Some remarks on Stolt’s Theorems for Pellian Equations
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Abstraet

One of the theorems of Bengt Stolt’s article »On the Diophantine Equation «?* — Duv? = 4N»
is not quite correct in its entirety. A counter-example will be given to show this. A modification
of the theorem which he was trying to prove will be given for certain special cases.

1. Introduetion

Here is a summary of some of the definitions and theorems given in Stolt [1].
All integer solutions (x,y) of

x> — Dy = 4 (1)
for D> 0 and not a square are given by

r + \/1—)?/ (951 + \/Byl)i

2

where ¢ is any integer and (, ;) is the smallest positive solution of (1).
Let (u*, v*) be any integer solution of

u? — Di? — 4N (2)

for D> 0 and not a square.
Then a class of solutions of (2) consists of all solutions (u, ») such that

w - 2\/_5@1 . (u* + xfm*) <x1 + \/Byl)i.

2 2

All solutions of (2) can be divided into a finite number of classes of solutions.
Two solutions which belong to the same class of solutions are called associated.
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A simple criteria to see if two solutions (u,v) and (u',v') are associated is if
(uv’ — w'v)/2N is an integer.
In every class of solutions of (2) it is well known that there is at least one solution

(u, v) such that
Y1 WN_!
O S v S B ————
Vz, + 2N/|N|
and 0 < |u| <V/(z, + 2N/IN))|N|.
In [1] Stolt claims to prove that if N is square-free then the number of classes

of solutions is a power of two. However «? — 79v* = 4(3)(5)(7)(13) has six classes
of solutions. The next section will give details of this.

(3)

2. Details of counter-example

THEOREM 1. The equation u? — T2 = 4(1365) = 4(3)(5)(7)(13) has six classes
of solutions.

Proof. In every class of solutions of u? — 79% = 4(1365) there will be at least
one solution (%, v) such that

0 <v < 18413651160 I 2 = 21/1365/2 = V/2730 < 53.

Table
v u? v u? v u?
1 5 539 19 33 979 37 113 611
2 5776 = (76)% 20 37 060 38 119 536
3 6171 21 40 299 39 125 619
4 6 724 — (82)% 22 43 696 40 131 860
5 7435 23 47 251 41 138 259
6 8 304 24 50 964 42 144 816
7 9 331 25 54 835 43 151 531
8 10 516 26 58 864 44 158 404 = (398)*
9 11 859 27 63 051 45 165 435
10 13 360 28 67 396 46 172 624
11 15019 29 71 899 47 179 971
12 16 836 30 76 560 48 187 476
13 18 811 31 81 379 49 195 139
14 20 944 32 86 356 50 202 960
15 23 235 33 91 491 51 210 939
16 25 684 34 _ 96 784 52 219 076
17 28 291 35 102 235

18 31 056 36 107 844
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Inspection of the table of squares in Barlow’s Tables and the above table show
that the only solutions of «w?* — 79? = 4(1365) such that 0 < v << 53 are (u, v) =
(76,2), (— 76,2), (82,4), (— 82,4), (398,44), and (— 398,44). As none of these solutions
are associated with each other, then the number of classes of solutions is six.

3. Number of classes of solutions in special cases

Details on the theory of ideals and algebraic integers in the quadratic case are
given in Stolt [1] and Hancock [2].

TurorEM 2. Let

w— D= 4+ 4T ps (4)
i=1

or w— Do = — 4| pi (5)
i=1

where D is square-free and the p’s are distinct primes. At least one of (4) or (5) is
solvable in integers.

Let C,, Cy be the number of classes of solutions of (4) and (5) respectively.

In the field K(\/ D) the ideal (p;) equals qgq, where g, and gq. are prime
conjugate ideals for all i. Let q,+¢q, for i=1,...,1 and ¢ =gq. for
t=141,...,n Choose 1, =gq; or q;.

Let S be the number of ways the set (ry, 1y, ..., 1) can be chosen so that T [i_y7;
is a principal ideal.
Then S =0, =0C, if 2 — Dy = — 4 1is solvable,

8§ = O, + C, otherwsise.

Proof. Suppose («) is a principal ideal such that (N) = (x)(»’) where (x') is
the conjugate of (x). Then it is easy to see that any class of solutions of (4) will
correspond to one and only one principal ideal (x). Also two different classes of
solutions of (4) will correspond to two different principal ideals (x). The same is
true for (5). ‘

As (N) = (&)(»') = (x&’) then s’ = N or axx' = — N where o and «' are
algebraic integers which are generators of (x) and (x’) respectively. This shows
that every (x) corresponds to a class of solutions of (4) or of (5) or of both. But it
is easily shown that (x) corresponds to a class of solutions of both (4) and (5) if

and only if 2? — Dy? = — 4 is solvable.
Therefore the theorem is true since (x) equals | [7.,r; uniquely for exactly
one set (ry,...,r,) and hence for exactly one set (r,..., ).

Comment. The above theorem shows how the evaluation of the number of classes
of solutions becomes a combinatorial problem.
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A case where both equations (4) and (5) are solvable while a2 — Dy?2 = — 4 is
not, is given by w? — 34v® = - 4(3)(5) and «® — 34v? = — 4(3)(5). Now the
only values of (u,v) satisfying (8) for «? — 34¢* = + 4(3)(5) and »® — 340% =
— 4(3)(5) are (14,2), (— 14,2) and (22,4), (— 22,4) respectively. As neither pair
of solutions is associated in this case, C; =2 and C, = 2. This is somewhat
different from that indicated in Stolt [1], page 119—120.

4. Evaluation of S for the class-number of K(V'D) < 6

It is well known that all ideals in K (\/ l_)) can be divided into a finite number
of equivalence classes. The set of these equivalence classes is an abelian group under
multiplication. If two ideals ¢, and ¢, are in the same equivalence class then

91 ~ -

THEOREM 3. Suppose S s defined as in Theorem 2 and the class-number h of

K(\/ D) < 6 where either (4) or (5) is solvable. Then the formulae given in sections
A to E Dbelow are true.

Comment. Proofs will be given only for the cases h <C 3.

A. All ideals ¢; ~g¢;. (This includes = 1,2 and h = 4 (Non-cyclic group).)
Then § = 2.
Proof. All combinations (ry, 7y, ..., 7,) make [ [;_,7; a principal ideal.
B. b= 3.
Let ¢, dvq; for i=1,...,1 and ¢, ~gq; for i=104-1,...,10
Then & = 27524 4- 2(— 1)4)/3.

Proof. Let S; be the number of combinations (ry, 7y, . . ., 7,) such that TTe,
is a principal ideal.
Now [ [ii7 ~ g™ ~g** (where % is the number of 7; equivalent to

1)
Therefore “ .7, is a principal ideal if and only if 2/, — k = 0 mod 3.

Let b be the smallest non-negative value of k.

Therefore
_ [k h hL
(i) b))
1 = i\t I, — 2b)j
3 z (2 cos %7}) cos (*————( = 3 Un)
by Riordan [3].

Since 1, — 2b = 2(2], — b) = 0 mod 3,

(6)
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Iy =10, — 2b mod 2, cos #/3 = 1/2, and cos 27/3 = — 1/2

then it can be shown by substitution in (6) that §, = (2" - 2(— 1)4)/3.
To complete the proof of the theorem it only remains to be seen that the number
of combinations (r,_,, ..., ) such that [[i_, ;7 isa principal idealis 2'~",

C. h=4 (Cyclic Group).

Suppose ¢; ~~q; for i=1,...1 and ¢, ~q; for i=1+1,...,1L

Then & — 21 if 1, >0, — 9 if 1, — 0.
D. »=5.

Suppose ¢~} ¢/ and ¢ ~gq, or ¢f for i=1,..,0L, ¢ ~qi or ¢ for
t=4L+L .., L+, g~gq for i=10+1L4+1,...,1

Then

8 == 25712 R[5 - 20k L 9(— 1)11%(2L11Ll2 — Ly Ly — Ly 1Ly )],

where L = —1, Li=2, Ly=1L,,+L, ., k=1,2,...
E h=6.

q; r-}vq:- and ¢} +q: for ¢ =1,...,1,

g g and ¢ ~qi for i=1+1,.. .0+,

g, ~q for i =1,+1,+1,...,1L

Then S = 3712 h h(2hFh + 2(— 1)ith),
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