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Abstract 

One of the  theorems of Bengt  Stol t ' s  article ))On the  Diophant ine  Equa t ion  u 2 - -  D v  2 = 4 N ~ )  

is no t  quite correct in its ent irety.  A counter-example will be given to show this. A modif ica t ion 
of the  theorem which he was t ry ing  to prove will be given for certain special cases. 

1. Introduction 

Here  is a s u m m a r y  of some of  the defini t ions and theorems given in Stolt  [1]. 
All integer solutions (x, y) of 

x 2 - -  D y  ~ = 4 (1 )  

for D ~  0 and  no t  a square are given by  

x + ~ / D y  xl + 1 

2 = ~  

where i is any  integer  and (xl, Yl) is the  smallest posit ive solution of (1). 
Le t  (u*, v*) be any  integer  solution of  

u s - -  D v  2 = 4 N  (2) 

for D ~  0 and  not  a square. 
Then  a c l a s s  o f  s o l u t i o n s  of  (2) consists of all solutions (u, v) such t h a t  

All solutions of (2) can be divided into a f ini te n u m b er  of classes of solutions. 
Two solutions which belong to the same class of solutions are called associated. 
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A simple  cri teria to  see if two solutions (u, v) and  (u', v') are associa ted is i f  

(uv' -- u'v)/2N is an  integer.  
I n  eve ry  class of  solutions of  (2) it is well known t h a t  there  is a t  least  one solution 

(u, v) such t h a t  

yl I V ~  
o < v < Vxl + 2~V//N/ (3) 

and 0 ~ ]u] ~ ~ ( x l  + 2N/IN])IN[. 
I n  [1] Stolt  claims to p rove  t h a t  i f  N is square-free  then  the  n u m b e r  of  classes 

of  solutions is a power of two. H o w e v e r  u 2 - -  79v 2 = 4(3)(5)(7)(13) has  six classes 

of  solutions. The  nex t  section will give detai ls  of  this. 

2. Details of counter-example 

T~]~OR:E~ 1. The  equation u 2 - -  7 9 v ~ z  4 ( 1 3 6 5 )  = 4 ( 3 ) ( 5 ) ( 7 ) ( 1 3 )  has s ix  classes 

of  solutions. 

Proof. I n  eve ry  class of  solutions of  u 2 - -  79v 2 z 4(1365) there  will be a t  least  

one solut ion (u, v) such t h a t  

o < v < l s  ~ / V ~  + 2 = 2 ~ / ~ / 2  = V 2 ~ o  < 53. 

Table 

V ~2 V ~2 V ~2 

1 5 539 19 33 979 37 
2 5 7 7 6 =  (76) 3 20 37 060 38 

3 6 171 21 40 299 39 
4 6 7 2 4 ~  (82) 3 22 43 696 40 

5 7 435 23 47 251 41 
6 8 304 24 50 964 42 
7 9 331 25 54 835 43 

8 10 516 26 58 864 44 
9 11 859 27 63 051 45 

10 13 360 28 67 396 46 
11 15 019 29 71 899 47 

12 16 836 30 76 560 48 
13 18 811 31 81 379 49 

14 20 944 32 86 356 50 
15 23 235 33 91 491 51 

16 25 684 34 96 784 52 
17 28 291 35 102 235 

18 31 056 36 107 844 

113 611 
119 536 

125 619 
131 860 
138 259 

144 816 
151 531 
158 4 0 4 ~  (398) 2 

165 435 
172 624 

179 971 
]87 476 

195 139 

202 960 
210 939 

219 076 



S O M E  I~EIVIAt~KS O N  STOLT~S TI~IEOI:tElVIS ~FOI~, :PELLIAIg  E Q U A T I O N S  169 

Inspection of the table of squares in Barlow's Tables and the above table show 
tha t  the only solutions of u 2 --  79v 2 = 4(1365) such t h a t  0 ~ v < 53 are (u, v) = 
(76,2), (-- 76,2), (82,4), (-- 82,4), (398,44), and (-- 398,44). As none of these solutions 
are associated with  each other, then  the number  of classes of  solutions is six. 

3. Number of classes of solutions in special cases 

Details on the theory  of ideals and algebraic integers in the quadrat ic  case are 
given in Stolt  [1] and  t Ianeock  [2]. 

THEOREM 2. Let  
n 

u 2 - -  Dv ~ ~- -~ 4 ] ' - [  p~ (4) 
i = l  

n 

or u 2 - -  D v  2 = - -  4 ] - [  p~ (5) 
i = 1  

where D is square-free and the pi ' s  are dis t inct  pr imes .  A t  least one of  (4) or (5) is 
solvable in  integers. 

Le t  C1, C: be the number  of  classes of  solutions of  (4) and (5) respectively.  

I n  the f i e ld  K ( V D )  the ideal (p,) equals q,q~ where q, and  q~ are p r i m e  
! t 

conjugate ideals for  all i. Le t  ql @ ql for  i ~ 1 . . . .  ,1 and q~ = qi for  
i l @  1 , . . . , n .  Choose r i = q ~  or q~. 

Let  S be the number  of  ways  the set (rl, r2, �9 �9 rl) can be chosen so that TTi=I ri 
is a p r inc ipa l  ideal. 

T h e n  S = C 1 = C 2 i f  x 2 -  D y  2 =  - -  4 is  solvable, 
S = CI @ C 2 otherwise. 

Proof .  Suppose (c~) is a prineipal ideal such tha t  (N) = (c~)(c~') where (~') is 
the conjugate of (c~). Then it is easy to see t ha t  any  class of solutions of (4) will 
correspond to one and  only one principal ideal (~). Also two different classes of 
solutions of (4) will correspond to two different principal ideals (~). The same is 
t rue for (5). 

As ( N ) =  (~)(c~')= (~c~') then  c ~ ' =  2V or ~ ' = -  N where ~ and  ~' are 
algebraic integers which are generators of (a) and (~') respectively. This shows 
tha t  every (a) corresponds to a class of solutions of (4) or of (5) or of both. Bu t  it  
is easily shown t h a t  (a) corresponds to a class of solutions of both  (4) and (5) if  
and only if x 2 -  D y 2 ~ -  - - 4  is solvable. 

Therefore the theorem is t rue since (a) equals ]-~=1 ri uniquely  for exact ly  
one set (rl, . . . ,  %) and hence for exact ly  one set (r 1 . . . . .  rz). 

Comment .  The above theorem shows how the evaluat ion of the number  of classes 
of solutions becomes a combinatorial  problem. 
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A ease where bo th  equat ions (4) and (5) are solvable while x 2 - -  D y  e = --  4 is 
not,  is given b y  u e - 3 4 v 2 - - k  4(3)(5) and u 2 -  34v 2 =  - 4(3)(5). Now the  
only  values of (u, v) satisfying (3) for u e -  3 4 v 2 =  -k 4(3)(5) and u e -  3 4 v 2 =  
--  4(3)(5) are (14,2), ( - -  14,2) and  (22,4), ( - -  22,4) respect ively.  As nei ther  pair  
of  solutions is associated in this ease, C 1 = 2 and C~ = 2. This is somewhat  
different  f rom tha t  indicated in Stol t  [1], page 119--120. 

4. Evaluation of S for the class-number of K(~/D) < 6 

I t  is well known tha t  all ideals in K(~ /D)  can be divided into a f ini te  n u m b er  
of equivalence classes. The set of  these equivalence classes is an abelian group under  
mult ipl icat ion.  I f  two ideals ql and q2 are in the same equivalence class then  
ql ~ q2. 

TREO~E~  3. Suppose  S is def ined as in  Theorem 2 and  the class-number h o f  

K ( V / D )  ~_ 6 where either (4) or (5) is solvable. T h e n  the fo rmulae  given in  sections 

A to E below are true. 

Comment. Proofs will be given only for the cases h ~ 3. 

r 

A. All ideals qi ~q~. (This includes h ~- I, 2 and h = 4 (Non-cyclic group).) 

Then S = 2( 
! 

Proof. All combinations (ri, r: ..... rl) make ]--[i=i ri a principal ideal. 
B. h = 3 .  

r t 
Let  q~-~q/  for i =  1 . . . . .  11 and q i ~ q ~  for i - - - l l - ~  1 , . . . , l .  
Then  S = 21-I~(2 l' @ 2(--  1)11)/3. 

Proof.  Let  $1 be the  number  of combinat ions (r 1, r:, rll) such tha t  T-WI r "" "' I I i = 1  i 

is a principal  ideal. 
Now [-Ti~_~ r~ ~ q~q~-k ~ q~-k  (where k is the  n u m b e r  of  r~ equivaIent  to  

ql). 
Therefore  "I-[riG 1 r i is a principal  ideal if and only  if  2ll - -  k ~ 0 rood 3. 
Le t  b be the  smallest non-negat ive  value of k. 
Therefore  

- 13 j~0 (2 cos ~)~ cos (!11--:b)j~) 
by Riordan [3]. 

Since 1 I- 2b~-~2(21l--b)~-0mod3, 

(6) 
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1 l ~ l t -  2 b m o d 2 ,  c o s n / 3 ~  1/2, a n d  c o s 2 ~ / 3  - -  1/2 

t h e n  it  can  b e  s h o w n  b y  s u b s t i t u t i o n  in (6) t h a t  $1 ~-- (2 l~ @ 2 ( - -  1)I~)/3. 
To  c o m p l e t e  t h e  p r o o f  of  t h e  t h e o r e m  it  o n l y  r e m a i n s  to  be  seen t h a t  t h e  n u m b e r  

1 of  c o m b i n a t i o n s  (rl~+l, �9 �9 �9 , rl) such  t h a t  ]--[~=~+1 r~ is a p r inc ipa l  idea l  is 2 l-l~. 

C. h ~ r (Cyc l ic  Group) .  

I ' S u p p o s e  qi~,,~qi for  i =  1 . . . .  ,11 a n d  q i ~ q ~  for  i = l l ~ - 1 , . . . , 1 .  
T h e n  S =  2 t 1 i f  l 1 >  0, --~ 21 i f  l l - - - -0 .  

D. h---- 5. 

Suppose  or gl for i =  1 . . . .  , l .  or for 
t 

i - - - - l l ~ -  1 , . . . , 1 1 ~ - 1 2 ,  q i ~ q ~  for  i ~ 1 1 4 - 1 2 ~  1 . . . . .  l. 
T h e n  

S = 25 12z l~ 1~[5 . 21~+l~ _}_ 2 ( - -  l)ll+k~(2LkLz~ - -  L~I+ILz_ ~ - -  L~_ILz~+~)], 

w h e r e  L 1 ~ - -  l ,  L 0 - -  2, Lk- - - -Lk_ l  @Lk_2 ,  k---- 1 , 2  . . . .  

E .  h = 6 .  

ql ~ q ;  a n d  q~ Auq;  for  i =  l . . . . .  l l ,  

ql ~ q~ a n d  q~ ~ q~ for  i = l 1 -~- 1 . . . . .  l I - t -  12, 
! 

gi " ~  qi for  i = 11 @ 12 @ 1 . . . .  , l. 

T h e n  S = 3-121 ~1 l~(211+l~ _5 2 ( - -  1)l~+l'). 
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