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Let f(z) be an entire function (of » variables) of finite order ¢ and normal type o.
We then define A,(z) = li_mi%o r=¢In|f(rz)], 7> 0 (resp. he(z) = lim,;_, ., [#|=In]|f(uz)],
u € C) and the smallest upper-semicontinuous majorant h*(z) = lim,., A,(2') (resp.
h¥*(z) = lim,_,, h(2)). This is plurisubharmonic and satisfies the condition h*(tz) =
h*(z), t>0, (resp. h¥(uz) = |u|®h¥(z), w € C); it is called the radial (resp.
circular) indicator function of f.

For n =1, the function #%,(2) is continuous, and so A}(2) = h(z) (see [4]
or Lemma 1 below), but this is no longer necessarily the case for either Af(z) or
R¥(z) for n > 2, [3]. In [1], we undertook a study of the relationship between the
distribution of the zeros of f(z) and the local continuity of the function A}(z).
We investigate here a condition on the zeros which implies the global continuity
of h¥(z).

If the function f(2) as a function of several variables depends only upon a
single variable, say z,, and f(0) % 0, then Af(z) = k,(2) and the two are con-
tinuous. The zeros are then presented by hyperplanes parallel to the hyperplane
z = 0. We generalize this result in the following way:

THEOREM. Let f(z) be an entire function of order o and normal type o such that
f(0) #£ 0 and the zeros of f(2) are hyperplanes. Then h¥(z) = h(2) and there are
constants T (depending only on o and g¢) and « (depending only on o) such
that |h(w) — h ()] < Tllw — w'* for |w| =|w| =1 In particular, hF*(z) is
conlinuous.

Remark 1. We will assume, without loss of generality, that we use the Euclidean
norm. The value of 7' depends upon the choice of the norm, but « is independent
of the norm chosen.
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Remark 2. If f(z) is a function of only one of the variables, then elementary
considerations show that the exponent we get is min (1, g). The « we construct
can be chosen to be « > min (1/3, ¢/(2¢ + 1)) — y for any y > 0.

Remark 3. The function A¥(z) does not depend on what point in €* we choose
as origin [2], so the assumption that f(0) £ 0 does not effect the conclusion that
h¥(z) is continuous ‘and satisfies the Lipschitz condition above; but.it does of course
effect the fact that 5(2) = bF(z).

The proof will be established by classical methods pertaining to functions of a
single complex variable. We shall first need the following results:

LemMMA 1. Let f(u) be an entire function of a single complex variable and h.(u)
its indicator function. Theén there exists a constant K, (depending on o and o)
such that

he) — he)| < Kyle? — 6]

Proof. Let K = max |(g/2) k() sec? (0g)/2] with |6, — 6;] < g <nfo and
0, << 6 << 0,. Then [4, p. 54]

R(e®) — h(e®)  h(e") — h(e™)
sin g(6 — 6,) — sin g(6, — 6))

+ K(0, — 0).

A similar inequality exists for 6 and 6, Choosing |0, — 0,] < =/40, we get the
desired result. Q.E.D.

Lemma 2. Let f(u) be holomorphic in the circle |u| << 2eR, u complex, with
f0) =1, and let n be an arbitrary positive number not exceeding 3e/2. Then inside
the circle |u| < R but outside a family of excluded circles the sum of whose radii is
not greater than 4nR, posing M(R) = max _g |f(u)l, we have

In [f(u)] > ~<2 + In gg) In M(2eR) .

Proof. The proof is to be found in Levin [4, p. 21].

LemMA 3. Let the function f(u) be of order o and type o. Then there exists
Oy (depending only on ¢ and o) such that for each choice of the positive numbers
6 and o (with 6 <<d, and 0 <<w << 1), there corresponds on each fixed ray
arguw = 0 a sequence of intervals r, <r < (1 4 O)ra (ra—> ©) on each of which, for
suttable constants Ty and T, (depending only on o and o) the inequality
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In | f(re®)| ) . 2e )
> h(e®y — T 0 — Ty6|2 + In -~ (1 + 2e8)2| = h(e”®) — ¢(4, ®) (1)

s satisfied except perhaps on a set of measure not exceeding wOr,.

Proof. Without loss of generality, we may assume 0 = 0. There is a sequence
of 7.— oo such that In |f(r.)| > [A(1) — 8]r8. Assume 0 << 1/2e. There exists
an R; such that for » > R,, In |f(re®)| < [h(e*) 4 o} [4, p. T1].

By Lemma 1, for |¢| <sin~1(2e8) < K8, In |f(reé?)] < [A(1) + (K K" + 1)6]re.
Let wa(u) = flre + w)/f(rn). Then .(0) =1 and for |u| < 2edr,

In |ynu(u)| < (KK' + 2)6(rn + ul).
Applying Lemma 2, we see that for |u} < ér,,
In ya(w)] > — (KoK’ + 2)8(2 + In (2¢/w)) (rn + 2e87,)°

outside exceptional circles the sum of whose radii is less than wér./2. Returning
to the function f(u), wee see that asymptotically

In [f(r)] > [A(1) — & — (KK’ + 2)8(2 + In (2¢/w))(1 -+ 2¢6)Irs (2)

is satisfied for (1 — 0)rn <7 < (1 -+ O)rn except perhaps for intervals the sum
of whose lengths is less than wdr.. Since f(u) is of type o, for & sufficiently
small (depending only on o),

1
0{1— m} < (g + L)od

L

and hence
In [f(r)| ,
T > [h(1) — 00(e + 1) — 0 — (KK’ + 2)8(2 + In (2e/e)) (1 + 2e8)]
holds wherever (2) holds. Q.E.D.

Luvma 4. If f(u) is holomorphic in the circle |u] <er with f(0) =1 and if
n(r) ©s the number of zeros of f(u) of modulus less than r, then n(r) < M(er).

Proof. This is an easy consequence of Jensen’s formula (cf. [4, p. 15]).
Lemma 5 (Cartan estimate). Given any number H > 0 and complex numbers
ay, . .., Gy, there is a system of circles in the complex plane the sum of whose radii is

2H such that for all w lying outside these circles, Nolu—a,] > (Hfe)™.

Proof. See {4, p. 19].
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LeMmA 6 (Carathéodory inequality for the circle). If f(u) is any function holo-
morphic on the circle |u| <R and

A(r) = max Re f(u), then M(r) < [A(R) — Re f(0)] ;—i— +If0)] (r<R).

7

|ul=r
Proof. See [4, p. 17].

Proof of theorem. The proof, which is quite long, will be divided into several parts.
(i) Let ¢ > 2 be some fixed number to be specified later and let & = [w — w/'||
be so small that

1

&¥¢ < min (E , 60) (3)

where Lemma, 3 is satisfied for 6 < ;. Then by Lemma 3, by choosing 6 = o = &',
we can find a sequence 7, — oo such that h.(w) — g(¢'/%, &%) < r~¢ln [f(rw)| for
ra <7 < (1 4+ &%), except perhaps on a set of measure at most &,. Thus, for

7. sufficiently large, we have for r, <r < (1 + /),

- In |ferw)]  In [f(rw')]

— e re

he(w) — Ru(w') — g(e', &) — & (4)
except perhaps for a set of measure at most &¥r,.
(ii) Since f(z) is of type o, there is a constant ¢ > 1 such that

If(2)} < Cexp (o + DIk

For &) = 1, we define the functions n(r) to be the number of zeros of f(ué)
for |u| <7. By Lemma 4, n.(r) <In M(er) <InC + (o 4 $)er® < (o + 1)er?
for r sufficiently large. In what follows, we shall always assume that r, is so
large that this inequality holds for r > rn.

In the complex line (uw'), we construct concentric circles C,,, centered at
the origin, of radial increment 6¢*‘r,, with the radius of Cg, being r. and all
the radii less than or equal to (1 + &/¥)r,. This defines a set of annuli, and at least
one of the annuli will not contain ‘“too many” zeros of the function f(uw’). The

g,
number of annuli is {W (where [] means ‘‘greatest integer in), and since
1 1 1 .
by (3), R > 2, we have el > 9.0 - Since there are at most

(0 4 1)er(l - Y9)%r¢ zeros inside the circle (1 + £€)r,, at least one of the annuli
has no more than (o + 1)e?(1 + £¥9)2r2126"¢ < 12(0 -+ 1)(2er,)¢/e* = Tye'/re
zeros of the function f(uw’). We shall select one such annulus and designate it £2,.

(iii) Let the zeros of f(z) be the hyperplanes (1 — Zfi 1 Gimzi) and let 4, =
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N ocmw;. Let T’(1 — 4,u) be the product over those indices m for which
fluw’) has a zero in £, (at most T,e"“r¢). By Lemma 5, there is a set of circles
the sum of whose radii is &¥‘r, such that for all n lying outside these circles,
N — 1/A4,] > (¥°rs/2e)* (where A is the number of zeros). Since 1/|4d.] <
ra(l 4 &%) < 2r,, for u lying outside these circles

1! [ 215\ £25\ Tusllr]
— > == . 5
v A,,.l _(46) “<4e> (5)

Thus, we can find an r, 7, <7 < 7a(l 4 /), for which 7w’ € 2, such that (4)
and (5) hold simultaneously and such that the circle @. centered at r (in the
complex line (uw’)) of radius &*ér, is contained in £..

Let us now consider such an 7.

(iv) We have f(rw) = flrw' + (w — w')r). Let ¢(u) = flrw' + ulw — w')/e).
Then ¢(er) = frw) and ¢(0) = f(rw'), and ¢(u) is a holomorphic function of the
single complex variable u, so In |¢(u)| is subharmonic; thus

(1 — Apw)] = I1'[An|TT’

In |frw)| — In |frw')| = In |$(er)] — In |$(0)] < max {In |$(u)] — In [$(0)[}. (6)

lu=er
We also have

(w — w)

1
p(u)] = l¢(7'w' + u )5 < CexP(G + E) 209¢ (7)

€
for |u| <r.

(v) Let D= >, cim(w; —w;)/e andlet H{u) = I"(1 — Awr — D) /(1 — Amr),
where the product I1” is taken over all indices for which (1 — 4.7 — Dnu) has
a zero for |u| < &¥br. If fy(v) = f(o(w — w')/e) is the function f restricted to the
complex line (v(w — w')), then the numbers D, are just the reciprocals of the
zeros of fy(v). We shall use this fact to get estimates on the numbers D,. We
assume, without loss of generality, that the subscripts are so arranged that
\D,.| < ID,.| for m >m'.

Let w(u) = ¢(u)/H(u). Then w(w) has no zeros in |u| < &¥r; hence, for
Ju] < &%, it can be written w(u) = exp u(u), where u(u) is holomorphic in
lu| < &¥'r. We have

max |p(u)} < max |p(u)] < max

[u[=£2/;f jul=r luj=r

max [$(u)] .

1u|=r

1
|H (u)|

Since (1 — Anr — D,u) has a zero for |u| <&, |1 — Aur| — |Duler <0
or 1/ < |Du)/|l —Aur], s0 |1 — Dau/(l — Anr)| > |Dulr/|l — 4] — 1 >
rfefr —1>1 for |u|=r by (3). Thus max, _.uzlp®)] < max, ., |d@) <
exp (o + 1)2%¢ by (7). Since In |p(u)] = Re u(w) for |u| < &*r, we have by
Lemma 6,
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2er
max {In fp(u)] — D ()} < A,uo(e*0) g, <
u,=é&r 8
4(0'+ 1)2@7,@81—2/3 ( )

1-2/¢
= (1 — =25 )

= Ty

(vi) Since ¢(u) = H(u)p(u),
max In [$p(u)| < maxIn [H(u)| + maxIn |p(u)]

Juj=sr lu]—er ful=er
and since H(0) = 1,
max In [¢(u)| — In |$(0)| < max In [p(u)] — In [(0)| + maxIn [H@)[. (9

lu|=er luj=zr lu|=sr
It remains to estimate max, _,. In|H(u)| = max, _,, n|[II"(1—Anr — Duw) [(1— Awr)|.
If m is such that (1 — 4.u) has a zero in 2., we have by (5)

82/5)1'351/55:

(L — )| = (4—6

(where II'" is taken over all indices in II” for which this is true). Hence

4e

4e
In < Tye¥r¢ In (;%) < Tyere In <ZZE) . (10)

v
(1 — Aur)
Since (1 — Anr — Dnu) has a zero in |u| < &¥r, say at ¢m,
(1 — Awr — Dpt)| = | D]t — gm| < 267 D| < (1 + 2677 | Di])
and
In [II"'(1 — Awr — Dau)| < > In (1 4 26%°r| D)) .

For all other m in II”, either 1/|An| <7 — &¥r, or 1/|Am| >7r + & ra
In the first case, |1 — Anr| > |Anjr — 1 > ¥r,]4n| and since
g2t

? .

v < ra(l + ) < 27, |1 — Amr| >
In the second case, if |A4n| < 1/2r,
r
]1—~A,,J[21—|A,,,|r21—-2—r—21—

by (3) and if {4 = 1/2r,,

1 — Apr| > 1 — r|An] > 04 >
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In any case, for |u| <er

(1 — Apr — Dyu)|
In (1 — Aur) lglnil—l—
for these m.
By Lemma 4, there are at most (o + 1)e?2%r¢ values of m for which 1/[4.| < 2r
and at most (o + 1)e?2%? values of m for which 1/|Dn| < 2r. If |4.] <1/2r
and |Dn| < 1/2r,

e|Dm|r

11— Aur|

<In (1 + 26 %Dyl

N — Awr — Dyu| > 1 — |Aulr — |Dnler > 0 for |u] < &¥r,

so there are at most 2(c + 1)e?2%¢ = Tyr? values of m such that (1 — Aur — Dmut)
has a zero for |u] < &¥r. Hence

1 [7379]
max In |H(u)| < Tae'ér¢ In ( 2/5) + Z In (1 + 2&'%7|Dy)) (11)
lu| =er

(vii) Let A(r) = Z,[nT;'f] In (1 + 2¢'7%%|D,,|). We now estimate this sum. We
choose m, so large that In C << m(2 for m >m, Since 1/|D.|, m=1,2,...
represents the zeros of fy(v), we have by Lemma 4

1
InC 4 (641 e [D . >m

m
1y 0 —
and for m > my, (o + e | D2 = 9
or [2(6 + et me — Tgm=e > D] .
Then

[T}r@]

A(r) < iln (14 2672\ Dulr) + 2> In (1 + 287 |Dafr) <o(r) + Asfr),  (12)

m=m,+1

where
TrQ

= fln (1 4 2&' 2y~ g)dz .
Let y = ra~'e. Integrating by parts, we have
T,— e
A(r) = 1r¢ f In (1 + 26" 2T g)d(y—2)

rmo"llQ
—1fe
rmg

1 2I§T6y e
2 ~ Ts T o =2t
= r{In (1 - 26! 2T ) "y —llg} + 7 f 1+ 281_2/5Tsy) Ty

T,— e
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and since In (1 + 2" T T Vey < 22T T le, we have

rm,—1le
—e:{ L]
Alry < 1028 T e - pe f

T,~lle

281‘215'1’63/’9

o AN— | re). 13
gy W e

For o < 1,

mo_I/Q

1-2/¢ —e p 1-2/¢ —e
f 26! Ty dy < f 26" ey
) =)

. EF 261~ Ty + 2617 Tgy) w
T,~ e . (14)
-
< 02T )2 f C g < e HQT en cosec on
(14 w)

since f w¢/(1 + w)dw = 7z cosec g for p < 1.
0
For o =1,

rmo—l/Q rmo—I/Q

212 o 1 261 2T
=2z dy = 2¢ T — 1-2/C dy
y(1 + 27" Tey) y (14 2e7Tgy)

T,~lle T,— e

S
= 2¢'7¥ T In IM r=Vle (14')
rmg /e ) < Ty e )}
— 1-2/¢, -
212, {1n<1 F 2 Ty o)~ M\T g e

1 1
= 2 {h“ (3"—“7;?) +o T 281-2/¢T6T;“@)}

for r sufficiently large.
For o> 1,

'mo—l/'g rmn"l/g

1-2/¢, - rm.— s
f e 1 /T6 dy < 2&'7 f d_y < 2172 {y QH} “ Q}
oD T2 Ty T ‘ e ¥ U — eln-ne

26172 e=1 ool gglmAU  lze (14"
Tl — r'~omye } < o 1 LTt

|

<
=91

By collecting the estimates (4), (6), (8), (9), (11), (12), (13), and (14), (14"), or
(14") (as the case may be), we have

ho(w) — h(w') < k(e) ,
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where k(¢) involves terms in &%, 7% and for ¢ < 1, £0~%9 (times logarithmic
terms). Thus, for ¢ > 1, we choose { = 3, and for ¢ << 1, we choose { = 2 + 1/o.
Then

1
hiw) — h(w') < Tef In "

(1 e
where g = mm(g, %0 + 1) .

By reversing the roles of w and w', we get

hrw) — Bo(w’)| < Tlw — w'|#~7 for any y > 0.
Q.E.D.

CororrarY. Under the same hypotheses as in the theorem, we have
| BEE) = hle)
and
he(w) — he(w')] < Thw — w'|* for |wl = |w']i = 1.

Proof. h.(z) = sup, h(ze®) [3, p. 288].

One is interested to ask what kind of a function can have a non-continuous
indicator. It is clear, at any rate, that such a function cannot be constructed by
taking the product of functions depending on one variable.
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