The regularity of growth of entire functions whose zeros are hyperplanes

LAWRENCE GRUMAN

University of Minnesota and University of Uppsala

Let f(z) be an entire function (of n variables) of finite order ϱ and normal type σ . We then define $h_r(z) = \overline{\lim_{r \to \infty} r^{-\varrho} \ln |f(rz)|}$, r > 0 (resp. $h_c(z) = \overline{\lim_{|u| \to \infty} |u|^{-\varrho} \ln |f(uz)|}$, $u \in \mathbb{C}$) and the smallest upper-semicontinuous majorant $h_r^*(z) = \overline{\lim_{z' \to z} h_r(z')}$ (resp. $h_c^*(z) = \overline{\lim_{z' \to z} h_c(z)}$). This is plurisubharmonic and satisfies the condition $h_r^*(tz) = t^\varrho h_r^*(z)$, t > 0, (resp. $h_c^*(uz) = |u|^\varrho h_c^*(z)$, $u \in \mathbb{C}$); it is called the radial (resp. circular) indicator function of f.

For n = 1, the function $h_r(z)$ is continuous, and so $h_r^*(z) = h_r(z)$ (see [4] or Lemma 1 below), but this is no longer necessarily the case for either $h_r^*(z)$ or $h_c^*(z)$ for $n \geq 2$, [3]. In [1], we undertook a study of the relationship between the distribution of the zeros of f(z) and the local continuity of the function $h_r^*(z)$. We investigate here a condition on the zeros which implies the global continuity of $h_r^*(z)$.

If the function f(z) as a function of several variables depends only upon a single variable, say z_1 , and $f(0) \neq 0$, then $h_r^*(z) = h_r(z)$ and the two are continuous. The zeros are then presented by hyperplanes parallel to the hyperplane $z_1 = 0$. We generalize this result in the following way:

THEOREM. Let f(z) be an entire function of order ϱ and normal type σ such that $f(0) \neq 0$ and the zeros of f(z) are hyperplanes. Then $h_r^*(z) = h_r(z)$ and there are constants T (depending only on σ and ϱ) and α (depending only on ϱ) such that $|h_r(w) - h_r(w')| \leq T||w - w'||^{\alpha}$ for ||w|| = ||w'|| = 1. In particular, $h_r^*(z)$ is continuous.

Remark 1. We will assume, without loss of generality, that we use the Euclidean norm. The value of T depends upon the choice of the norm, but α is independent of the norm chosen.

Remark 2. If f(z) is a function of only one of the variables, then elementary considerations show that the exponent we get is min $(1, \varrho)$. The α we construct can be chosen to be $\alpha > \min(1/3, \varrho/(2\varrho + 1)) - \gamma$ for any $\gamma > 0$.

Remark 3. The function $h_r^*(z)$ does not depend on what point in \mathbb{C}^n we choose as origin [2], so the assumption that $f(0) \neq 0$ does not effect the conclusion that $h_r^*(z)$ is continuous and satisfies the Lipschitz condition above; but it does of course effect the fact that $h_r(z) = h_r^*(z)$.

The proof will be established by classical methods pertaining to functions of a single complex variable. We shall first need the following results:

Lemma 1. Let f(u) be an entire function of a single complex variable and $h_r(u)$ its indicator function. Then there exists a constant K_0 (depending on ϱ and σ) such that

$$|h(e^{i\theta}) - h(e^{i\theta'})| \le K_0 |e^{i\theta} - e^{i\theta'}|$$
.

Proof. Let $K = \max |(\varrho/2) h(e^{i\theta}) \sec^2 (\varrho q)/2|$ with $|\theta_2 - \theta_1| \le q < \pi/\varrho$ and $\theta_1 < \theta < \theta_2$. Then [4, p. 54]

$$\frac{h(e^{i\theta})-h(e^{i\theta_1})}{\sin\varrho(\theta-\theta_1)} \leq \frac{h(e^{i\theta_2})-h(e^{i\theta_1})}{\sin\varrho(\theta_2-\theta_1)} + K(\theta_2-\theta) \ .$$

A similar inequality exists for θ and θ_2 . Choosing $|\theta_2 - \theta_1| \le \pi/4\varrho$, we get the desired result. Q.E.D.

Lemma 2. Let f(u) be holomorphic in the circle $|u| \leq 2eR$, u complex, with f(0) = 1, and let η be an arbitrary positive number not exceeding 3e/2. Then inside the circle $|u| \leq R$ but outside a family of excluded circles the sum of whose radii is not greater than $4\eta R$, posing $M(R) = \max_{|u|=R} |f(u)|$, we have

$$\ln |f(u)| > -\left(2 + \ln \frac{3e}{2\eta}\right) \ln M(2eR)$$
.

Proof. The proof is to be found in Levin [4, p. 21].

Lemma 3. Let the function f(u) be of order ϱ and type σ . Then there exists δ_0 (depending only on ϱ and σ) such that for each choice of the positive numbers δ and ω (with $\delta \leq \delta_0$ and $0 < \omega < 1$), there corresponds on each fixed ray $\arg u = \theta$ a sequence of intervals $r_n \leq r \leq (1 + \delta)r_n$ ($r_n \to \infty$) on each of which, for suitable constants T_1 and T_2 (depending only on ϱ and σ) the inequality

$$rac{\ln |f(re^{i heta})|}{r^arrho} > \left[h(e^{i heta}) - T_1\delta - T_2\delta\left(2 + \lnrac{2e}{\omega}
ight)(1 + 2e\delta)^arrho
ight] = h(e^{i heta}) - g(\delta,\omega) \qquad (1)$$

is satisfied except perhaps on a set of measure not exceeding $\omega \delta r_n$.

Proof. Without loss of generality, we may assume $\theta = 0$. There is a sequence of $r_n \to \infty$ such that $\ln |f(r_n)| > [h(1) - \delta]r_n^e$. Assume $\delta < 1/2e$. There exists an R_δ such that for $r \geq R_\delta$, $\ln |f(re^{i\phi})| < [h(e^{i\phi}) + \delta]r^e$ [4, p. 71].

By Lemma 1, for $|\phi| \leq \sin^{-1}(2e\delta) \leq K'\delta$, $\ln |f(re^{i\phi})| < [h(1) + (K_0K' + 1)\delta]r^{\varrho}$. Let $\psi_n(u) = f(r_n + u)/f(r_n)$. Then $\psi_n(0) = 1$ and for $|u| \leq 2e\delta r_n$,

$$\ln |\psi_n(u)| \leq (K_0 K' + 2) \delta(r_n + |u|)^{\varrho}.$$

Applying Lemma 2, we see that for $|u| \leq \delta r_n$,

$$\ln |\psi_n(u)| > -(K_0K'+2)\delta(2+\ln (2e/\omega))(r_n+2e\delta r_n)^e$$

outside exceptional circles the sum of whose radii is less than $\omega \delta r_n/2$. Returning to the function f(u), wee see that asymptotically

$$\ln |f(r)| > [h(1) - \delta - (K_0 K' + 2)\delta(2 + \ln (2e/\omega))(1 + 2e\delta)^{\varrho}]r_n^{\varrho}$$
 (2)

is satisfied for $(1 - \delta)r_n \leq r \leq (1 + \delta)r_n$ except perhaps for intervals the sum of whose lengths is less than $\omega \delta r_n$. Since f(u) is of type σ , for δ sufficiently small (depending only on σ),

$$\sigma \left[1 - \frac{1}{(1+\delta)^{\varrho}}\right] < (\varrho + 1)\sigma \delta$$

and hence

$$rac{\ln |f(r)|}{r^arrho} > [h(1) - \sigma\delta(arrho+1) - \delta - (K_0K'+2)\deltaig(2+\ln (2e/\omega)ig)(1+2e\delta)^arrho]$$

holds wherever (2) holds.

Q.E.D.

Lemma 4. If f(u) is holomorphic in the circle $|u| \le er$ with f(0) = 1 and if n(r) is the number of zeros of f(u) of modulus less than r, then $n(r) \le M(er)$.

Proof. This is an easy consequence of Jensen's formula (cf. [4, p. 15]).

Lemma 5 (Cartan estimate). Given any number H > 0 and complex numbers a_1, \ldots, a_N , there is a system of circles in the complex plane the sum of whose radii is 2H such that for all u lying outside these circles, $\prod_{i=1}^{N} |u - a_i| \ge (H/e)^N$.

Proof. See [4, p. 19].

Lemma 6 (Carathéodory inequality for the circle). If f(u) is any function holomorphic on the circle $|u| \leq R$ and

$$A(r) = \max_{|u|=r} \operatorname{Re} f(u), \ \ then \ \ M(r) \leq [A(R) - \operatorname{Re} f(0)] \frac{2r}{R-r} + |f(0)| \quad \ (r < R).$$

Proof. See [4, p. 17].

Proof of theorem. The proof, which is quite long, will be divided into several parts. (i) Let $\zeta > 2$ be some fixed number to be specified later and let $\varepsilon = ||w - w'||$ be so small that

$$\varepsilon^{1/\zeta} < \min\left(\frac{1}{12}, \delta_0\right)$$
(3)

where Lemma 3 is satisfied for $\delta \leq \delta_0$. Then by Lemma 3, by choosing $\delta = \omega = \varepsilon^{1/\zeta}$, we can find a sequence $r_n \to \infty$ such that $h_r(w) - g(\varepsilon^{1/\zeta}, \varepsilon^{1/\zeta}) \leq r^{-\varrho} \ln |f(rw)|$ for $r_n \leq r \leq (1 + \varepsilon^{1/\zeta})r_n$ except perhaps on a set of measure at most $\varepsilon^{2/\zeta}r_n$. Thus, for r_n sufficiently large, we have for $r_n \leq r \leq (1 + \varepsilon^{1/\zeta})r_n$

$$h_r(w) - h_r(w') - g(\varepsilon^{1/\zeta}, \varepsilon^{1/\zeta}) - \varepsilon \leq \frac{\ln |f(rw)|}{r^\varrho} - \frac{\ln |f(rw')|}{r^\varrho}$$
 (4)

except perhaps for a set of measure at most $\varepsilon^{2/\zeta}r_n$.

(ii) Since f(z) is of type σ , there is a constant $C \geq 1$ such that

$$|f(z)| \le C \exp (\sigma + \frac{1}{2})||z||^{\varrho}.$$

For $|\xi|=1$, we define the functions $n_{\xi}(r)$ to be the number of zeros of $f(u\xi)$ for |u|< r. By Lemma 4, $n_{\xi}(r) \leq \ln M(er) \leq \ln C + (\sigma + \frac{1}{2})e^{\varrho}r^{\varrho} \leq (\sigma + 1)e^{\varrho}r^{\varrho}$ for r sufficiently large. In what follows, we shall always assume that r_n is so large that this inequality holds for $r \geq r_n$.

In the complex line (uw'), we construct concentric circles C_{in} , centered at the origin, of radial increment $6\varepsilon^{2/\zeta}r_n$, with the radius of C_{0n} being r_n and all the radii less than or equal to $(1 + \varepsilon^{1/\xi})r_n$. This defines a set of annuli, and at least one of the annuli will not contain "too many" zeros of the function f(uw'). The number of annuli is $\left[\frac{\varepsilon^{1/\zeta}r_n}{6\varepsilon^{2/\zeta}r_n}\right]$ (where [] means "greatest integer in"), and since

by (3), $\frac{1}{6\varepsilon^{1/\zeta}} > 2$, we have $\left[\frac{1}{6\varepsilon^{1/\zeta}}\right] > \frac{1}{12\varepsilon^{1/\zeta}}$. Since there are at most $(\sigma+1)e^\varrho(1+\varepsilon^{1/\zeta})^\varrho r_n^\varrho$ zeros inside the circle $(1+\varepsilon^{1/\zeta})r_n$, at least one of the annuli has no more than $(\sigma+1)e^\varrho(1+\varepsilon^{1/\zeta})^\varrho r_n^\varrho 12\varepsilon^{1/\zeta} < 12(\sigma+1)(2er_n)^\varrho/\varepsilon^{1/\zeta} = T_3\varepsilon^{1/\zeta}r_n^\varrho$ zeros of the function f(uw'). We shall select one such annulus and designate it Ω_n .

(iii) Let the zeros of f(z) be the hyperplanes $(1 - \sum_{i=1}^{N} c_{im}z_i)$ and let $A_m =$

 $\sum_{i=1}^{N} c_{im} w_i'$. Let $\Pi'(1-A_m u)$ be the product over those indices m for which f(uw') has a zero in Ω_n (at most $T_3 \varepsilon^{1/\xi} r_n^e$). By Lemma 5, there is a set of circles the sum of whose radii is $\varepsilon^{2/\xi} r_n$ such that for all n lying outside these circles, $\Pi'|u-1/A_m| \geq (\varepsilon^{2/\xi} r_n/2e)^{\lambda}$ (where λ is the number of zeros). Since $1/|A_m| \leq r_n(1+\varepsilon^{1/\xi}) \leq 2r_n$, for u lying outside these circles

$$|\Pi'(1-A_m u)| = \Pi'|A_m|\Pi'\left|u-\frac{1}{A_m}\right| \geq \left(\frac{\varepsilon^{2/\xi}}{4e}\right)^{\lambda} \geq \left(\frac{\varepsilon^{2/\xi}}{4e}\right)^{T_3\varepsilon^{1/\xi}r_n^{\ell}}.$$
 (5)

Thus, we can find an r, $r_n \leq r \leq r_n(1 + \varepsilon^{1/\zeta})r_n$ for which $rw' \in \Omega_n$ such that (4) and (5) hold simultaneously and such that the circle Q_n centered at r (in the complex line (uw')) of radius $\varepsilon^{2/\zeta}r_n$ is contained in Ω_n .

Let us now consider such an r.

(iv) We have f(rw) = f(rw' + (w - w')r). Let $\phi(u) = f(rw' + u(w - w')/\varepsilon)$. Then $\phi(\varepsilon r) = f(rw)$ and $\phi(0) = f(rw')$, and $\phi(u)$ is a holomorphic function of the single complex variable u, so $\ln |\phi(u)|$ is subharmonic; thus

$$\ln |f(rw)| - \ln |f(rw')| = \ln |\phi(\varepsilon r)| - \ln |\phi(0)| \le \max_{|u| = \varepsilon r} \{ \ln |\phi(u)| - \ln |\phi(0)| \}. \quad (6)$$

We also have

$$|\phi(u)| = \left|\phi\left(rw' + u\,\frac{(w-w')}{\varepsilon}\right)\right| \le C\exp\left(\sigma + \frac{1}{2}\right)2^{\varrho}r^{\varrho}$$
 (7)

for $|u| \leq r$.

(v) Let $D_m = \sum_{i=1}^N c_{im}(w_i - w_i')/\varepsilon$ and let $H(u) = \Pi''(1 - A_m r - D_m u)/(1 - A_m r)$, where the product Π'' is taken over all indices for which $(1 - A_m r - D_m u)$ has a zero for $|u| \leq \varepsilon^{2/\zeta} r$. If $f_0(v) = f(v(w - w')/\varepsilon)$ is the function f restricted to the complex line (v(w - w')), then the numbers D_m are just the reciprocals of the zeros of $f_0(v)$. We shall use this fact to get estimates on the numbers D_m . We assume, without loss of generality, that the subscripts are so arranged that $|D_m| \leq |D_{m'}|$ for $m \geq m'$.

Let $\psi(u) = \phi(u)/H(u)$. Then $\psi(u)$ has no zeros in $|u| \le \varepsilon^{2/\zeta} r$; hence, for $|u| \le \varepsilon^{2/\zeta} r$, it can be written $\psi(u) = \exp \mu(u)$, where $\mu(u)$ is holomorphic in $|u| \le \varepsilon^{2/\zeta} r$. We have

$$\max_{|u|=\varepsilon^{2/\zeta_r}} |\psi(u)| \leq \max_{|u|=r} |\psi(u)| \leq \max_{|u|=r} \frac{1}{|H(u)|} \max_{|u|=r} |\phi(u)|.$$

Since $(1-A_mr-D_mu)$ has a zero for $|u| \leq \varepsilon^{2/\zeta}r$, $|1-A_mr|-|D_m|\varepsilon^{2/\zeta}r \leq 0$ or $1/\varepsilon^{2/\zeta}r \leq |D_m|/|1-A_mr|$, so $|1-D_mu/(1-A_mr)| \geq |D_m|r/|1-A_mr|-1 \geq r/\varepsilon^{2/\zeta}r-1 \geq 1$ for |u|=r by (3). Thus $\max_{|u|=\varepsilon^{2/\zeta}r}|\psi(u)| \leq \max_{|u|=r}|\phi(u)| \leq \exp(\sigma+1)2^{\varrho}r^{\varrho}$ by (7). Since $\ln|\psi(u)|=\operatorname{Re}\mu(u)$ for $|u|\leq \varepsilon^{2/\zeta}r$, we have by Lemma 6,

$$\max_{|u|=\varepsilon r} \{ \ln |\psi(u)| - \ln |\psi(0)| \} \leq A_{\mu-\mu(0)} (\varepsilon^{2/\zeta} r) \frac{2\varepsilon r}{\varepsilon^{2/\zeta} r - \varepsilon r} \leq \frac{4(\sigma+1)2^{\varrho} r^{\varrho} \varepsilon^{1-2/\zeta}}{(1-\varepsilon^{1-2/\zeta})} = T_4 r^{\varrho} \varepsilon^{1-2/\zeta}.$$
(8)

(vi) Since $\phi(u) = H(u)\psi(u)$,

$$\max_{|u|=\varepsilon r} \ln |\phi(u)| \leq \max_{|u|=\varepsilon r} \ln |H(u)| + \max_{|u|=\varepsilon r} \ln |\psi(u)|$$

and since H(0) = 1,

$$\max_{|u|=sr} \ln |\phi(u)| - \ln |\phi(0)| \le \max_{|u|=sr} \ln |\psi(u)| - \ln |\psi(0)| + \max_{|u|=sr} \ln |H(u)|.$$
 (9)

It remains to estimate $\max_{|u|=\varepsilon r} \ln |H(u)| = \max_{|u|=\varepsilon r} \ln |\Pi''(1-A_mr-D_mu)/(1-A_mr)|$. If m is such that $(1-A_mu)$ has a zero in Ω_n , we have by (5)

$$|\Pi^{\prime\prime\prime}(1-A_{\it m}r)| \geq \left(rac{arepsilon^{2/\zeta}}{4e}
ight)^{T_3arepsilon^{1/\zeta}r_n^Q}$$

(where Π''' is taken over all indices in Π'' for which this is true). Hence

$$\ln\left|\frac{1}{\Pi'''(1-A_nr)}\right| \leq T_3 \varepsilon^{1/\xi} r_n^\varrho \ln\left(\frac{4e}{\varepsilon^{2/\xi}}\right) \leq T_3 \varepsilon^{1/\xi} r^\varrho \ln\left(\frac{4e}{\varepsilon^{2/\xi}}\right). \tag{10}$$

Since $(1 - A_m r - D_m u)$ has a zero in $|u| \le \varepsilon^{2/\zeta} r$, say at q_m ,

$$|(1-A_{m}r-D_{m}u)|=|D_{m}||u-q_{m}|\leq 2\varepsilon^{2/\zeta}r|D_{m}|\leq (1+2\varepsilon^{2/\zeta}r|D_{m}|)$$

and

$$\ln |\Pi'''(1-A_m r-D_m u)| \leq \sum''' \ln (1+2\varepsilon^{2/\zeta} r|D_m|)$$
.

For all other m in Π'' , either $1/|A_m| \le r - \varepsilon^{2/\xi} r_n$ or $1/|A_m| \ge r + \varepsilon^{2/\xi} r_n$. In the first case, $|1 - A_m r| \ge |A_m| r - 1 \ge \varepsilon^{2/\xi} r_n |A_m|$ and since

$$\frac{1}{|A_m|} \leq r_n(1+\varepsilon^{1/\zeta}) \leq 2r_n, \quad |1-A_m r| \geq \frac{\varepsilon^{2/\zeta}}{2}.$$

In the second case, if $|A_m| \leq 1/2r_n$

$$|1-A_m r| \geq 1-|A_m|r \geq 1-rac{r}{2r_n} \geq 1-rac{(1+arepsilon^{1/\zeta})}{2} \geq rac{arepsilon^{2/\zeta}}{2}$$

by (3) and if $|A_m| \geq 1/2r_n$,

$$|1-A_{\mathit{m}}r| \geq 1-r|A_{\mathit{m}}| \geq arepsilon^{2/\zeta} r_{\mathit{n}} |A_{\mathit{m}}| \geq rac{arepsilon^{2/\zeta}}{2} \;.$$

In any case, for $|u| \leq \varepsilon r$

$$\left|\ln\left|\frac{(1-A_mr-D_mu)}{(1-A_mr)}\right| \leq \ln\left|1+\frac{\varepsilon|D_m|r}{|1-A_mr|}\right| \leq \ln\left(1+2\varepsilon^{1-2/\zeta}|D_m|r\right)$$

for these m.

By Lemma 4, there are at most $(\sigma + 1)e^{\varrho}2^{\varrho}r^{\varrho}$ values of m for which $1/|A_m| \leq 2r$ and at most $(\sigma + 1)e^{\varrho}2^{\varrho}r^{\varrho}$ values of m for which $1/|D_m| \leq 2r$. If $|A_m| \leq 1/2r$ and $|D_m| \leq 1/2r$,

$$|1-A_mr-D_mu|\geq 1-|A_m|r-|D_m|\varepsilon^{2/\zeta}r>0$$
 for $|u|\leq \varepsilon^{2/\zeta}r$,

so there are at most $2(\sigma+1)e^{\varrho}2^{\varrho}r^{\varrho}=T_5r^{\varrho}$ values of m such that $(1-A_mr-D_mu)$ has a zero for $|u|\leq \varepsilon^{2/\zeta}r$. Hence

$$\max_{|u|=\varepsilon_r} \ln |H(u)| \le T_3 \varepsilon^{1/\zeta} r^{\varrho} \ln \left(\frac{4e}{\varepsilon^{2/\zeta}}\right) + \sum_{m=1}^{\lceil T_5 r^{\varrho} \rceil} \ln \left(1 + 2\varepsilon^{1-2/\zeta} r |D_m|\right). \tag{11}$$

(vii) Let $A(r) = \sum_{m=1}^{\lceil T_0 r^{\varrho} \rceil} \ln (1 + 2\varepsilon^{1-2/\zeta} r |D_m|)$. We now estimate this sum. We choose m_0 so large that $\ln C < m/2$ for $m \ge m_0$. Since $1/|D_m|$, $m = 1, 2, \ldots$ represents the zeros of $f_0(v)$, we have by Lemma 4

$$\ln C + (\sigma + \frac{1}{2}) e^{\varrho} \frac{1}{|D_m|^{\varrho}} \geq m$$

and for $m \geq m_0$,

$$(\sigma+rac{1}{2})e^arrhorac{1}{|D_m|^arrho}\geqrac{m}{2}$$

or

$$[2(\sigma + \frac{1}{2})e^{\varrho}]^{1/\varrho} m^{-1/\varrho} = T_6 m^{-1/\varrho} \ge |D_m|.$$

Then

$$A(r) \leq \sum_{m=1}^{m_0} \ln \left(1 + 2\varepsilon^{1-2/\zeta} |D_m|r \right) + \sum_{m=m_0+1}^{\lceil T_{\varepsilon}r^{\varrho} \rceil} \ln \left(1 + 2\varepsilon^{1-2/\zeta} |D_m|r \right) \leq o(r^{\varrho}) + A_1(r) , \quad (12)$$

where

$$A_1(r) = \int\limits_{m_0}^{T_5 r^Q} \ln{(1 + 2 \varepsilon^{1 - 2/\zeta} x^{-1/Q} T_0 r)} dx \ .$$

Let $y = rx^{-1/\varrho}$. Integrating by parts, we have

$$egin{align} A_1(r) &= r^arrho\int\limits_{rm_o-1/arrho}^{T_o-1/arrho} \ln{(1+2arepsilon^{1-2/\zeta}T_6y)}d(y^{-arrho}) \ &= r^arrho\{\ln{(1+2arepsilon^{1-2/\zeta}T_6y)}\cdot y^{-arrho}]_{rm_o-1/arrho}^{T_o-1/arrho}\} + r^arrho\int\limits_{T_c-1/arrho}^{rm_o-1/arrho} rac{2arepsilon^{1-2/\zeta}T_6y^{-arrho}}{(1+2arepsilon^{1-2/\zeta}T_6y)} \ dy \end{array}$$

and since $\ln (1 + 2\varepsilon^{1-2/\zeta}T_6T_5^{-1/\varrho}) \le 2\varepsilon^{1-2/\zeta}T_6T_5^{-1/\varrho}$, we have

$$A(r) \leq r^{\varrho} 2\varepsilon^{1-2/\zeta} T_{6} T_{5}^{\frac{\varrho-1}{\varrho}} + r^{\varrho} \int_{T_{c}-1/\varrho}^{rm_{o}-1/\varrho} \frac{2\varepsilon^{1-2/\zeta} T_{6} y^{-\varrho}}{(1+2\varepsilon^{1-2/\zeta} T_{6} y)} dy + o(r^{\varrho}).$$
 (13)

For $\varrho < 1$,

$$\int_{T_{6}-1/\varrho}^{rm_{0}-1/\varrho} \frac{2\varepsilon^{1-2/\zeta}T_{6}y^{-\varrho}}{(1+2\varepsilon^{1-2/\zeta}T_{6}y)} dy \leq \int_{0}^{\infty} \frac{2\varepsilon^{1-2/\zeta}T_{6}y^{-\varrho}}{(1+2\varepsilon^{1-2/\zeta}T_{6}y)} dy$$

$$\leq \varepsilon^{\varrho(1-2/\zeta)} (2T_{6})^{\varrho} \int_{0}^{\infty} \frac{w^{-\varrho}}{(1+w)} dw \leq \varepsilon^{\varrho(1-2/\zeta)} (2T_{6})^{\varrho} \pi \operatorname{cosec} \varrho \pi$$
(14)

since $\int_{0}^{\infty} w^{-\varrho}/(1+w)dw = \pi$ cosec $\varrho\pi$ for $\varrho < 1$. For $\varrho = 1$,

$$\int_{T_{\delta}^{-1/\varrho}}^{rm_{0}^{-1/\varrho}} \frac{2\varepsilon^{1-2/\zeta}T_{6}}{y(1+2\varepsilon^{1-2/\zeta}T_{6}y)} dy = 2\varepsilon^{1-2/\zeta}T_{6} \int_{T_{\delta}^{-1/\varrho}}^{rm_{0}^{-1/\varrho}} \left\{ \frac{1}{y} - \frac{2\varepsilon^{1-2/\zeta}T_{6}}{(1+2\varepsilon^{1-2/\zeta}T_{6}y)} \right\} dy$$

$$= 2\varepsilon^{1-2/\zeta}T_{6} \left\{ \ln\left(\frac{y}{1+2\varepsilon^{1-2/\zeta}T_{6}y}\right) \right\}_{T_{\delta}^{-1/\varrho}}^{rm_{0}^{-1/\varrho}}$$

$$= 2\varepsilon^{1-2/\zeta}T_{6} \left\{ \ln\left(\frac{y}{1+2\varepsilon^{1-2/\zeta}T_{6}y}\right) - \ln\left(\frac{T_{\delta}^{-1/\varrho}}{1+2\varepsilon^{1-2/\zeta}T_{6}T_{\delta}^{-1/\varrho}}\right) \right\}$$

$$\leq 2\varepsilon^{1-2/\zeta}T_{6} \left\{ \ln^{+}\left(\frac{1}{3\varepsilon^{1-2/\zeta}T_{6}}\right) + \frac{1}{\varrho} \ln T_{\delta} + \ln\left(1+2\varepsilon^{1-2/\zeta}T_{6}T_{\delta}^{-1/\varrho}\right) \right\}$$

for r sufficiently large.

For $\rho > 1$,

$$\int_{T_{5}-1/\varrho}^{rm_{0}-1/\varrho} \frac{2\varepsilon^{1-2/\zeta}T_{6}}{(1+2\varepsilon^{1-2/\zeta}T_{6}y)y^{\varrho}} dy \leq 2\varepsilon^{1-2/\zeta}T_{6} \int_{T_{5}-1/\varrho}^{rm_{0}-1/\varrho} \frac{dy}{y^{\varrho}} \leq 2\varepsilon^{1-2/\zeta}T_{6} \left\{ \frac{y^{-\varrho+1}}{1-\varrho} \right\}_{T_{5}-1/\varrho}^{rm_{0}-1/\varrho} \\
\leq \frac{2\varepsilon^{1-2/\zeta}}{\varrho-1} T_{6} \left\{ T_{5}^{\frac{\varrho-1}{\varrho}} - r^{1-\varrho}m_{0}^{\frac{\varrho-1}{\varrho}} \right\} \leq \frac{2\varepsilon^{1-2/\zeta}}{\varrho-1} T_{6} T_{5}^{\frac{1-\varrho}{\varrho}}.$$
(14")

By collecting the estimates (4), (6), (8), (9), (11), (12), (13), and (14), (14'), or (14") (as the case may be), we have

$$h_r(w) - h_r(w') \leq k(\varepsilon)$$

where $k(\varepsilon)$ involves terms in $\varepsilon^{1/\zeta}$, $\varepsilon^{1-2/\zeta}$ and for $\varrho < 1$, $\varepsilon^{\varrho(1-2/\zeta)}$ (times logarithmic terms). Thus, for $\varrho \ge 1$, we choose $\zeta = 3$, and for $\varrho < 1$, we choose $\zeta = 2 + 1/\varrho$. Then

$$h_{\it r}(w) - h_{\it r}(w') \leq T arepsilon^eta \ln rac{1}{arepsilon}$$

where

$$eta = \min\!\left(\!rac{1}{3}\,,\,rac{arrho}{2arrho+1}\!
ight).$$

By reversing the roles of w and w', we get

$$|h_{\it r}(w)-h_{\it r}(w')| \leq T \|w-w'\|^{eta-\gamma} \;\; {
m for \; any} \;\; \gamma>0 \;.$$

Q.E.D.

COROLLARY. Under the same hypotheses as in the theorem, we have

$$h_c^*(z) = h_c(z)$$

and

$$|h_c(w) - h_c(w')| \le T||w - w'||^{\alpha} \text{ for } ||w|| = ||w'|| = 1.$$

Proof. $h_c(z) = \sup_{\theta} h(ze^{i\theta})$ [3, p. 288].

One is interested to ask what kind of a function can have a non-continuous indicator. It is clear, at any rate, that such a function cannot be constructed by taking the product of functions depending on one variable.

References

- GRUMAN, L., Entire functions of several variables and their asymptotic growth. Ark. Mat. 9 (1971), 141-163.
- Lelong, P., Fonctions entières de type exponentiel dans Cⁿ. Ann. Inst. Fourier (Grenoble) 16, 2 (1966), 269-318.
- 3. ->- Non-continuous indicators for entire functions of $n \ge 2$ variables and finite order. Proc. Symp. Pure Math. 11 (1968), 285-297.
- LEVIN, B. JA., Distribution of zeros of entire functions. Translations of Mathematical Monographs, Vol. 5, Amer. Math. Soc., Providence, R. I. (1964).

Received April 5, 1971

Lawrence Gruman 1, rue Lebouis F-75 Paris 14° France