  Recall that  the Steiner sym- 
metr'ization about the real axis S ~ of a set S C I x R  was defined by 

1 

where I{t: (x, t) �9 S}I indicates the Lebesgue measure of {t: (x, t) �9 S}. Given a func- 
tion F on I • R we may define the Steiner symmetrization F F3 of F by 

where 

FB(x, y) = sup{A: (x, y) �9 (F~)~}, 

= {(x, y): F(x,v)  > A )  

Note that  F ( x , .  ) and F[](x, - ) are equimeasurable whenever x E [  is fixed. 
Then we have the following result. 

T h e o r e m  8.2. (Baernstein [5, Corollary 3]) Let F be Lipschitz and positive on 

I x R  and assume that for every fixed x E [  we have F(x,y)--~O, as y-+:Loe. Then 
F ~ is also Lipsehifz and for any convex increasing function 62 we have 

/ ~ •  62(IVFBI) -< J ~ •  ~(]VFI)" 
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The integrals in the theorem are taken with respect to Lebesgue area mea- 

sure on  R 2. For ~ ( t ) = t  2, they are known as Dirichlet integrals. These kinds of 

isoperimetric inequalities go back to Pdlya and Szeg5 [27]. 
As a corollary, we obtain the following modified version of a result of Marcus [22, 

Theorem 1]. For a positive function f which is Lipschitz on D and which satisfies 
f(0)  =0,  and for any (x, y) c I  x R,  we define F(x, y)=f(e-M+ix). It is easy to verify 
that  this is Lipschitz on I • R.  Then, identifying R 2 with C, let log z be the branch 

of the logari thm with I m l o g z E I ,  and set f . ( z )=FB(- i logz)  for z c D .  Then, f ,  
will be radially increasing on D. 

T h e o r e m  8.3. Let f be Lipschitz and positive on f) and assume that f(O) =0.  

Then f .  is Lipschitz on compact subsets of D\{0},  satisfies f,(O)=O(z), as z--~O, 
and has 

/fo IVf*12 --<//D IVfl2- 
This follows immediately from Theorem 8.2 with ~ ( t ) = t  2 and from the well- 

known conformal invariance of Dirichlet integrals, where we use the conformal map 
- i  log z from D \ ( - 1 ,  0] onto the upper half of I • R,  and then note that  the Dirich- 
let integral for F B over the lower half of I • R is the same as that  over the upper half 
of it. The only subtlety is with proving the Lipschitz character of f . .  From The- 
orem 8.2 we find that  f .  is Lipschitz on compact subsets of D \ [ - 1 ,  0]. Rotational 

symmet ry  in the definition of f ,  (i.e., applying the above to f~(z)ddf(ei~z) and 

noting that  (f~),(z)=f,(eiPz)) shows that  in fact it must be Lipschitz on compact 
subsets of all of D\{0}.  Now f ( 0 ) = 0  and so I claim that  for every r > 0  we have 

sup f(z)>_ sup f.(z). 
zCD(r) zCD(r) 

Thus f.(z)=O(z), as z--~0, since f(z)=O(z), as z--~0. The claim follows immedi- 
ately from the fact that  

(8.2) { z c D : f ( z )  < A } * = { z E D :  f.(z) <A} 

for any A>0. To prove (8.2) it suffices to show that  equality holds when we intersect 
both sides with a ray start ing from the origin, and to do this one needs to note that  
the logarithmic metric defining radial rearrangement precisely corresponds to the 
composition with - i  log z in the definition of f , .  

We now proceed to the proof of our Theorem 8.1 by the method of Haliste [17, 
Proof  of Theorem 4.1]. 

Proof of Theorem 8.1. Without  loss of generality set r =  1. As usual, by an 
internal exhaustion like the one in [3, Proof  of Theorem 7] we may assume that  all 
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our domains have nice boundaries. We shall assume for now that  a = 0  and at the 
end of the proof we discuss the minor modifications necessary to take care of the 
case a < 0 .  We now use the method of Haliste [17]. Let U be any subdomain of 
D such that  [0, 1 ) c U  while U is symmetric under reflection in the real axis. Let 
E be a symmetric arc about 1 in T•OU. Let f be the (unique) holomorphic map 
of U onto the disc D with / ( 0 ) = 0  and f ' ( 0 )>0 .  Then f (E)  is a symmetric arc 
of T centred about 1, and its harmonic measure at 0 in D equals its normalized 
Lebesgue measure. By conformal invariance, this normalized harmonic measure 
also equals co(0, E; U). Now, as in [17] (but for convenience with reversed boundary 
values so that  Theorem 8.3 would work better),  let u=uE,u be the solution of the 
following mixed Dirichlet Neumann problem on D\[0,  1): 

(8.3a) u(z) = O, z E [0, 1), 

(8.3b) u(z) = 1, z e T \ f ( E ) ,  

(8.3c) d u ( z )  =0, z c X(E), 

(8.3d) Au(z) = 0, z C D\[0,  1), 

where d/dn denotes a normal derivative. Let 

r IwE, l 2. \[0,1) 

Then, gluing two copies of D together along the arc f (E)  to form a Riemann surface, 
and applying the Dirichlet and maximum principles on it, we easily see that  qS(E, U) 
must be strictly decreasing with respect to the length of the arc f (E) .  But since the 
length of this arc is proportional to ca(0, 6 ;  U), there must be a strictly decreasing 
function ~b: [0, oo)--+[0, oc) such that  for all E and U as described above we have 

(s.4) 6; u)) = r u). 

Haliste [17, equation (3.6)] gives an explicit expression for ~b in terms of elliptic 
integrals. Now, by conformal invariance and the fact that  f sends 0 to 0, E onto 
f (E)  and [0, 1) onto [0, 1) (the last assertion being due to the reflection symmetry 

def 
of U), it follows that  we may instead consider the function sz,g = uE,g of on U and 
we will have 

(s.5) r u) - - / s  IvsE,vl 2 , 
\[0,1) 
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while moreover the function s=sE,u will be the solution to the following mixed 
Diriehlet Neumann problem on U\[0, 1): 

(8.6a) s(z) = O, z < [0, 1), 

(8.6b) s(z) = 1, zccqU\E,  

(8.6c)  : 0, z c E ,  

(8.6d) As(z)  = O, z E U\[0, 1). 

The proof of Theorem 8.1 is now not very difficult. Take s=sc,  D with the 
above definition and set s ( z ) = l  for z E f ) \ D .  Since D has a nice boundary, s has 
no problem with satisfying the conditions of Theorem 8.3. Hence, 

(8.7) //D IVS. 12 < //D IVSI2. 

Now, it is easy to verify that s and s,  are identically 1 in D \ D  and D\D*,  re- 
spectively; for s,  this follows from (8.2) with A 1, together with the fact that 
{z~D:s(z)<?}=D. Thus the integrands in (8.7) are supported on D and D = ,  
respectively, so that  

(8.8) .I/D, [V(sc, D),,2 ~_ //D ,VSC, D,2 , 

since we have a nice boundary which thus has Lebesgue measure zero. Furthermore, 
if D is symmetric about the real axis and simply connected, then so is D*, while s .  
is identically 1 on OD*\C' since for z E C  ~ we have s.(z) =max[0,z) s = l .  Clearly, too, 
s .  is identically 0 on [0, 1). Hence s .=(Sc ,D) ,  satisfies the two Dirichlet boundary 
conditions which would be imposed on SO, D* by (8.6a) and (8.6b) (with U=D* 
and E=C' ) ,  though in general it will fail to satisfy the Neumann condition (8.6c) 
and the harmonicity condition (8.6d). Then, it follows by the Dirichlet principle 
with free boundary values that  

//D. [Vsc',D*I2 ~ //D [V(SC, D)*I2, 

which combined with (8.5) and (8.8) yields 

0(C',  D*) _< qS(C, D). 

By (8.4) it follows that 
w(0, C'; D*) > w(0, C; D), 
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since ~p is strictly decreasing. This completes the proof in the case of c~ 0. 
If a < 0  then we proceed just as above, the main difference being that  the 

map f ,  instead of taking 0 to 0, is now required to take c~ to 0 (note that  the 
condition i f ( 0 ) > 0  is equivalent to the condition f ' ( a ) > 0  since f is to be univalent 
and our domains are symmetric under reflection in the real axis). Then, instead 
of considering the solution s = s E , v  to (8.6a) (8.6d), we now consider the solution 
s s~,E,u to the mixed Dirichlet-Neumann problem (8.6a') (8.6d') obtained from 
(8.6a) (8.6d) by replacing [0, 1) in (8.6a) and (8.6d) by [c~, 1). The rest of the proof 
goes through. For, we still have 

z;  u)) = 

with exactly the same function ~p as before. Moreover, if s=s~,E,D, then s .  sat- 
isfies the two Dirichlet boundary conditions that  would be imposed on S~,E,D* by 
(8.6a') and (8.6b), where (8.6a') is (8.6a) with [0, 1) replaced by [c~, 1). The reader 
waiting to see where the assumption c~_<0 is used may be pleased to note that  it 
is used precisely in the assertion that  s .  satisfies (8.6a ~) for the rearranged domain 
U=D*.  [] 

8.2.  T h e  p a r t i a l  r e s u l t  o n  t h e  c u t t i n g  p r o c e d u r e  

Here we shall supply the proof of Theorem 7.1. Our proof depends on the 
following elementary lemma together with a result of Baernstein [6]. Recall that  v~ 
was defined by (4.5). 

Lernrna 8.1. Let U be a star-shaped domain with D ( r ) C U .  Assume that H 
is a closed set in U and that ~>1 is such that s Then, 

vr(U\ ) <_ 

Proof. Put  D U \ H  and D I = U \ A H .  Conformal invariance implies that  

(s.9) 

It is also evident by the maximum principle that  

(8.10) v~(AD) < v~(AD), 

if .k~l.  
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Let 
h(z) = w(z, O(AD)\D(r); AD) 

and put 
H(z) = w(z, OD'\D(r); D'). 

I claim that  h(z)<H(z) for every zCD'. Now D'C_AD as D is star-shaped. Thus, 
to prove the claim, by the maximum principle it suffices to show that h(z)<H(z) 
whenever zEOD'. So fix zcOD'. If zEOD'\D(r) then H ( z ) = l  while h < l  every- 
where so we are done. Suppose now that  zEOD'ND(r). We have H ( z ) = 0  then. 
Since D(r)CU and zED( r ) ,  it follows that  z does not lie in the boundary of U. 
But it does lie in the boundary of D'=U\AH and hence it must lie in the boundary 
of/~H. But if zGO(AH) then zCO(kD)ND(r) so that  h(z)=O<_O=H(z) as desired. 
Thus, indeed h(z)<H(z) whenever zED', and in particular when z=0.  Hence, 

vr(AD) = h(0) <_ H(0) = v,-(D'). 

Combining this with (8.9) and (8.10), we see that  the proof is complete. [] 

We now need the following generalization of the Baernstein inequality P~ (D) _< 
r|174 

P r o p o s i t i o n  8.1. (ef. Baernstein [6, Theorem 1]) Let D and D' be domains in 
the plane containing the origin. Suppose that D' is circularly symmetric. Assume 
that whenever r C (0, oo), then at least one of the following two conditions holds: 

(8.11) D | AT(r )  C D'  

O r  

(8.12) vr(D) ~ vr(D'). 

T h e n  

for every ~C~.  

If we had made the auxiliary assmnption that A(D)C_A(D') where A(U)=  
{rE(O, oc):T(r)CU} for a domain U, then this would be a direct consequence of 
Baernstein's [6, Theorem 1] together with our Theorem 6.1. However, while [6, 
Theorem 1] is stated under the additional assumption that  A(D)C_A(D'), Baern- 
stein's proof works just as well without the assumption that A(D)C_A(D'). Thus 
Proposition 8.1 is true. (Note, however, that  Baernstein phrases the conditions 
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somewhat differently since his version of (8.1i) is rephrased in a way that  uses the 
assumption A(D)C_A(D').) 

Proof of Theorem 7.1. First note that  if (7.7) holds for all OE9 v, then (7.8) 
also holds. To see this, use Theorem 6.1 and the reasoning in Remark 6.1. 

We now prove (7.7). Let D'Cut(D; rl, r2). Assume without loss of generality 
that  D(r2)\D(rl)CD, since if not then we may replace D by DU(D(r2)\D(ra)) 
which will only increase Fe(D) ,  but which will leave Cut(D; r l ,  r2) unchanged. 

We shall show that  the conditions of Proposition 8.1 are satisfied, and (7.7) 
will immediately follow from the conclusion of that  proposition. 

Evidently, D'  is circularly symmetric. Fix rE(0,  ec). Let U=DUD(r2). Let 
H D( r2 ) \D .  Then, D=U\H. Moreover, our assumptions imply that  U is star- 
shaped. Since D(r2)\D(rl)CD, we have D'=U\AH, where A=r2/rl. Hence if 
r<_r2, then (8.12) follows from Lemma 8.1. On the other hand, if r>r2 then 
T(r)ND=T(r)AU=T(r)AD' and condition (8.11) follows. Hence, the conditions 
of Proposition 8.1 are indeed satisfied and the proof is complete. [] 

Appendix:  Cyl inders ,  Brownian  m o t i o n  and ra n d o m walks 

Suppose DC_D is a domain with 0ED. Let V -  be the half-cylinder ( oc, 0] x T. 
Let f be the map of D\{0} onto the half-cylinder V - ,  with f defined by f(re ~~ = 
(logr, e i~ for r > 0  and 0 c R .  Then, f [D\{0}l  is an open subset of V , which we 
will denote by f[D], by a slight abuse of notation. Since f is a conformal map, 
harmonic measure on subsets of V corresponds to harmonic measure on subsets 
of D. In particular, 

Wl(D) = l i n~  w( ( -u ,  1), {0} x T ;  f[D]). 

Thus, wl (D) is equal to the limit as u---~ oc of the probability that  a Brownian motion 
starting at ( - u ,  1 ) c V  eventually arrives at some point of the ring {0} x T  before 
touching any other part of the complement of f[D]. We will refer to a Brownian 
motion starting at ( - u ,  1 ) c V -  with the limit u---~ec being taken as "a Brownian 
motion started at - o c " .  

Observe that  

f [ D * ] = { ( t , e  i ~  : t < - I { s C (  oc ,0] : se  i~ 

where I " I is Lebesgue measure on R. (The naturalness of the right-hand side here 
provides a justification for the use of the logarithmic metric in the original definition 
of D*.) 
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If D is circularly symmetric,  then f[D*] may be thought of as f[D] with the 
cross-sections ({t} x T )Nf [D]  (for - o o < t < 0 )  re-sorted left-to-right in decreasing 
order of one-dimensional measure. Then, Conjecture 4.2 (for DC_D and r = l ,  which 
by scaling and Remark  4.1 is the only case that  need be considered) is equivalent to 
the conjecture that  if D is circularly symmetric  then this sorting of cross-sections 
({t} x T )Nf [D]  in decreasing order of one-dimensional measure will increase the 
probabili ty that  a Brownian motion s tar ted at - o o  arrives in {0} x T before touching 
any other part  of the complement of f[D]. 

The one-dimensional measure of ({t} • T)A f [D] can be very roughly intuitively 
thought of as a measure of the likelihood that  a Brownian particle crossing the ring 
{t} x T  does not touch the complement of f[D]. Hence we can take these measures 
to be analogous to the survival probabilities sn of the random walk in [29], and [29, 
Theorem 1] will be analogous to Conjecture 4.2, and will indeed intuitively provide 
some support  for our conjecture. 

For further discussion of related matters ,  see [31]. 
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