
An example of a strongly convex metric space 

B. KRAKUS 

1. Introduction 

I t  is known (see [2, Sections 7 and 8]) t h a t  i f  (X, d) is a convex metric space 1} 
and every point  of X is locally passing, then  every two points of X are joined 
by  a geodesic. I f  every two points of X are joined by  exact ly  one geodesic a n d  
every point is locally passing, then  every point is passing and every geodesic is a 
s traight  line. Hence (X, d) is a s trongly convex space. On the other  hand  the 
following theorem is a consequence of the results in [3]. 

THEOEE~ 1. I f  (X, d) is a strongly convex finitely-dimensional space and every 
point of X is locally passing, then every point of X is passing (cf. [2, Problems a n d  
Theorems]). 

Our aim is to give an example of a s trongly convex 2-dimensional space (Y, q~) 
such tha t  every point of Y is passing, but  Y has a geodesic which is no t  a s t ra igh t  
line (cf. [2, Problems and Theorems]). 

2. Definitions and notations 

Let  (X, d) be a metric space with a metric d. I f  x, y, z C X then  we say t h a t  
z lies between x and y (writing xzy) provided tha t  

d(x, z) + d(z, y) = d(x, y). 

A midpoint of the pair x, y is a point m such tha t  

d(x, m) = d(m, y) = �89 y). 

1) I n  this  paper  by  "space" we under s t and  "f in i te ly-compact  space". For  te rminology a n d  
no ta t ion  see Section 2 in this  paper  and  [1], [2], [4]. 
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E v i d e n t l y  eve ry  midpoin t  of the pair  x, y lies between x and y. A space 
(X, d) is said to  be convex if  each pair  of points of  X has a t  least one midpoint ,  
strongly convex i f  each pair  of points  has exac t ly  one midpoint .  

I t  is well known  t h a t  in a complete (in par t icu lar  f in i te ly-compact)  convex 
space (X, d) eve ry  two dis t inct  points x, y are joined by  a segment with end-points 
x, y, i.e. b y  a subset  of  X containing x and y and isometric to a real  in terval  of 
length  d(x, y). For  complete  spaces, strong convex i ty  is equivalent  to the  con- 
di t ion t h a t  each pair  of  dis t inct  points x, y determines  exac t ly  one segment  wi th  
end-points  x, y. 

A subspace (X1, dl) of a metr ic  space (X, d) is said to be a convex subspace 
if  X 1 contains all points of  X which lie between two points of X 1. 

A p o i n t  z of  a metr ic  space (X ,d )  is said to  be a passing point  in X i f  for 
eve ry  point  x E X there  exists a point  y E X ~ {z} such t h a t  xzy. We say t h a t  
z is a locally passing point if  there  exists a ne ighbourhood U of z such t h a t  z 
is a passing poin t  in U. 

A subset  G of  a metr ic  space X is said to be a geodesic (straight line) if  G is 
locally isometric (isometric) to the  space of  real numbers .  

3. Sums of strongly convex spaces 

Let  (X1, dl) and  (X 2, d2) 
if x, y e X ~ N X 2 ,  t hen  d~(x,y)=d2(x ,y). 
[4, Sect ion 10]) the  func t ion  d T a s  follows: 

I dl(x, Y) 

dr(x, y) = ] d2(x' y) 
| min [dl(X, z) @ d2(z, y)] 
~ . z E X I N X  2 

be two metr ic  spaces such t h a t  X 1 gl X~ :~ D and 
We define (see [1, Section 6] and 

if x, y E X ~  

if  x, y E X 2 

if  x E X I ,  y E X  2 

(1) 

for every  midpoin t  

z E Z and  all these points  are distinct,  t hen  

2d(z, m) < d(x, z) @ d(y, z) 

m of the  pair  x , y .  
z C Z, then  

2d(z, m) ~ d(x, z) d- d(y, z) 

m of the  pair  x , y .  

for  eve ry  midpoin t  

(fi) I f  x, y e Y, 

three  properties:  
(a) I f  x, y E  Y, 

This defini t ion is correct ,  because the  min imum exists, the  spaces X 1, X 2 being 
f in i te ly-compact .  I t  is clear t h a t  the  funct ion dT is a metr ic  for  the sum X 1 U X 2. 

L e t  Y, Z be the  subsets of a convex space (X, d). We consider the  following 
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(7) I f  x, y E  Y,  p, q E Z  and m , m '  are the midpoints  of x , y  and p , q  
respectively,  then 

2d(m, m') < d(x, p~ ~- d(y, q). 

We shall write: (Y, Z) E (~)/(/~), @)/ in the space (X, d) or (Y,  Z) E (~)/(fi), (y)/ 
if  the  la t ter  does not  lead to misunderstanding.  

I t  is easy to see, t ha t  

3.1. (y) implies (~). 
3.2. Let (X 1, dl) be a convex subspace of the convex space (X, d) and let Y,  Z 

be subsets of X x. Then (Y, Z) C (~)/(fi), (y)/ in the space (X 1, dl) i f  and only i f  
(Y, Z) E (~)/(fi), (y)/ in the space (X, d). 

Since the metric-function is continuous, we have 
3.3. (]~, Z) E (~)/(y)/ i f  and only i f  (Y,  Z) C (fi)/(y)/. 
3.4. I f  (X, d) is a convex space and (X, X)  E (~), then (X, d) is strongly convex. 

Proof. Suppose on the  contrary  t ha t  there  exist two midpoints  p, q of the  pair  
x , y  of the points of  X. Let  z be a midpoint  o f t h e p a i r  p , q .  Then from the 
definit ion of the p roper ty  (a) we obtain  

d(x, y) ~ d(x, z) -9 d(y, z) < �89 p) @ d(x, q)] -k �89 p) -k d(y, q)] = d(x, y) 

which is impossible. 

3.5. Let (Y, di) be a convex subspace of a convex space (X~, di) (i ~- l, 2) such 
that Y = X l n X 2 ~= 0 and dl(x, y) = d2(x, y) for every two points x, y E Y.  Let 
Z be a subset of Y.  I f  (Z, Y) E(7) in (Xl, dl) and (Y, X2) e(f i)  in (X2, de), 
then (Z, X~) e (fi) in (X 1U X2, dr). 

Proof. Since (Y, d~) is a convex subspaee of a convex space (X ,  di), we infer 
tha t  (Y, dl) and (X~,d~) are convex subspaces of  (X1 U X2, dT) for i----- 1, 2. 
I t  follows tha t  (XI O X 2, dT) is a convex space. Let  x, y E Z and z C X 2. Then 
there  exist two points p,  q E Y such tha t  xpz and yqz. Let  m, m' be the  mid- 
points  of x, y and p, q, respectively.  Applying 3.2 we infer tha t  (Z, Y) E (y) 
in (X1 O X2, tiT) and (Y, X2) E (/~) in (X1 O X2, tiT). This implies tha t  

2dT(m , z) < 2dT(m, m') -~ 2dT(m' , z) ~ dT(X, p) .~- dr(y, q) -~ tiT( p, z) ~- tiT(q, z) : 

= dr(x, z) q- tiT(y, z) 

hence (Z, X2) E (fi) in the space ( X  1 (J X 2 ,  dT). 
Now we shall prove the following: 

3.6. Let ( Y,  di) be a convex subspace of a strongly convex space (Xi, di) (i = 1, 2) 
such that Y ~ X 1N X 2 :/= 0 and dl(X, y) z d2(x , y) for every two points x, y E Y.  
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I f  (Y, X 1 ~ Y) E (a) in the space (X1, dl) and (Y, X2) E (/3) in the space (X2, d~), 
then the space (X 1 U X2, dT) is strongly convex. 

Proof. Since (Y, d~) is a convex subspace of a strongly convex space (Xi, dl), 
we infer that  (Y, dl) and (X, d,) are strongly convex subspaces of (X1 U X2, dT) 
for i ~ 1, 2. I t  follows that  (XI U X2, dT) is a convex space. Moreover, 
(X 1 U X2, dT) is a finitely-compact space. Thus for every two distinct points 
x, y C X 1 U X2 there exists at least one segment with end-points x, y. 

Now let us suppose that  there exist two distinct segments L1, L~ with end- 
points x, y. Since (X~, d;) is a strongly convex subspace of (X1 U X2, dT) we 
may assume that  x E X ~  Y and y E X  2 ~  Y. Then there exist two distinct 
points a E  Y[7 (L 1"~L2) and bE Yf] (L 2 ~ L 1 ) .  S ince  (Y,d~) is a strongly 
convex subspace of (X1 U X2, dT), we infer that  there exists exactly one midpoint 
m o f t h e p a i r  a ,b  and m C Y .  Applying 3.2 we infer that  (Y ,X  1 ~  Y) E(cr in 
(X1UXo,  dT) and (Y, X2) E(t3) in ( X 1 U X  2,dT). This implies that  

2dT(X, y) = dT(X, a) ~- tiT(a, y) + dT(X, b) + dT(b, y) 

2tiT(X, m) -~- dT(a, y) -~- dT(b , y) ~ 2dT(X, m) -~ 2tiT(m, y) ~ 2dT(X, y) 

which is impossible. 

4. Cone over a strongly convex space 

Let X be a compact space and R + - -  {t E R ; t  ~ 0}. The space obtained 
from the cartesian products X • R + by identifying the set X • to one point 
will be called a cone over X. The point corresponding to the set X• in the 
identification space will be called a vertex. 

Let (X, d) be a compact metric space with diameter ~ 2 and let X 1 be a cone 
over X with a vertex v. We define a function dl by the following equations: 

dl((xl, t~), (x2, t2) ) -- rain (tl, t2)d(xl, x2) + ft 1 -- t2J (2) 

d~((x, t), v) = dl(v,  (x ,  t ) )  = t (3) 

di(v,  v) = o (a) 

The proof of the following two propositions runs as in [4, w 11]. 

4.1. The Junction d 1 is a metric for X 1. 
4.2. Let (X, d) be a strongly convex space and Pl ~ (xl, tl), 

O ~ t~ ~ t2 be two distinct points of X 1. Then 
(i) The space (X 1, dl) is strongly convex. 

(ii) The segment with end-points Pl, P2 is the sum of the sets 

P2 = (x2, t2), 



AN EXAMPLE OF A STRO:NGLY CONVEX: METRIC SPACE 77 

and 

(iii) 

{p CX1; p = (X, tl) , d ( x l , x )  Q- d(x, x2) = d(xl, x2) } 

{ p C X 1 ;  p :  (x2,  t ) ,  t~ ~ t  ~ t 2 } .  

The  set 

{ p  e X1;  p = (Xl, t ) ,  0 < t ~ tl} U {v} 

is the segment wi th  end-points  p~, v. 

L e t  y, z E X  and  le t  

Y = { p e X 1 ;  p = ( y , t ) ,  

a n d  Z = { p E X ~ ;  p =  (z,t) ,  

be  two  subse ts  o f  the  space  (X1, dl). 
We  shall  p r o v e  the  ibllowing: 

t > o} u {v} 

t > o} u {v} 

4. (Y, Z)  C (y) in  the space (Xl, dl). 

Proof.  B y  3.3. i t  is suf f ic ien t  to  p r o v e  t h a t  (Y ~ {v}, Z ~ { v } ) e  (~). L e t  
Pl ,  P 2 e  Y ~ { v } , q l ,  q s C Z ~ { v }  a n d  p~ (y, t l ) , q ~ =  (z, st) fo r  i =  ] , 2 .  I t  
fol lows f rom  4.2 (ii) t h a t  m --~ (y, �89 1 + t2) ) and  m'  : (z, �89 ~- s2) ) are  t he  mid-  
po in t s  of  Pl ,  Ps and  ql, qs, r e spec t ive ly .  A p p l y i n g  (2) and  the  f o r m u l a  

2 m i n ( a , b )  = a - ~  b - -  l a - -  b] 

we h a v e  

dl(Pl, ql) -~- dl(P2, qs) ~-- [min (tl, sl) -[- m in  (t2~ %)]d(y, z) + Etl - -  Sl] + it 2 - -  %1 ~- 

= �89 + ts + s l  + % - -  it1 - -  s l l  - -  It2 - -  % l ] d ( y ,  z )  + Itl - -  s l i  -b  Jt~ - -  s~] ---- 

= �89 m in  (t 1 ~- ts, s 1 -[- %) ~- It 1 § t s - -  s x - -  %] - -  [t~ - -  sal - -  it 2 - -  ss]]d(y, z) ~- 

~- it1 - -  sll -~ Its - -  %I = 

= {2 rain [�89 + t2), �89 + ss) ] ~- �89 + t s - -  s 1 - -  ssl}d(y, z) + 

+ (It I - -  81[ ~-  Its - -  %[)[1 - -  �89 z)] 

Since X is a space  wi th  d i a m e t e r  ~ 2, we infer  ~hat  1 - -  �89 z) ~ O. T h u s  we 
have  

d~(p~, q~) + dl(pe, qs) 

~ {2 rain [�89 I -~- t2), �89 1 + %)] ~- �89 + t~ - -  s 1 - -  %l}d(y, z) 4z 

-t- I t 1 §  ts - -  si - -  %][1 - -  �89 z)] --~ 

- 2 rain [�89 1 -t- ts), �89 + %)]d(y, z) ~- 21�89 1 + t2) - -  �89 + %)1 ---- 2 dl(m , m') .  
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5. The spaces (I11, r ( Y~, q~2) 

Let  X = { (x, y) C •2; x ,  y > O, x 2 ~ y2 = 1} and a, b C X .  Setting 

d(a, b) = arccos ab 1) (5) 

we obtain a metric d for X. I t  is plain t h a t  (X, d) is a compact  strongly convex 
space with diameter  < 2. Le t  (X~, dl) be a cone over the space (X, d) with a 
vertex v. Sett ing 

f ( ( a , t ) ) = t a  for a E X  and t > 0, (6) 

we get a funct ion f: X : - +  R 2. I t  is easy to see t ha t  f is continuous and 1--1. 
Moreover, we have 

Y~ = f (X~)  = {(x, y) E R2; x, y >_ 0}. (7) 

Now let us pu t  

ml(ql, q2) = dl(f-:(ql), f-:(q~)) (8) 

for every two points qi, q2 E Y:. Evident ly  ~1 consti tutes a metric for Y1. Applying 
the nota t ion  just  introduced we shall prove the following 

5.1. The space (Y:, F:) is strongly convex. Moreover, 
(i) I f  ql, q2 are two distinct points of Y1 such that 0 < I/ql[I ~ IIq21], 

segment with end-points ql, q2 is the union of the sets 

and 

(ii) 

(L1, L2) e (7) 

then the 

\llg:H'llql + I~[ l ' [~/ [  - - - -  d\l[qlll'llq2]l 
B ---- {q e Y:;  q = s~'2, IIq:l[ < sllq~ll _< llq~l]}. 

/ f  q,E Y:~{ (O,O)}  and L ~ = { q E  Y : ; q = s q ~ , s  > 0 }  ( i :  1,2), 
in the space (Y:, ~o:). 

then 

Proof. Since (X, d) is a compact  s trongly convex space wi th  diameter  < 2, 
we infer by  4.2 (i) t ha t  (X:, d:) is a s trongly convex space. I t  follows from (8) t ha t  
(Y1, ~1) is a strongly convex space. 

In  order to prove (i) let us observe t ha t  (6) implies t ha t  

[(qlllqll, Ilql])for q # (0, O) 
f l(q) /v for q : (0, 0). (9) 

Thus 

f - : ( A )  = {p  E X : ;  p = (q/[Iqll, Ilqlll), q e A }  

1) I f  a ~ ( a : ,  ct2) , b : (b  1, b2) a r o  points of R 2 and t e R, t h e n  ab = 6rib 1 ~ -  6t j)2,  t a  = :  

(tal, ta~) and I[,~1! = ~ / ~  + a~. 
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and 

f -~(B)  = {p  ~ X1; p = (q2/N~211, sNq211), II~lll ~< sl]~ll <_ LI~,H}. 

I t  follows from 4.2 (ii) tha t  the set T : f f l ( A )  [.Jf-l(B) is a segment  with end- 
points p~ :f-~(q~),p.~ : f  l(qz). Then (8) implies tha t  the  set f ( T ) :  A U B is 
a segment  with end-points  q~, qz. 

Passing to (ii), let us observe tha t  (9) implies tha t  

f~(L,) : {p e Zl ;  ~ = (q~/]lq~li, sllq~ll), 8 > o} U {v}. 

According to 4.3, we have (f-l(L1),.f-l(L2)) E (~) in ( X 1 ,  dl). Then (8 ) impl ies  
tha t  (Lx, L2)E (Y) in (](1, ~ ) -  

Remark. Let  ql, q~ be the points of Y1. According to the  definit ion of  the  
metric d 1 (see 4) and (5), (9), (8), we have 

~1(ql, q2) min (llqill, l[q~ll) arceos(iq~ q~ ) Ilqx/[ " II~N § [[Iq~ll- Ilq~llI 

(~l(ql ,  (0 ,  0 ) )  : l]qll/" 

(~0) 
for ql : /  (0, O) :/: q2 

(11) 

Le t  Y~ ~-- {(x, y) E Re; 0 < x, y < 0} and we pu t  in Y~ the  ordinary euclidean 
metric ~2- I t  is easy to see, tha t  ~sl(x , y) = ~(x ,  y) for every  two  poin ts  x, y E Y ---- 
]71 13 ](2. We  pu t  in Y1 U Y2 the metric ~w, i.e. 

~T(X, y) = [ {~I(X, y) for x, y E Y1 

~e(x, y) for x, y E Y2 

rain [~l(x, z) + ~e(z, y)] for x C Yl, Y e Y2 
z E Y  

We shall prove the following: 

5.2. The space (Y1 U Y~, q~T) is strongly convex. 

Proof. I t  is sufficient to show tha t  the hypotheses  in 3.6 hold. Indeed,  by  the 
definit ion of (](2, ~ )  and 5.1 the  spaces ( ](1, F1) and ( Y2, ~2) are s t rongly convex. 
Evident ly ,  (](2, ]72) C (~) in the  space (]72, ~2), hence (Y, Y~ ~ Y) e (a) in the  
space (Y~, ~s2). According to 5.1 (ii) and 3.1 we have (Y, ](1) C (fi) in the  space 
( r l ,  ~l)- 

Let  ~ denote  the  ordinary euclidean metric. Applying (10) and (11) we obta in  
the  following 

5.3. ~(P, q) ~ ~r(P, q) for every two points p, q E Y1 tJ Y2. 

Now we shall prove the following: 
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5.4. Let L = { ( x , y )  C Re; x = 0 } .  For every point z E Y1U I72 and every 
point m C L there exists a neighbourhood U of m in L such that (U, {z}) E (fi) 
in the space (Yl  U Y~, q~T). 

Proof. Let A = { ( x , y )  ERe; x = 0 ,  y < 0 } ,  B = { ( x , y )  ERe; x = 0 ,  y >  0}. 
Let  us show that  for every point z E I71 U I72 we have (A, {z})E (fi) and 
(B, {z}) E (/3) in (Y1 U Ye, ~VT). We distinguish between two cases: 

Case 1: z e I71- By 5.1 (ii), 3.2 and 3.1 we obtain that  (B, {z})C (fl) in 
(Y1 U Y2, ~T)- I t  follows from 3.5 that  (A, {z}) C (fi) in (Y1 U Ye, ~T), because 
.(A, Yl gl Ye) C (y) in (Y e, ~e) and by 5.2 (ii), (I71 fl Ye, {z}) E (fi) in (I71, ~l)- 

Case 2: z E 172. Evidently (A,{z})E (//) in (Y~, ~e) hence from 3.2 we infer 
that  (A,{z})C(fi) in (Y,U Y2, TT). By 5.1 (ii), (Y~Cl I72, B) E(7) in (YI ,~ )  
and applying 3.5 we obtain that  (B, {z}) C (fi) in (Y~ U Ye, ~T). 

Hence for every point zC Y1U Y2 and every point m E L t { ( 0 , 0 ) }  there 
exists a neighbourhood U of m in L such that  (U, {z}) E (fi) in (Y~ U Y2, ~T). 

Now let p, q E L ,  m =  ( 0 , 0 ) = m ( p , q ) , z E  Y1U Y2 and all these points are 
distinct. Applying 5.3 and (11) we have 

~0T(p, Z) 4- ~T(q, Z) -- 2~T(Z , m) ~_ ~(p, z) 4- ~(q, z) -- 2~(z, m) > 0. 

Since the metric-function ~ is continuous, there exists a neighbourhood V of 
m = (0, 0) in ](1 U I72 such that  the inequality 

~T(X, Z) 4- ~T(Y, Z) > 2q~T(Z, re(x, y)) 

holds for every two distinct points x, y E V. Let U --~ V r L. Then (U, {z}) E (fl) 
:in the space (Y1 U Y2, ?T). 

6. Construction of the space (Y, ~o) 

Let I73={(x,Y) ER2; x S O }  and let % be 
in Ya. Then for every two points x, y C L =  I73n 
~T(X, y). Let Y = ](1 U I72 U I73 and we define the metric ~ as follows: 

[ ~T(X, y) for x, y E Y1 U ](2 

q~(x, y) = era(x, y) for x, y E Ya 

min[qJT(X,Z) 4-%(z,y)]  for x E  YxU Y2, YC Ya 
z E L  

I t  is not difficult to verify that  the space 
We shall prove that  

the ordinary euclidean metric 
(;gl U ]72) we have ~3(x, y) = 

(12) 

(Y, ~) is topologically a plane E ~. 

6.1. The space (Y, ~) is strongly convex. 
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Proof. Evidently the space (Y3, %) is strongly convex, hence by (12) and 5.2 
it is sufficient to show tha t  for every two points p E (Y1 U ](2) ~ L, q E Y3 ~. L 
there exists exactly one segment with end-points p, q. 

I t  is easy to see tha t  (Y, q) is a complete convex space. Thus there exists at 
least one segment with end-points p, q. Suppose on the contrary that  p, q are 
joined by at least two segments in Y with end-points p, q. Let F be the set of 
all points x of the set Y3 ~ L such that  there exist at least two segments in Y 
with end-points x, p. We shall show tha t  the set F is closed in Y3. Let x, E F 
and x = limn_~ x.. Then there exist yn, z~ E L such tha t  y= ~ zn, x,~y,p and 
XnZnp ( n =  1 , 2 , . . . ) .  Since (Ya, L) E(~) in (Y,~), we infer by 5.4 tha t  
infn ~(y,, zn) > 0. Without loss of generality suppose tha t  y = limn_~ y,, 
z = l i m n ~  zn. Then y @ z and xyp, xzp, because x , y , p  implies tha t  limn+~ Yn 
is between lim~+~ x. and p. I t  follows tha t  x C F,  hence F is closed in Ya. 

Since F is a closed subset of the complete space (Y3, %) and (Yx U Y2, ~T) 
is strongly convex, there exists q E F such that  

r = ~ ( p ,  q) = i n f , ( p ,  x) 
x E F  

and 

(13) 

r > i n f ~ ( p ,  x). (14) 
x E L  

Let us observe tha t  for every point x E Y3 "~ (F U L) there exists exactly 
one point f (x)  E L such tha t  xf(x)p. I t  is not difficult to see that  the function 
f :  Y3 ~ (F U L ) ~  L defined in this way is continuous. 

Since q C F ,  there exist a, b E L  such tha t  a @b and gap, qbp. Let x,,y~ 
be points such tha t  xn @ q @ y n ,  qxna, qynb ( n =  1 , 2 , . . . )  and l i m , _ ~ x n =  
l i m n _ ~ y , = q .  Since ~(xn, q ) < r  and ~v(y , ,q )<r ,  xn, y , E  Y 3 ~ ( F U L ) .  I t  
follows tha t  f(xn) = a and f (y , )  =- b. Since the set D~ ~- {z C Y; x,zyn} is con- 
nected, there exists z, E D, such tha t  f(zn) = m, where m is a midpoint of the 
pair a, b. Since limn_~ zn ~ q, we infer tha t  qmp. I t  follows that  the set 
C = { x C L ;  qxp} is convex and d i m C =  1. Choose an, b, EC such tha t  
0 ~ ~v(a,, b,) ~ 1/n and let mn be a midpoint of the pair a,, b, for n = 1, 2, . . . 
I t  follows from 5.4 tha t  an index N exists such that  

~(a,, p) + ~(b,, p) > 2~0(m,, p) for n > N. 

Since (Y3, L ) E  (~) in (Y, ~), we obtain 

2~o(p, ~) = ~(p, a~ + ~o(a~ q) + ~(p, b~ + ~(b~ ~) > 

> 2~(mo, ~) + ~(p, an) + ~(p, b~ __> 

> 2~(m., q) + 2~(p, m.) >_ 2q~(p, q) 

which is impossible. 
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6.2. Every point of the space (Y, 9) is passing in Y. 

Proof. Supposing the  contrary ,  we have  two dist inct  points  p, q E Y such t h a t  
pqx implies x = q. Since (Y ,~ )  is s t rongly convex,  for eve ry  x E Y and 
0 < t < 1, there  exists exac t ly  one poin t  h(x, t) E Y such t h a t  

and 

qz(x, h(x, t)) = tq)(p, x) 

9(p, h(x, t)) ---- (1 - -  t)9(p, x). 

I t  is no t  diff icult  to ver i fy  t h a t  the  funct ion h : ( Y ~ { q } ) •  Y is con- 
t inuous and  h(x,t) :#q for eve ry  x E  Y ~ { q }  and  t E [ 0 , 1 ] .  B u t  h ( x , O ) = x  
and  h(x, 1) = p for eve ry  point  x E Y ~ {q} hence Y ~ {q} is contract ible  into 
itself, which is impossible, because (Y, 9) is topological ly a plane E 2. 

6.3. (Y, 9) has a geodesic which is not a straight line. 

Proof. Consider the  sets 

A - { (x ,y )  E R2; 

B = {(x, y) E tl~; 

C = {(x, y) E R2; 

x , y > 0 ,  lI(x,y)H-~a}, 

x -~O,  y > a } ,  

x > a ,  y = 0 } ,  

where a >  O. I t  follows f r o m ( 7 ) , ( 5 )  and  5.1 (i) t h a t  the  sets A U B  and A U C  
are isometric to the  real closed hMf-line. B y  the  same a rgument  we infer t h a t  the  
set A is a segment  in the space (Y, q~). This implies t h a t  the  set G = A U B U C 
is a geodesic in Y. 

On the  other  hand  let  ql = (2a, 0), q2 = (0, 2a). I t  follows f rom 5.1 (i) t h a t  
the set 

n = { ( x , y )  E R2; x , y ~ 0 ,  i ] (x ,y) ] l=  2a} 

is a segment  with end-points  ql, q2- Since D fl G = {ql, q2}, we infer f rom 6.1 
t ha t  G is not  isometric to the  real line. Thus  G is the  desired geodesic. 

Applying 6.1, 6.2 and  6.3 we obta in  the  following resul t  

T~ORE~a 2. There exists a strongly convex 2-dimensional space ( Y, q~) such that 
every point of Y is passing, but Y has a geodesic which is not a straight line. 
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