An example of a strongly convex metric space

B. Krarus

1. Introduction

It is known (see [2, Sections 7 and 8]) that if (X, d) is a convex metric spacel)
and every point of X is locally passing, then every two points of X are joined
by a geodesic. If every two points of X are joined by exactly one geodesic and
every point is locally passing, then every point is passing and every geodesic is a
straight line. Hence (X,d) is a strongly convex space. On the other hand the
following theorem is a consequence of the results in [3].

TreorEM 1. If (X, d) is a strongly convex finitely-dimensional space and every
point of X is locally passing, then every point of X is passing (cf. [2, Problems and
Theorems)).

Our aim is to give an example of a strongly convex 2-dimensional space (Y, ¢}
such that every point of Y is passing, but Y has a geodesic which is not a straight
line (cf. [2, Problems and Theorems]).

2. Definitions and notations

Let (X, d) be a metric space with a metric d. If x,y, 2 € X then we say that
z lies between x ond y (writing wxzy) provided that

dw, z) 4 d(z, y) = d(=, y)-
A madpoint of the pair z,y is a point m such that
d(x, m) = d(m, y) = Ld(z, y).

1) In this paper by space’” we understand ’'finitely-compact space’. For terminology and
notation see Section 2 in this paper and [1], [2], [4].
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Evidently every midpoint of the pair =z, y lies between z and y. A space
(X, d) is said to be convex if each pair of points of X has at least one midpoint,
strongly convex if each pair of points has exactly one midpoint.

It is well known that in a complete (in particular finitely-compact) convex
space (X, d) every two distinet points z, y are joined by a segment with end-points
2,9, i.e. by a subset of X containing x and y and isometric to a real interval of
length d(x,y). For complete spaces, strong convexity is equivalent to the con-
dition that each pair of distinct points x, y determines exactly one segment with
end-points x, y.

A subspace (X,,d,) of a metric space (X,d) is said to be a convex subspace
if X, contains all points of X which lie between two points of X;.

A point z of a metric space (X, d) is said to be a passing point in X if for
every point x € X there exists a point y € X \ {z} such that xzy. We say that
z 18 a locally passing point if there exists a neighbourhood U of z such that z
is a passing point in U.

A subset ¢ of a metric space X is said to be a geodesic (straight line) if G 1is
locally isometric (isometric) to the space of real numbers.

3. Sums of strongly convex spaces

Let (X;,d;) and (X,,d,) be two metric spaces such that X, N X, #* & and
if x,y€X;N X, then dy(x, y) = dy(x,y). We define (see [1, Section 6] and
[4, Section 10]) the function dy as follows:

dy(z, y) if x,y€X;

dT(x, y) — dz(x: y) if x, Y € X2 (l)
min  [di(x, 2) + dofz, y)] if 2 €X,,y€X,
s€X1nX,

This definition is correct, because the minimum exists, the spaces X;, X, being
finitely-compact. It is clear that the function d; is a metric for the sum X; U X,.

Let Y,Z Dbe the subsets of a convex space (X, d). We consider the following
three properties:

() I 2,y€Y, z€Z and all these points are distinct, then

2d(z, m) < d(x, z) + d(y, 2)

for every midpoint m of the pair z,y.
B) If z,y€Y, z€Z, then

2d(z, m) < d(z, z) + d(y, 2)

for every midpoint m of the pair =z, y.
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() If 2,y€Y, p,q€Z and m,m' are the midpoints of =,y and p,¢q
respectively, then

2d(m, m') < d(x, p) -+ d(y, q).

We shall write: (Y, Z) € (x)/(B), (y)] in the space (X, d) or (Y, Z) € (x)/(B), (y)/
if the latter does not lead to misunderstanding.
It is easy to see, that

3.1. (y) wmplies (f).

3.2. Let (X, d,) be a convex subspace of the convex space (X, d) and let Y, Z
be subsets of X;. Then (Y, Z) € (x)/(B), (y)] n the space (X, dy) of ond only if
(Y, Z) € (x)/(), ()] in the space (X,d).

Since the melric-function is continuous, we have

3.3. (7. 2) € (B)()] if and only if (¥, 7)€ (B)|(y)]-

3.4. If (X, d) is a convex space and (X, X) € (x), then (X, d) is strongly convez.

Proof. Suppose on the contrary that there exist two midpoints p, ¢ of the pair
z,y of the points of X. Let z be a midpoint of the pair p,¢. Then from the
definition of the property (x) we obtain

d(z, y) < d(, 2) + d(y, 2) < $d(, p) + d(x, ¢)] + 3d(y, p) + d(y, 9] = d(=x, y)

which is impossible.

3.5. Let (Y,d:;) be a convexr subspace of a convex space (X;, d;) (3 = 1, 2) such
that Y =X, NX, # O and d,(x, y) = dylx, y) for every two points x,y € Y. Let
Z be a subset of Y. If (Z,Y)€(y) in (X;,d)) and (Y, X,) € () mn (X, dy),
then (Z, X,) € () in (XU X,, dy).

Proof. Since (Y, d;) is a convex subspace of a convex space (X, d;), we infer
that (Y,d;) and (X, d;) are convex subspaces of (X, U X,,dy) for ¢=1,2.
It follows that (X, U X,, dy) is a convex space. Let x,y €Z and z € X,. Then
there exist two points p,q¢ € Y such that apz and ygz. Let m,m’ be the mid-
points of x,y and p,q, respectively. Applying 3.2 we infer that (Z, Y) € ()
in (X,UX, dy) and (Y, X,)€(8) in (X;,UX,,dy). This implies that

2dp(m, 2) < 2dp(m, m') + 2dg(m’, 2) < do(@, p) + doly, ) 1 dr(p, 2) + drlg, 2) =
= dr(x, 2) + dg(y, 2)
hence (Z, X,) € (f) in the space (X, U X,, dy).

Now we shall prove the following:

3.6. Let (Y, d:) be a convex subspace of a strongly convex space (X, d;) (1 = 1, 2)
such that ¥ = X, N X, # @ and dy(x, y) = dy(x, y) for every two points x,y € Y.
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If (Y,X, \Y)€(x) in the space (X, d)) and (Y, X,) € (B) in the space (X,, ds),
then the space (X, U X,, dy) s strongly convex.

Proof. Since (Y, d;) is a convex subspace of a strongly convex space (X, di),
we infer that (Y, d;) and (X;, d;) are strongly convex subspaces of (X; U X,, dy)
for i=1,2. It follows that (X;UJX, dr) is a convex space. Moreover,
(X, U X, ,dy) is a finitely-compact space. Thus for every two distinct points
x,y € X; UX, there exists at least one segment with end-points w, y.

Now let us suppose that there exist two distinct segments L;, L, with end-
points =z, y. Since (X, di) is a strongly convex subspace of (X, U X,, dy) we
may assume that # € X; \ Y and y € X, \\ Y. Then there exist two distinct
points @ € YN (L; \ L) and &€ Y N (L, \L,). Since (Y,d;) is a strongly
convex subspace of (X; U X,, dr), we infer that there exists exactly one midpoint
m of the pair a,b and m € Y. Applying 3.2 we infer that (¥, X, \ Y) € (x) in
(X, UX,,d;) and (Y, X,) €(f) in (X, U X,, dy). This implies that

2dT(Z', Z/) = dT(x: (1/) + dT(a’ ?/) + dT(x: b) + dT(b’ y) >
> 2dp(x, m) + drla, y) + dp(b, y) = 2d(x, m) + 2dg(m, y) = 2dp(x, y)

which is impossible.

4. Cone over a strongly convex space

Let X be a compact space and R* = {{ € R;¢ > 0}. The space obtained
from the cartesian products X x RT by identifying the set X x{0} to one point
will be called a cone over X. The point corresponding to the set X X {0} in the
identification space will be called a vertex.

Let (X, d) be a compact metric space with diameter << 2 and let X; be a cone
over X with a vertex ». We define a function d; by the following equations:

dy (21, 81), (%, b)) = min (&, G)d(2y, %) + [t — b (2)
dy((@, £), v) = dy(v, (2, 1)) =t (3)
diy(v,v) = 0 (4)

The proof of the following two propositions runs as in [4, § 11].

4.1. The function d; is a metric for X,.

4.2, Let (X,d) be a strongly convex space and p, = (%1, 8), Ps= (s, 13),
0 <t <t be two distinct points of X;. Then

(1) The space (X;,d,) is strongly convez.

(it) The segment with end-points p,, ps is the sum of the sets
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{p €Xy; p= (1), d@y, 2) + d@, 25) = d(2y, 7))
and {PpeEX; p= (2, t), H <t <y}
(iii) The set
{PpE€Xy p=(x,1), 0t <t}U{v}

is the segment with end-points jol, v.

Let y,2€ X and let

Y={p€Xy; p={(y 1), t>0;U{v}
and Z={p€X;; p=(z1t), t>0U{v}

be two subsets of the space (Xj, d;).
We shall prove the following:

4. (Y, Z) €(y) in the space (X, d,).

Proof. By 3.3. it is sufficient to prove that (Y \{v}, Z \ {v}) € (y). Let
PP €Y N {v}h g1,  €Z \{v} and pi= (y, 1), ¢ = (2, 8) for 7==1,2. It
follows from 4.2 (ii) that m = (y, {(f, + t,)) and m' = (2, 3{s; + ) are the mid-
points of p,, p, and ¢, ¢,, respectively. Applying (2) and the formula

2min (@, b) = a + b — la — b|

1

we have

dy(Pys @1) + di(pe, ¢2) = [min (b, 8;) + min (&, )]d(y, 2) + [ty — 51 + [y — 8| =
=3l +h+ st s— |l — 8| — [ty — &y, 2) + [l — 1| + [ty — 8] =
= 3[2min (t; + by, 8y + ) + Ity + b — 81 — S| — [t — 81 — [l — 8[1d(y, 2) +
F ol — s+l — sl =
= {2 min [3(f;, + &), 3(s1 + 8a)] + oy + b — 81 — S}y, 2) +
+ ([t — 8] + [l — s)[1 — $d(y, 2)]
Since X is a space with diameter < 2, we infer that 1 — 3d(y, z) > 0. Thus we
have
dy(P1 @) + Ay Doy G2) =
> {2 min [§{ + &), %(81 + )] A b+t — s — sl}d(y, 2) +
+ -t — s — &l[1 — 3y, 2)] =
= 2 min [3(f; + &), 3(51 + $)]d(Y, 2) + 213 + b)) — 3(5 + 8)| = 2 dy(m, m).
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5. The spaces (Y, @), (Y, ¢,)

Let X ={(x,y) €ER% 2,y >0,22 +y>2=1} and a, b€ X. Setting
d(a, b) = arccos ab ?) (5)

we obtain a metric ¢ for X. It is plain that (X, d) is a compact strongly convex
space with diameter < 2. Let (X,,d;) be a cone over the space (X,d) with a
vertex ». Setting

fla,t)) =ta for a € X and ¢t >0, (6)
we get a function f: X, — R% It is easy to see that f is continuous and I—1.
Moreover, we have
Y, =f(X)) = {(=,y) € R% 2,y = 0} (7)
Now let us put

P11 22) = 4 (fHaqw), f7(g)) (8)

for every two points ¢y, ¢, € ¥,. Evidently ¢, constitutes a metric for Y,. Applying
the notation just introduced we shall prove the following

5.1. The space (Y, ¢,) is strongly convex. Moreover,
(i) If ¢, 9, are two distinct points of Y, such that 0 <<|lqll <llgull, then the
segment with end-points qq, s s the union of the sets
G 9 q 92 1 9
a= oo =il i) + i i) = ol )
7€ Bl =l g 1) T Nial el = Nl Tl
and B ={q €Yy q=sq, |l <sligall < llgall}-
() If ¢.€Y;\{(0,0)} and L;={q€ Yy q=3s¢,s>0} (1=1,2), then
(L, L) € (y) in the space (Y, ¢p).

Proof. Since (X, d) is a compact strongly convex space with diameter < 2,
we infer by 4.2 (i) that (X, d;) is a strongly convex space. It follows from (8) that
(Y., ¢;) is a strongly convex space.

In order to prove (i) let us observe that (6) implies that

S {(Q/qul, llgl) for g # (0, 0)
o=, for ¢ — (0.0).
Thus

fHA) = {p €Xy; p = @/lgh laal), q €A}

U If a = (ay, a5}, b = (b, by) are points of R? and ¢ € R, then ab = a;b; + by, o =
(tay, tay) and [all = 1/ a? + a2
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and

JUB) ={p €Xy; p = (¢:/Igll, sllaall), llgall < sllgsll < llgall}-

It follows from 4.2 (ii) that the set T = f1(4) U f1(B) is a segment with end-
points p; = f(q,), p» = f7Hg,). Then (8) implies that the set f(I') =AU B is
a segment with end-points ¢, ¢,.

Passing to (ii), let us observe that (9) implies that

SHL) = {p € Xy; p = (g/lgill, sllg:l), s> 0} U {e}.

According to 4.3, we have (f(L;),fLy))€(y) in (Xy,d;). Then (8) implies
that (Ly, Ly) € (y) in (¥q, @)

Remark. Let ¢, ¢, be the points of Y;. According to the definition of the
metric d; (see 4) and (5), (9), (8), we have

% ] (10)
#1(91, ¢2) = min (jg]], llgsl]) arccos (W%‘H ' Wq;l‘) + gl — ligall| for gy + (0, 0) g
P1{gr: (0, 0)) = {lgyl. (11)

Let Yy = {(x,y) € R 0 <z,y <0} andwe putin Y, the ordinary euclidean
metric @,. Itiseasy tosee, that ¢,(z, y) = @,(v, y) for every two points z,y € ¥ =
Y,NY, Weputin Y;UY, the metric ¢p ie.

P, Y) for z,y €Y,
ool y) = | 2@ Y) for a,y €Y,

miifl [pu(x, 2) + @o(z, )] for x € Y,y €Y,

z€

We shall prove the following:
5.2. The space (Y U Y,, @) s strongly convex.

Proof. Tt is sufficient to show that the hypotheses in 3.6 hold. Indeed, by the
definition of (Y,, p,) and 5.1 the spaces (Y, ¢,) and (Y,, ¢,) are strongly convex.
Evidently, (Y,, Y,) € (x) in the space (Y,, ¢,), hence (Y, Y, \ Y) € (x) in the
space (Y,, @,). According to 5.1 (ii) and 3.1 we have (Y, ¥;) €(8) in the space
(Y1, ¢1)-

Let ¢ denote the ordinary euclidean metric. Applying (10) and (11) we obtain
the following

5.3. o(p,q) < or(p,q) for every two points p,q € Y, U Y,.

Now we shall prove the following:
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54. Let L= {(x,y) € R% =20} For every point z€ Y, UY, and every
point m € L there exists a neighbourhood U of m in L such that (U, {z}) € ()
in the space (Y, U Y,, pr).

Proof. Let A ={(x,y)€R%, 2 =0,y <0}, B={(x,y) €ER%, =0,y > 0}.
Let us show that for every point z€ Y, U Y, we have (4, {z}) € () and
(B,{z}) €(B) in (YUY, ¢7). We distinguish between two cases:

Case 1: z€Y,. By 5.1 (ii), 3.2 and 3.1 we obtain that (B, {z}) €(f) in
(Y, U Y, pp). It follows from 3.5 that (4, {z}) €(f) in (Y, U Y, ¢;), because
4, Y,NY,) €(y) in (Y, ¢,) and by 5.2 (i), (YN Yy, {z}) €(B) in (Y1, ¢1)

Case 2: z€ Y, Evidently (4,{z}) €(8) in (Y, @) hence from 3.2 we infer
that (4,{z}) €(f) in (YUY, ¢r). By 51 (i), (YN Y, B)€(y) in (¥, )
and applying 3.5 we obtain that (B, {z}) € (f) in (Y, U Y,, pp).

Hence for every point z € Y, U Y, and every point m € L \ {(0, 0)} there
exists a neighbourhood U of m in L such that (U, {z}) € () in (Y U Y, ¢q).

Now let p,q €L, m = (0,0) = m(p,q),2€ Y, U Y, and all these points are
distinct. Applying 5.3 and (11) we have

(pT(p> Z) + @T(% z) - 2¢T(Z> m) 2 Q(p’ 2) + Q<Q> Z) - QQ(Z, m) > 0.

Since the metric-function p is continuous, there exists a neighbourhood V of
m = (0,0) in Y, UY, such that the inequality

or(®, 2) + @rly, 2) > 204z, m(z, y))

holds for every two distinct points =,y € V. Let U = V N L. Then (U, {z}) € (8)
in the space (Y, U Y,, ¢r).

6. Construction of the space (Y, ¢)

Let Y, = {(x,y) € R% « <0} and let ¢, be the ordinary euclidean metric
in Y, Then for every two points z,y € L = Y, N (¥Y; U Y,) we have g;(x, y) =
@r(z,y). Let ¥ = Y, UY,UY,; and we define the metric ¢ as follows:

o, y) for 2,y € Y, U Y,

P, y) = 5, ¥) for z,y € Y, (12)
min [(pT(x, Z) + 973(Z, y)] for z € Yl U YZ} Y € Y3 .
zE€L

It is not difficult to verify that the space (Y, @) is topologically a plane E2.
‘We shall prove that

6.1. The space (Y, @) is strongly convex.
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Proof. Evidently the space (Y3, ¢;) is strongly convex, hence by (12) and 5.2
it is sufficient to show that for every two points p € (Y, U Y,) \ L, g€ Y, \ L
there exists exactly one segment with end-points p, g.

It is easy to see that (Y, ¢) is a complete convex space. Thus there exists at
least one segment with end-points p, g. Suppose on the contrary that p, q are
joined by at least two segments in Y with end-points p,¢. Let F be the set of
all points x of the set Y, \ L such that there exist at least two segments in ¥
with end-points z, p. We shall show that the set F is closedin Y, let x, € F
and x = lim,_ , 2,. Then there exist y., 2. € L such that y, # 2., x.y.p and
Znzap (m=1,2,...). Since (¥, L)€ (x) in (Y,p), we infer by 5.4 that
nf, @(Yn, 2.) > 0. Without loss of generality suppose that y =lim,_ _ ¥,,
z=1im,_ 2z, Then y 2 and xyp, xzp, because x.y.p implies that lim,  _ v,
is between lim,_ . x, and p. It follows that x € F, hence F is closed in Y.

Since F is a closed subset of the complete space (Y, ¢5) and (Y, U Y,, ¢r)
is strongly convex, there exists ¢ € F such that

r = @(p, q) = inf ¢(p, x) (13)
x€EF
and
r > inf ¢(p, x). (14)
x€L

Let us observe that for every point x € ¥, \ (¥ U L) there exists exactly
one point f(x) € L such that zf(x)p. It is not difficult to see that the function
f: Y, N\ (FUL)— L defined in this way is continuous.

Since ¢ € F, there exist a,b € L such that @ £ b and qap, ¢bp. Let ., ¥»
be points such that . £ ¢ # ¢, qrea, qyb (n=1,2,...) and lim,_ =, =
lim, .y, =¢q. Since @@, q) <7 and @ q) <7, & ¢y € Y3 N\ (FUL). It
follows that f(x:) =@ and f(y.) = b. Since the set D, = {z € ¥; @nzyn} is con-
nected, there exists z, € D, such that f(z.) = m, where m is a midpoint of the
pair a,b. Since lim, .z, =1¢, we infer that g¢gmp. It follows that the set
C={x€L; gqep} is convex and dim C =1. Choose @, b, €C such that
0 << @(tn, b,) << 1/n and let m, be a midpoint of the pair a,, b, for n = 1,2,...
It follows from 5.4 that an index N exists such that

(@, P) + @(bn, p) > 2¢(mn, p) for n > N.
Since (Y5, L) € () in (Y, ¢), we obtain
20(p, q) = @(®, an) + (@, ) + @(p, bn) + @(ba, q) >
> 2¢(Ma, q) + @(, an) + @(p, ba) >
= 2¢(ma, q) + 2¢(p, mn) = 2¢(p, q)

which is impossible.
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6.2. Every point of the space (Y, @) is passing in Y.

Proof. Supposing the contrary, we have two distinct points p, ¢ € ¥ such that
pgxr implies x = gq. Since (Y, ¢) is strongly convex, for every x €Y and
0 <t <1, there exists exactly one point A(z,f) € ¥ such that

@(x, bz, 1)) = to(p, x)

and
(P(P, k(.’l), t)) = (1 - t)‘P(P» .’,U)

It is not difficult to verify that the funection %: (Y \ {¢})x[0,1]->Y is con-
tinuous and h(x,t) £ ¢ for every x € Y \ {¢} and t €[0,1]. But Az, 0) =x
and h(x, 1) = p for every point 2 € ¥ \ {g¢} hence Y \ {¢} is contractible into
itself, which is impossible, because (Y, ¢) is topologically a plane 2.

6.3. (Y, @) has a geodesic which is not a strasght line.

Proof. Consider the sets

A ={(xy) €RY, z,y >0, |(zy)=a},
B={(x,y)€R% =0, y>al,
C={xvy) €ER%, ©>a, y=0}

where a > 0. It follows from (7), (5) and 5.1 (i) that the sets A UB and 4 UC
are isometric to the real closed half-line. By the same argument we infer that the
set A4 is a segment in the space (Y, ¢). This implies that the set ¢ = AU BUC
is a geodesic in Y.

On the other hand let ¢, = (2¢, 0), ¢, = (0, 2a). It follows from 5.1 (i) that
the set

D ={(x,y) €R%; a2,y =0, |(x,y)l = 2a}
is a segment with end-points ¢, ¢,- Since DN G = {¢, ¢o}, we infer from 6.1

that G is not isometric to the real line. Thus @ is the desired geodesic.
Applying 6.1, 6.2 and 6.3 we obtain the following result

THEOREM 2. There exists a strongly convex 2-dimensional space (Y, @) such that
every point of Y is passing, but Y has a geodesic which is not a straight line.
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