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1. Introduction

This paper deals with spectral decomposition of the following differential
operators

©,, o2 A% 4 g - d/dt

where g(t) = p - coth t -+ 2¢q - coth 2¢,, with p and ¢ positive real numbers and
¢t contained in the open interval 10, oof.

The radial part of the Laplace-Beltrami operator on a symmetric space of rank
one is of the form w, , Here (p,q) are certain pairs of non-negative integers.
See Harish-Chandra [11], p. 302, Araki [1].

The main result in this paper is Theorem 4, which generalizes the classical
Paley-Wiener theorem, characterizing the Fourier transform of C®-functions with
compact support, and the theorem that the set of Schwartz-functions is mapped
onto itself by the Fourier transform. The results in Theorem 4 (i) and (ii) are well
known for symmetric space, see Gangolli [8], Harish-Chandra [11], [12], Helgason
[14], [15], Trombi and Varadarajan [23]. However our proof does not use the theory
of Lie groups and symmetric spaces at all. Theorem 4 (ili) is probably only known
in a special case, see Ehrenpreis and Mautner [6].

The main difficulty in the proof of Theorem 4 is getting the best possible estimates
for the eigenfunctions of ®, ,. This is done in Theorem 2. In our proof we use
heavily the fact that the eigenfunctions of w,, are essentially hypergeometric
functions. It seems, however, that similar results should be obtainable for other

differential operators having the same type of singularities as o, , In fact if
P + ¢ <1 some results of Dym [5] can be applied to w, , and give a Paley-Wiener

theorem which however is weaker than ours. Note also that the classical Hankel-trans-
form is a spectral decomposition of the differential operator w* = d?/diz + k - t-1d/dt,
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which has the same type of singularity at zero as w, , (for k= p -+ q). For the
Hankel transform it is quite easy (using well known facts about Bessel functions)
to prove a Paley-Wiener theorem. A prelimenary version of the proof of Theorem
2 used perturbation theory relating eigenfunctions of w, , to eigenfunctions of o*.

Results of Ehrenpreis and Mautner [6], Gasper [9], Muckenhoupt and Stein [20],
and Schwartz [21] suggest that one should develop further harmonic analysis with
respect to w, ..

I would like to express my thanks to prof. S. Helgason for taking interest in
this work, and to prof. L. Carleson for his hospitality at Institut Mittag-Leffler,

2. Statement of results
1. Eigenfunctions of w,, ,

o.q are 0 and oo. The function g(f) has the form
g(t) = (p 4+ @)t 4 G(t), where G(t) is analytic in the closed interval [0, ool and
lim,, , g(t) = p + 2¢. Dzafine ¢ = 27Y(p + 2¢). Well known results about solutions
of singular second order differential equations [3], Chap IV, § 8, [18], § 7, give the
following facts about the equation:

wp, o + (2 + ¢®)p =0 on 0, oof (2.1)

The singular points for v =

There exists a unique solution g¢,(f) satisfying ¢,(0) = 1 and ¢;(0) = 0, and
it follows that ¢,(¢) is analytic for ¢ € [0, o[ and that ¢,(f) = ¢_,(f) and m =
g;(t). There exists a linearly independent solution behaving at zero, for p 4 ¢ % 1
like '~(P*9  and for p + ¢ =1 like log¢.

For Im A > 0 there exists a unique solution @,(¢) satisfying

D,(t) = ¥~ 1 4 o(1)) as t— o

and it follows that @,(f) is analytic for ¢ €10, o[ and that @,(t) = D_3(¢).
There exists a linearly independent solution behaving at oo, for 1 0 like
=%~ and for 1 =0 like te~%.

PrOPOSITION 1. For each fixed t €10, cof, as function of A, ¢,(t) is an entire
Junction; and D,(t) s holomorphic in the upper holf plane, and extends to a holo-
morphic function in 2 = C\{— tN}. For all 1€ 82 D,() is a solution of (2.1)
and satisfies

D,(t) = ¥ M1 L+ o(1)) as t— ©.

For A3# 0, such that 4, — 1€0, @, and @_, are linearly independent
because of their behaviour at oo. Hence there exist ¢*(4) and ¢—(4) such that
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@u(f) = cH(A)D,(8) + c(AHD_,(t) .
Obviously ¢t(— A) = ¢ (1), so we define ¢(1) = ¢*(1) and have Em = ¢(— }T)

THEOREM 2.
(1) Forall n € ZT there exists K, > 0 such thatforall A =& 4+ in €C, t €[0, o[-

n

2 | < Kl 4 (211 A t)elri=er

(ia)

n

d
(W %(Q) < K.(1 + t)"+18(lnl—@)t

(ib)

(ii) For all ¢>0, ¢>0 and n €Zt there exists K, > 0 such that for all
A=E&+in €C with n > — ¢l&| and all t € [e, oof:

n

d
D,(t) = =M1 4 e7*Q(A, 1)) and e o0, | <K,

(i) For all &> 0 there exists K > 0 such that for all 2 =£& 499 €C with
n = — &|é]:
[he(— D] < K(1 4 |20+
lo(— DI < K(1 4 |22 @

2. Generalized Fourier transform

Notice that for p.=q = 0, we have ¢,(t) = cos &, D,(t) = ¥, ¢c(l) = 1/2,
O(A,t) = 0. In this case the estimates are trivial, but not essentially better.
Restricting our attention to even functions f on R, the classical Fourier cosine
transform  f(1) = (2/m)"? f o f(tycos Mdt and the inversion formula f(f) =
(2[m)"* f o f(2) cos 2dA is a spectral decomposition of w, o= d?/di2. We shall
now discuss the similar »Fourier transform» related to o,

First note that

¢

d d
Bp, g = 4@ d_t<A ) E{) where A(t) = (€ — e7")P(e¥ — 7)1,

and thus w, , is formally self-adjoint with respect to the measure A(t)dt on

[0, wo[. The operator in L*A4) defined by o, , with domain

Dy, ={u € [*A)ju and %' are absolutely continuous and w,, u € L¥A)}

can be restricted to a domain D, ., such that w,, becomes self-adjoint. D, ,

contains at least functions in D) . which are differentiable at zero. For this see
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e.g. [16], p. 208 or [18], § 9, w, , has limit-point at co; and at zero there is limit-
point if p 4 ¢ > 3, and limit-circle if p + ¢ < 3. In this last case D, , % D ,
and choosing % € C with Im A7 > 0 we can define

D, ={u€Dp | lilf)l (A@) - (@, Ow' () — @, ()ult) = 0} .
ProrosiTioN 3. For f € L*A) and A €R* define
fiy = en [ o oama

the integral comverging in L*(|c(A)|?). f ——>f 18 a linear, normpreserving map of
I2(A) onto L3(|c(A)]72), the inverse given by

£t = (@)~ f F @) le(2)]-2da
0

the integral converging in L*A). A function f € L*(A) belongsto D, , if and only if
(22 4+ oAf(A) € L¥(|e(A)|?) and in that case

———

@, f(A) = — (22 + Af(2) .

3. Paley-Wiener theorems

For all 1 €C for which the integral converges we denote also

f(3) = (2m)~ f fOe, AWt .

Let us define the following function spaces:

9 = {even, C® on R, support contained in [— R,R]} for 0 < R < o

S = {even, rapidly decreasing on R}

7 = {(cosh t)~%m . S} for 0 <r <2

(g = {even, entire, rapidly decreasing of exponential type R that is: for all n
Po(P) = sup, ¢ [(1 + AMe RP(2)| < + oo}

For 0 <r <2 let D, ={&+ ip €C|n| < (2r!— 1)}

9" == {even, holomorphic in the interior of D,, C* in D,; rapidly decreasing,
that is: for all m,n P, (¥)=sup,¢p_ [(1 + A")d"/di"P(1)| < + oo}

Now notice that 9¢* =S and that 9 ¢ I7(4) and if 7 <s then 9r € 9" c IX(4).
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Give 9, the topology of uniform convergence of all derivatives, 9(; the
topology defined by the semi-norms P, and 9¢ the topology defined by the
semi-norms P, .. Then S = 9 has the usual Schwartz-topology, and

r = (cosh t)‘rg" .S

shall be given the topology from S. Clearly 97 and 7" are invariant under
0= and we notice that the semi-norms

n(f) = sup |o"f(0)]

t€jo, R)

are continuous on Yg; the seminorms

Qn, m(f) = sup [(cosh t)*"(1 4 ¢)"w"f(?)]
t€[0,00[ |
are continuous on 77, and that the topology on ¢ can equivalently be defined
by the semi-norms

d
PY,(P) = sup| =z (7 + P -

1€D,

Note that all the spaces are Frechet spaces.

Now let & = Ugso P and Y, = Ugoo 9z both given the inductive limit
topology. And define
»?C = {entire; even; slowly increasing functions of exponential type, that is: there

exist N € N, B > 0 such that: sup, ¢ (1 + [A])"NMe B P(& + in)| < + o).

Let € denote the set of all even C®functions on R, given the topology of
compact convergence of all derivatives.

The dual spaces &', (92)’ and €’ shall be called respectively the distributions,
the tempered distributions and the distributions of compact support (with respect
to the density A). A function f is identified with the distribution:

g f g@)f@) Az g€D.

Similar definitions hold on the Fourier transform side for distributions with respect
to the density |e(4)|2

TarOREM 4. The Fourier transform f— f defines a linear, bijective map between:
(i) D, the space of even C®-functions of compact support, and 9C, the space
of even, entire, rapidly decreasing functions of exponential type.
(i) T and 9 for 0 <r < 2.
(iii) € and 9L

In (i) and (ii) the map is also bicontinuous.
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(i) and (iii) are the generalized Paley-Wiener theorem.

For r = 2, (ii) generalizes the theorem about the Fourier transform of Schwartz
functions. For the dual spaces (2) and S’ we define the Fourier transform
as the transpose of the inverse Fourier transform. And thus we have that the
tempered distributions correspond under the Fourier transform. Note also that
22 = (D7), and that the definition of Fourier transform agree on the two spaces,
due to the Parseval equation,

4. Conwolution structure

It is natural to consider a convolution structure associated with this type of
eigenfunction expansions. Roughly speaking, the convolution of two functions should
be defined by means of the pointwise product on the Fourier transform side.

As T. Koornwinder pointed out to the author it is a simple consequence of the
results in [10] and [19] that this convolution is defined by means of a positive
kernel. In a joint paper with T. Koornwinder this convolution structure will be
discussed further. Here we just state without proof the following easy result:

THEOREM 5.
(i) Let k,1,r be positive numbers or oo, such that 1k + 1/l — 1 = 1jr, then,
for fe€IMA) and g € INA), fxg is well defined as a function in L'(4) and

If # gll- < [Ifllglls -
(i) When ever well defined the following holds
From =fam.

(iii) (LMA), %) s a semi-simple Banach algebra.

Using Theorem 5, we shall prove the following theorem, part of which is needed
in the proof of Theorem 4 (iii).

THEOREM 6. There exists an approximate identity {v,}., tn the convolution
algebra b, which also acts as approximate identity in:
Iy for 0<r< o and O for 0<r <2,

In the case of a symmetric space, this convolution is just the convolution on
the corresponding semi-simple Lie group.
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3. The proof of Proposition 1 and Theorem 2
From now on we always assume that p -+ ¢ > 0. Making in (2.1) the change
of variable z = — (sinh {2 we get 2z € ]— oo, 0]
2z — 1)¢"() + {(a+ b + 1)z — e}g/(2) + abp(z) = 0 (3.1)
o =a(l) =2 + i), b6 =0(1) =2 —id), c=2p+q+1)
this is the hypergeometric differential equation and it follows that
p,(t) = Fla, b, ¢c; 2)

F Dbeing the hypergeometric function. We state a couple of well-known formulas
for F, [7]: for 2€]— ,0] if Re(d) >0 and Re(c— b)> 0:
1
Pa, b, ¢; 2) — T(e)T(B)*T(e — b)2 / P — N1 — e (3.2)

0
d
o Fla,b,c;2) = abcFla+ 1,0 + 1,¢ + 1;2) (3.3)

Note thatif p, =9, ¢y =q + 2 thenweget oy =0+ 1, b, =b 41, ¢;=c¢c+ 1
and g, = ¢ -+ 2. Setting G(p, q, ;) = F(a, b, ¢; 2) = ¢;(f) we have

d
7 Ap,q, k) =—2Yp + g+ 1)HA2 4 (2% + ¢)?) sinh2t G(p, ¢ + 2, ;1) (3.4)

The functions ¢, can be considered as a continuous orthogonal system. The
discrete analogue of this system is given by Jacobi polynomials P®# with
x=3p+qg—1), =3¢ — 1). We may call the functions Jacobi functions.

T. Koornwinder [19] has derived an integral representation for Jacobi poly-
nomials which has an analogue for Jacobi functions. It takes in our notation the
following form:

For all t€]0, o[ and A E€C we have for

p>0, ¢>0,
1 Fi4
7,() = ¢ = (p, g) [ f xt, 7, 07 du(B)dr(r) (3.5)

with wW(p, @) = 207 PLE@ N p + ¢ + W@ ) (2 )™
a(t, r, 0) = 27Y(cosh2f 4+ 1 + (cosh2t — 1)r2 - 2 ginh2¢ - ¢ cosh)
du(f) = (sic6)1='d0, dy(r) = (1 — r2)P2~1 . pidy
y=—272"p +q + i)
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p=0, ¢#0,
" 2(t) = (0, q) f 7(,‘@, 1, 0)du(6) (3.6)
with 7(0, ) = a~**T (2—01(q + 1) I'(27g)t
p#0, ¢g=0,
@ O(t) = ¢OP(21) = 7(0, p) f x(27, 1, 0)du(6) (3.7
0

These formulas are explicit forms of Harish-Chandras formula for the spherical

functions: ¢(f) = f x €Xp (14 — o)(tk)dk in the case of symmetric spaces, see
Helgasons book [13], p. 432. Formula (3.6) is well known [7], formula 3.15 (22).
For convenience of the reader we give an elementary proof of formula (3.5) by
using (3.6) and a fractional integral for hypergeometric functions. The idea of the
proof in the similar case of Jacobi polynomials, see [19], is due to prof. R. Askey.
Proof. By analytic continuation with respect to complex y we find from formula
(2.11) in Askey and Fitch [2] that for y << 0, g >0, ¢ > 0.

(—yyt* Y1 — gy Fla, b+ p e+ wsy) =

0

= I(c + @)(Te) Tw) f (& — g1 — &)= H(— 2)"F(a, b, ¢, 2)da .
Y
Now using

¢Po0) = F(—p,y +q¢+4p, 3¢ + 3+ 3p; — (sinh o))
we find that
(sinh )P+ eosh )" Fr+ e pipdt) = D(Gp + ¢ + TG + DTGP -
(sinh 2y
f ((sinh #)2 — (sinh s)2)3P+2(cosh s)~@7+P+e+D(ginh )7’ d(sinh s)
0

using formula (3.6) for ¢{""9(s) and making the change of variables

7 = sinh s cosh ¢ (sinh ¢ cosh s)7}
formula (3.5) follows. Q.e.d.
For the study of @,(t) the easiest is to write formally:

B,t) = ¥ S T(A)e™ .

m=0
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Inserting in the differential equation one finds the following recursion formula for
Tn(A):
n—1
Iy=1, Ip_;=0 and dn(n —id)Iy, = > (2r — i + 0)(2p + 674q) T,

r=90

where 0y =0 for r=n-+1 (mod 2), §7=1 for r =n (mod 2).

Lemma 7. Let D c C be one of the following sets:
(i) D is compact, contained in £
(i) D={&+in|n > — clé|} for some ¢ =>0.
There exist constants K and d >0 such that

[ Tw(2)| < K(1 + m)* for all m €Z+, 2€D.

Proof (see Helgason [14]). For A € Q and » € Z+ define
o(2) = dr[r —idl;  ye(A) = 40[2r — il + |

and inductively:

n—1

by(d) = 1, bafA) = ca(A)2 Zoér(l)yr(l)

then clearly [I3,(4)] <b,(4) for all n €Z+, 1€ Q.

n—2

bu(A)ea(2) = Zobr(l)%(l) + ba1(Ay-1(2) = bp_1(Aea_1(A(L + ya_r(Aear (DY) =

n—1
= ... = by(Aey(4) U; (1 4 7(A)e(2)7) -

‘We claim that for each set D there exists a ¢ > 0 such that forall »r €N, A € D:
yeder(A)r <Lt (3.8)
Take
(rye(De (AP = X((2r + e+ 0 + E)N(r + 9P + &) =(r, 1) .
For >0 or (2r 4+ ¢ + 5) < 0 it is clear that
2r + o+ 52 < kir + n)? for some k>0
and so «(r, 1) is bounded. If # <0 and 2r+ o 4 > 0 then
alr, 4) < K((2 + or + 1) + E)((r + 0 -+ &)1 = plr, 1) .

Now in case (i) B(r, A) is continuous on the compact space N U {oo}xD, and
thus bounded. In case (ii) B(r, 1) = B(1,#*4) and is bounded since f(1, 1) is
bounded on D. This proves (3.8). Now since log (1 +z) <z for = >0, we
conclude that for n €N:
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n—1 n—-1
TT @+ pDer(2)1) < exp (¢ Sril)y <e-n
r=1 r=1
also
bi(Aex(Nea(2)7t = ele — idlln(n — 4)[7
is bounded for » € N and 1 € D. This completes the proof of Lemma 7. Q.e.d.
From Lemma 7 it follows that the expansion for &,(!) converges uniformly on

sets of the form {(¢, 1) € [c, o[ XD}, where ¢ is a constant greater than zero.
This shows, that for all A€ 2, @,(f) is a solution of (2.1) satisfying

D,(t) = (1 4+ o(1)) exp (¢4 — o)}t as t— .

Proposition 1, and Theorem 2 (ii) now follow easily.

Lemma 8. With notation from (3.1), ¢(1) s given by
A 2% I'(c) ['(32)
N = T b))

Ae(— A) s holomorphic in L, and the zeros of Ac(— 1) is contained in the
set — ife, o[ for some &> 0.

Proof. The Wronski-determinant of ¢, and @, is independent of ¢ so we get:

Wig,, @) = AD(GHOP,() — pH)PH) =
= lim A(t)e(— AP O)D,() — P_,(OB(t) = — 2ide(— 1)

t—>w0

(3.9)

this proves that Ac(— A) is holomorphic in £.
For >0 we get
lim E(M+Q)‘¢1(t) = lim (e(“'+9)‘c(/1)e(”“9)‘ + e(il+g)tc(___ }»)6(_”'—'9)‘) = ¢(— 2)
=0 £t =00
Now assuming 7> 0, Re (b)) >0 and Re(c —b) > 0, that is 0 <y <p + 1,
then by (3.2):
1

I'(0)
TH) e — b)

I [ e 2RI (—id)
= IO —b) , P =0T = T — )

e(— ) = lim (— 4=)°

Z—>— 00

£ — 51 — 2yt =

this formula holds for all 1 € 2\{0} by analytic continuation. The rest is now
clear, Q.ed.
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COROLLARY 9. Given & >0 there exists K > 0 such that
Jie(— A)] < K(L A |2y 0+
lo(— A < K(1 + |2y @+

for all A= &+ in with n > — gl&].

Proof. Since 2¢(— A) and ¢(— A)' are continuous for n > — ¢|&| we just
have to consider the behaviour at co. Stirling’s formula [22], p. 151, gives that
for any « €C and any 6> 0

log I'lx + 2) = (z + o« — 27 V) log z — z + 271]og 27 -+ O(fz]})

uniformly in {z| |larg ()| <=z — 8} as [2]— oo.
Corollary 9 follows by using this in the formula for ¢(4). Q.ed.

This proves Theorem 2 (iii).

In the proof of Theorem 2 (i) we treat the case (3.5), the other cases are easier.
The proof consists of a series of lemmas.

Let 2 =¢& 4 in €C, since g¢,(t) = ¢_,(!) we assume for the most 5 > 0.

n

Lemma 10. «™(, 7, §) = i x(t, r, 0) satisfies

i) o = 46D for n >3
(i) 2" * <o < 2"* for m=0,1,2,...

Proof. Obvious.

Lemma 11. For all A€C and t €[0, o] we have:
() @) =< @)
(i) Il =0 = lgu(t)] < elrl=e*
(i) 7l <e= @@ <1
Proof. (i) and (ii) follows from (1) by taking absolute values inside the integration,
using Re (p) = 2745 — p) > 0. (iii) follows from (ii) using the maximum modulus
principle on {4] || < o}. Q.e.d.

Levma 12. There exists K > 0 such that for all t €[0, oof:
0 < @p(t) < K(1 + fe™®.
Proof. This follows from the discussion just before Proposition 1. That (1 - ¢)

cannot be avoided, can be seen from the fact that ¢,(f) and Py() are linearly
independent, ef. (3.9). Q.e.d.
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LemMA 13. There exvists K > 0 such that for all 2 €C and t €[0, cof:

lg(8)| < K(L - g)ellnl—x

Proof. For A €R it follows from Lemma 11 (i) and Lemma 12. Phragmén-
Lindeléf’s theorem [22], p. 177, applies for fixed ¢ to the function e, () in
the domain {A|n >0} and gives the result. Q.e.d.

LeMMA 14. There exists K > 0 such that for all A €C, t €[0, o] and n € Z™:

dn
ar %(t)l < trg, (1) < K(1 -+ tyr+lelnl=eor

Proof.
dlin ?:(6) = 1(p, 9)(— 2—1“"/ f ki log ) du(6)dv(r)

From Lemma 10 (ii) follows that |log (¢, 7, 0)] < 2¢, thus the lemma follows by
taking absolute values, and using Lemma 13. Q.e.d.

Lemwua 15. For each n € Z+ exists K, > 0 such that for all 2 € C and t € [0, oof:

5,; %(t)’ < K1+ (1 + |2])eliri=er
Proof. Using Lemma 10 (i) we find with certain constants K,
# gult) =
= / f 2 e mz{ R Y e R O 2O
o o

Taking absolute values we find using Lemma 10 (ii)

< K(1 4 |a])ellniter | (3.10)

d" ’
dar (pA(t)
Thus we can apply Phragmén-Lindel6f’s theorem for fixed ¢ to the function
e™(i 4 2)7"d"[d"p,(f) in the domain {A]# > 0} and the lemma follows when we
have proved the estimates for 4 €R:

1. |2] < K, t €]0, o] the proof is reduced to the case n = 0. Using (3.4):
For certain constants K _ and K’ _ we get

o7 a,r
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o
—_— (p, t)i > K, (cosh 26)*"(sinh 28Y [G(p, ¢ + 2, 4, )] <
dtn a:O r=max{0,2a—n} ’
< z K (1 + t)e(lnl—(2_1p+q+2a))t < K(1 + t)ellnl—ek Q.ed.
o, r

2. A€R, t€[0, K] it follows from (3.10).
3. Al = K and t€[K, o it follows from
P(8) = () Dy(t) + o(— HP_, ()

and theorem 2 (ii) and (iii). 1., 2. and 3. prove the lemma for A € R. Q.e.d.
This finishes the proof of Theorem 2 (i), and thus Theorem 2 is proved.

4. The proof of Proposition 3, Theorem 4 and 6

Proposition 3 is contained in the general spectral theory of differential operators.
Referring to Dunford and Schwartz [4], also for notation, we give a short outline
of the calculations leading to proposition 3. Where [4] uses 1 we shall use u, and
we take p = (22 4+ ¢?), and assume that Im A > 0.

Transforming the differential equation (2.1) by w(t) = A2(t)e(t) we get

2

e ? T+ —hiyp=0.
Here 7 is the function

d
h(t) = 271 = g(t) + 47%9(t) .

dt 7
Let 7 be the differential operator
d2
T= Ty, = Et-ﬁ_l—k’
then the solutions of 7y = uy is given by y = A4"%p, where o, @ = — (24 o).

From [4], XIII, 3, theorem 16, and (3.9) we find the Green’s function related
to 7, for s <t:

K(t, 5, p) = — (2ide(— )7 A"2() D, (6)4"(5); () -
First we take [4], XIII, 5, theorem 18, corollary 20 with
A=]1— 0,2, U={Reu<? and
oyt, ) = AP()gy(t), oalt, 4) = A" D,(2)

This gives @3 = (2idc(— A))™t and OF = 0 for (4,4) # (2, 1). Now since {OF
is analytic in U and real in A then {g;(4)} = 0.
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Secondly we take A = g2 —¢, o[, U= {Rey > 0> — ¢} and

alt, 1) = AP(0)gy(t)
oult, A) = APREAC(DBy(t) — o(— DD_(1)

this gives
K(t, s, p) = — (20dc(— A))2((2c(A))oy(t, ) + (2¢dc(A))oo(t, A))oy(t, A)
and thus
Ofi = — (4idc(A)e(— A), O3 = (42%c(A)e(— A)) and Of, =0f =0.

Now since {@F(u)} is continuous in the intersection between U and the closed
lower half plane, @3; is real on A, and 6Oj; is real on Jo® — ¢, ¢?], we find

ej(4) =0 for (i,7) # (1,1) and en(le* — & =0,
and for u > ¢ or equivalently 1 >0
doy = (4nde(A)e(— A))du = (dxlc(A)B)2dA .

Now Proposition 3 follows from [4], XIII, 5, theorems 13, 14 and 16.

We now turn to the proof of Theorem 4. This proof follows rather closely the
ideas of Chap. I in Hormander’s book [17]. In the following we shall often use
Theorem 2, and Proposition 3 without reference. Let K denote a suitable constant,
which every time it occurs may have a new value.

1. We take f€ D5 f= f s fO@ At is clearly entire and even, and
@'f(2) = (— (2 + ¢*)"f(1). We find

R
A4 A7) < K f ()@, (OA0)de < KQu(f)eF .

This shows that f € 9(; and that f— f is continuous.
2. We take ¥ € 9{;. The inverse Fourier-transform is for > 0 given by:

(1) — f P(2)g,(6) (c(Ae(— M)A = f P(R)e(— 2)10,(0)dA
0 —w®

by Cauchy’s theorem, and the fact that the integrand is well behaved at oo, we
find

W) = f P + in)e(— & — in) 2D, (1)dE for >0
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thus

B0 < Koo [P i1 16 i) T < Kot

Since this holds for all # > 0, we find that S\I,’(t) =0 for ¢t > R. In order to see
that P(#) is C®, we consider for ¢ € [0, oof

o0 dn [+
f l V(2) = oult)| le(h)|2da < K f [P + PR < +
0 0

this shows that E\i/(t) is C® and that

n

- 2 d" B
T = [ ) 3 wole@ .

[}

Thus ¥ € D;. Since f—>f is continuous from P onto Pz, and T and Yy
are Frechet spaces the map is bicontinuous.
This finishes the proof of Theorem 4 (i).
2

3. We take f€ 7D, f(t) = (cosh t) r°g(t) with g €S. For A =iy € D,, that
is |p] < (2r ' — 1)g, we find

n

) ~%Q d ©
f }g(t)(cosh 0 %(t)mt)) &t <K f gL + 1yt < oo .

This shows that f(l) is C® in D, and holomorphic in the interior, and that

& - P
o TH = of f0) == #A@Qde for all 2€D,

and that

W"f(t) — @D)A(t) | dt <

dn
ar

d" 2 2\m 7 .
G +e)fu>)lszcof

2
< K sup [foosh 07 0701 4+ 7] = KQyyanlf)

for all 1 € D,. This shows that f€9¢ and that f —~>f is continuous.
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4. Finally we take ¥ € 9¢. For t € [0, oo consider:

f |5"<ﬂ) ;ldt— g.(t)| le(D)2d1 < K f [PA)(L + [A)PHd2 < + oo
0 0

therefore ¥ is C®. It is just left to find the behaviour of Y\;(t) at oo, so assume
t>c>0 and we get for 5= (2r1 — 1)

W(t) = f P(E + in)o(— & — in) BTN L e HO(E + i, 1))dE =
_g' 3
= ( f W& + ino(— & — in)ledé + (4.1)
- . 2,
+ e / V(& + in)o(— & — in) O + i, t)e’f'df) = o (g:(0) + e Hga(t))

Now ¢, is rapidly decreasing since it is the usual Fourier-transform of a rapidly
decreasing funetion; and since all derivatives of O(& - in, t) with respect to ¢
is bounded uniformly in &, it follows easily that e~g,(t) is rapidly decreasing. It

follows that Y € 9. Since f—f is continuous from 97 onto 9¢, and o
and 9 are Frechet spaces the map is bicontinuous.
This finishes the proof of Theorem 4 (ii).

Before the proof of Theorem 4 (iii), we shall prove Theorem 6.

Lemma 16. Let v be an even C®-function, positive and with support coniained
in [— 1,1], such that

o)

f o(OA@)E = 1.

(]

Define
v,(t) = e14(t) (e W)v(e ) ,

then, for ¢ > 0, v, satisfies the sume conditions as v, except that supp v, C [— &, ¢] .
There exists constants K and K, such that for all 2 =& + in €C

() [5.4) — 1] <e- K1+ [A])e!
(il) |d~/da,(3)| < eelK, .
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Proof.

M) 2,4 — 1 = , f o(D){(glet) — 1)A(i)dt, < f v()et]p, (@)1 (D)d <
0 0

<o K [ o1+ O)(1 + 1A <o K(1 4 |2]e
0

where € = O(e, t) € [0, &t] ,

LA 3
(ii) &dﬂn vs(k)‘ = ‘of e

< f v(t)(et)"p,, () A@B)dt < e K . Q.e.d.

lsfwwmmmg

Proof of Theorem 6. First consider f € 5. For all ¢ € [0, o] we get

v, * f(t) — f@)] = ‘ f @) — DfDeH)e(N)2dA| <&+ K,

Since the support of v, +f— f for ¢ <1 is contained in a fixed compact set,
we get for 0 < r << oo:

o, *f — fll.—0 for ¢—0.

Using Theorem 5 (i) and the fact that & is dense in Lr(d) for all 0 <7 < oo,
it follows easily that v, is an approximate identity in L7(4). For f €@ we find,
as above, for » €N:

n

d
g rf— ) <e- K,

tn

this shows that v, is an approximate identity in .
Now take f€ 7" for 0 <r <2. Let n = (2r — 1)p, then as in (4.1) we get

’Ue *f(t) - f(t) - e;g‘(gl(t’ 8) + gz(t: 8))
for + > ¢ > 0 where

talt, &) = ff+WMHw%ﬁ¢4~mw%

and
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o) = < [ J€+ )& + im) — Ve(— & — i) O + in, D

In order to prove that v, is an approximate identity in 2, it is enough to
show that for any given integers n and m, we can find a constant K > 0 such
that [f(d™/di™gi(t, ¢)] <e- K for ¢ =1,2. ¢, is easily taken case of using the
factor ¢ * and Theorem 2 (ii).

dm o i . dn )
" pr g8, &) = f &Y w (& +in) — 1) i (@)dE

where (&) = (2&)™(— i)"f(& + m)e(— & — im)"L. Now doing partial integration n

times, and then using Lemama 16 (i) and (i) the result follows. Q.ed.
Lemma 17.
(i) The following inclusions hold
Ee@ed.

(ii) With the natural definition of support, we have for all w € D': u €€’ if and
only if the support of w s compact.

The proof is straight forward, similar to [17], theorems 1.5.1 and 1.5.2.
For « €6’ the Fourier transform is defined since u € (72)'. Tt is easily seen
to be the function %(2) = u(p,).

ProPoSITION 18. Given R > 0, the Fourier transform is a bijective map between
the space of distributions {u € €’'|supp u C [0, R]} and the space of even, entire
functions ¥, which for some N €N satisfy an inequality

PP < K1 4+ |A)Ne"® for all A =&+ in€C.

Proof. Take w € €', suppu c [0, R]. Let ¥ € O(R) be such that |¥| <1,
P)=1 for 2<% and ¥()=0 for x>1. Dofine, for 1+ 0,

Fiz) = g (@) P(|2|(lz] — R)) .
Then obviously ¥, is even and (%, and

Yi(x) = ¢,(x) for z €0, R+ (2{A)1]
V@) =0  for |u| >R+ |47

It follows that for x €supp ¥, we have inequalities



PALEY-WIENER TYPE THEOREMS FOR A DIFFERENTIAL OPERATOR 161

n

o w0 < K+ |A])el®

and thus inequalities

n

e

T;.(t)l < K, (1 + [A])melI® .
Since « is continuous on € there is an inequality

dn
@f(t)t for f€%.

[u(f) < K > sup
n<NV
Now it follows that
[@(A)] = lue)| = [u(Fp] < K(1 -+ |2]) R
Let U be even, entire and satisfy
[U(A)] < K(1 4 |A)Nel"® for all 2€(C.

Obviously U €38’ = (9(2) and is thus the Fourier transform of a tempered
distribution « € (7?)’.

Now take v, as in Theorem 6 and define u, by %, =u*v, =49, = U -0,
This shows that suppu, € [0, B -+ &].

Now pick arbitrary « and p such that R <a <fB, and f€D with
supp f € [«, f]. Then, for sufficiently small ¢, w(f) =0.

This gives

o0

0 = u(f) = 4,(f) = f WUAT(NF () e(2)|2dA = (B, f) = w(v, = f) .

]

But v,xf—>f in 9% as &0 and thus «(f) = 0. Therefore supp« C [0, R].
Q.e.d.
This finishes the proof of Theorem 4.
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