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Factorization of generalized theta
functions in the reducible case

Xiaotao Sun(')

Introduction

One of the problems in algebraic geometry motivated by conformal field theory
is to study the behaviour of moduli space of semistable parabolic bundles on a curve
and its generalized theta functions when the curve degenerates to a singular curve.
Let X be a smooth projective curve of genus g. and Ux be the moduli space of
semistable parabolic bundles on X, one can define canonically an ample line bundle
Oy (the theta line bundle) on Uy and the global sections H O(Of{x) are called
generalized theta functions of order k. These definitions can be extended to the
case of a singular curve. Thus, when X degenerates to a singular curve X,. one
may ask the question how to determine H O(GZ’)XO) by generalized theta functions

associated to the normalization )~(0 of Xg. The so called fusion rules suggest that
when X is a nodal curve the space HO(Gf,Y } decomposes into a direct sum of
Xo

spaces of generalized theta functions on moduli spaces of bundles over )2'0 with new
parabolic structures at the preimages of the nodes. These factorizations and the
Verlinde formula were treated by many mathematicians from various points of view.
It is obviously beyond my ability to give a complete list of contributions. According
to [Be], there are roughly two approaches: infinite and finite. I understand that
those using stacks and loop groups are infinite approaches. and working in the
category of schemes of finite type is a finite approach. Our approach here should
be a finite one.

When Xj is irreducible with one node. a factorization theorem was proved
in [NR] for rank two and generalized to arbitrary rank in [Su]. By this factorization,
one can principally reduce the computation of generalized theta functions to the case
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166 Xiaotao Sun

of genus zero with many parabolic points. In order to have an induction machinery
for the number of parabolic points, one should prove a factorization result when Xy
has two smooth irreducible components intersecting at a node xo. This was done
for rank two in [DW1] and [DW2] by an analytic method. In this paper, we adopt
the approach of [NR] and [Su] to prove a factorization theorem for arbitrary rank
in the reducible case.

Let I=I,UI,CX be a finite set of points and % be the moduli space of
semistable parabolic bundles with parabolic structures at the points {z}zc;. When
X degenerates to Xo=X;U X, and the points in I; (j=1.2) degenerate to |[;| points
zel; CX;\{zo}, we have to construct a degeneration Z/{X(,::Z/I)I(lfff_,z(2 of UL and a
theta line bundle ©, on it. Fixing a suitable ample line bundle O(1) on Xo,
we construct the degeneration as a moduli space of ‘semistable’ parabolic torsion
free sheaves on X with parabolic structures at the points z€; U5, and define the
theta line bundle ©, on it. Our main observation here is that we need a ‘new
semistability’ (see Definition 1.3) to construct the correct degeneration of U%. But
in the whole paper, this ‘new semistability” is simply called semistable. It should not
cause any confusion since our ‘new semistability’ coincides with Seshadri’s semista-
bility in [Se] when I=0, and coincides with the semistability of [NR] when Xj is
irreducible.

Let m: Xo— X be the normalization of X, and 7~ Yxg)={z1.22}. Then for
any pu=(p1,..., ) with 0<u, <...<py <k—1, we can define d(x;). 7i(z;) and ay,
(7=1,2) by using u (see Notation 3.1). Let

Uy, =Ux;, (r. x5 L;u{z; ) {7i(2). @@) baer,uiz,) . k)

be the moduli space of s-equivalence classes of semistable parabolic bundles E of
rank r on X; and Euler characteristic x(£ ):X;‘ . together with parabolic structures

of type {7(z) }zerufz,) and weights {@(r)} e uqe;} 2t the points {z}zeru{e,}s Where
x4 is defined in Notation 3.1 and may be nonintegers. Thus we define Uy to be
empty if X/ is not an integer. Let

@u;j = @(k, lj, {fi(:c) &’(.T) aI}fejju{IJ }e IjU{l‘j})
be the theta line bundle. Then our main result is the following theorem.

Factorization theorem. There erists a (noncanonical) isomorphism

HUx,, Ouy,) =P HO (WU, Oy ) H UK, Oup ),

u

where p={(11, ..., pbr) TUNS through the integers 0<pu, <...<py <k—1.
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Section 1 is devoted to the construction of the moduli space Ux, by general-
izing Simpson’s construction, and the construction of the theta line bundle on it.
Then we determine the number of irreducible components of the moduli space and
proving the nonemptyness of them (see Proposition 1.4). In Section 2, we sketch
the construction of the moduli space P of generalized parabolic sheaves (abbrevi-
ated GPS) and construct an ample line bundle on it. Then we introduce and study
the s-equivalence of GPSes (see Proposition 2.5), which will be needed in studying
the normalization of Ux,. In Section 3, we construct and study the normalization
P—Ux,, and then prove the factorization theorem (Theorem 3.1). As a byproduct,
we recover the main results of [NS] (see Corollary 3.1 and Remark 3.1). They have
used triples in [NS] instead of GPSes.

Acknowledgements. 1 would like to express my hearty thanks to Prof. H. Es-
nault and Prof. E. Viehweg for their hospitality. I benefited from the stimulating
mathematical atmosphere they created in their school. Prof. M. S. Narasimhan
encouraged me to prove the factorization theorem in the reducible case. I thank
him very much for consistent support. It is my pleasure to thank the referee, who
pointed out an inaccuracy in the first version of the paper.

1. The moduli space of parabolic sheaves

Let Xy be a reduced projective curve over C with two smooth irreducible
components X; and X, of genus ¢g; and g> meeting at only one point z,, which is
the node of Xy. We fix a finite set I of smooth points on Xy and write I=1;UI5,
where I;={zel|zeX;} (i=1,2).

Definition 1.1. A coherent Ox -module E is called torsion free if it is purely
of dimension one, namely, for all nonzero Ox,-submodules £, CE, the dimension
of supp F is one.

A coherent sheaf F is torsion free if and only if E, has depth one at every
z€X( as an Ox, z-module. Thus E is locally free over Xp\{zo}.

Definition 1.2. We say that a torsion free sheaf E over Xy has a quasi-parabolic
structure of type 7i(z)=(n1(x),...,ny, 11(x)) at z€1, if we choose a flag of subspaces

Elizy =Fo(E): DF1(E); D ..DF (E); DFi,41(E): =0

such that n;(z)=dim(F;_,(F),/F;(E),). If. in addition. a sequence of integers
called the parabolic weights

0<ai(z)<az(z)<..<a1(z) <k
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are given, we say that E has a parabolic structure of type 7i(x) at r, with weights
@(x):=(a1(z),...,a;,41(z)). The sheaf E is also simply called a parabolic sheaf.
whose parabolic Euler characteristic is defined as

[+1

par x(E) := X(E)+% >N ni@aiz).

z€l i=1

We will fix an ample line bundle O(1) on X, such that deg O(1)|x,=¢;>0
(i=1,2), for simplicity, we assume that O(1)=0x,(c1y1+c2y2) for two fixed smooth
points y; €X;. For any torsion free sheaf E. P(E.n):=x(E(n)) denotes its Hilbert
polynomsal, which has degree one. We define the rank of £ to be
1 P(E.n)

= li .
deg O(1) nSs 1

r(E):

Let r; denote the rank of the restriction of E to X; (i=1.2). then

C1 Cc2
P(E,n)=(ciri1+cyr2)n+x(E) and "(E):Cl+ch1+cl+CQr2'

Notation 1.1. We say that E is a torsion free sheaf of rank r on Xo if ri=ra=r,
otherwise it will be said to be of rank (r;.72). In this paper we will fix the parabolic
data {7i(z)}zer, {@(z)}zer and the integers x=d+r(1—g), li+l2, k and

a:={0<a, <k—a; q1(z)+ar(z)}rer

such that

lI
(%) ZZdi(I)T1(1)+rza.r+r(ll+l'2):kX-
zel i=1 rel
where d;(z)=a;;1(z)—a;(z) and r;(z)=n; (x)+...+n;(x). We will choose ¢; and ¢;
such that Iy =ci{l14+12)/(c1+¢2) and ly=ca(l; +12)/(c1+c2) become integers.
Definition 1.3. With the fixed parabolic data in Notation 1.1, and for any
torsion free sheaf F' of rank (rq.72). let

m(E):= " S (o @)+ O Y (o) ).

z€ly z€1
If F has parabolic structures at the points x€ 1, then the modified parabolic Euler
characteristic and slope of F are defined as

par X'm (F) .

par X, (F) :=par x(F)+m(F) and paru,(F):= OF)
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A parabolic sheaf E is semistable (resp. stable) for (k.a.d) if, for any subsheaf
FCE such E/F is torsion free, one has, with the induced parabolic structure,

par Xm(F) r(F)

(E) (resp. <).

par xm(F) <

Remark 1.1. When the curves are irreducible, then m(F)=0, the above semi-
stability is independent of the choice of o and coincides with Seshadri’s semistability
of parabolic torsion free sheaves.

In this section we will only consider torsion free sheaves of rank r with para-
bolic structures of type {7i(z)}.c; and weights {@(z)}.c; at the points {z}ze;. and
construct the moduli space of semistable parabolic sheaves. Let W=0x,(—N) and
V=CPW) we consider the Quot scheme

T-flat quotients VgW — E — 0 over
Quot(VRW, P)(T) =

XoxT with Hilbert polynomial P
and let QCQuot(V&W, P) be the open set

N )_{V@W—>E—>0 with R*pr. (E(N))=0 and such}

that V®&Op — pr.E(N) induces an isomorphism

Thus we can assume (Lemma 20 of [Se], p. 162) that N is chosen large enough
so that every semistable parabolic torsion free sheaf with Hilbert polynomial P
and parabolic structures of type {7i(z)},cs. weights {@(x)}.es at the points {x},es
appears as a quotient corresponding to a point of Q.

Let Q be the closure of Q in the Quot scheme and VW—F—0 be the
universal quotlent over Xg % Q and F, be the restriction of F to {z}x Q Q Let
Flagn(x)(]-;)—)Q be the relative flag scheme of type 7i(x). and

R= Hch Flago)(F2) = Q

zel

be the product over Q. A (closed) point (p. {Pr(z): Pry(x): - Pri, («) Jzer) of R is

by definition given by a point V&W 2 E—0 of the Quot scheme, together with
quotients

pr(z‘) prl(a,\

Pry o
er(.r)~ RPN \’XW #._)) Q"II(J«')}IeI‘
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where r;(z)=dim(E/F;(E),;)=ni(x)+...+n;(x), and

E, 0 e b
FU(E), =@ R (E),

For large enough m, we have an SL(V)-equivariant embedding

Qr(m) = Fy, er(a:) =

R «— G = Grassp()(VEW,,) xFlag.
where W,,,=H%(W(m)), and Flag is defined to be

Flag = H {Grass, ;) (V) x Grass, (;)(V) x ... xGrass,, (z)(V)}.
zel

which maps a point (P, {Pr(z): Pry(x): - : Py, (z) }zer) of R to the point

r{x x grr(z)
(VW 5 UAV ZX 0, 0, VIR U, s V22 Up () }ee)

of B, where
g:=H°(p(m)), U:=H(E(m)).

9r(z) = H(pry(N)).  Up(z) = H%(Qr (1))
gri(x) = Ho(pri(:c)(]\r)). Ur,(z) = HO(Q,‘I(_I)). 1= 1, lz

For any rational number ! satisfying c¢;l=0;+c;kN (i=1.2), we give G the polariza-
tion (using the obvious notation)

miN < [[{az di(z), ... di, ()},

zel

and we have a straightforward generalization of [NR. Proposition A.6] whose proof
we omit.

Proposition 1.1. A point (9.{grx)- Gry(x): - - 9r_ (z) }zer) EG is stable (resp.
semistable) for the action of SL(V'), with respect to the above polarization (we refer
to this from now on as GIT-stability). if and only if for all nontrivial subspaces
HCV we have (with h=dim H)

lN(hP( )= P(N)dim g(HgW,,) +z€;a1(rh P(N)dim g, (H))
+ZZd z)h—P(N)dim g, )(H)) <0 (resp. <0).

xel i=1
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Notation 1.2. Given a point (p, {p,(z):Pri(z): -+ Pr, (x) }xe1) ER, and a sub-
sheaf F of E' we denote the image of F' in Q,,(;) (resp. Q,(5)) by Qi(x) (resp. Qf(x)).
Similarly, given a quotient E—>g—>0 set Qr (2)° =Q,,(»y/ Imker T (resp. Qf(x)::
Qr(zy/ Imker T).

Proposition 1.2. Suppose (P, {Pr(z)-Pr (z): - Pri, (+) }ze1) ER 18 a point such
that E is torsion free. Then E is stable (resp. semistable) if and only if for every
subsheaf 0£F+#FE we have

——— (XF(N)P(m) = P(N)x(F(m))+_ ax(ry(F(N) = P(N)R(QF,))
zci

o
+Y > di(@) (ri(@)x(F(N) = P(NRY(QF, ) <0 (resp. <0).

zel i=1

Proof. For any subsheaf F' let LHS(F) denote the left-hand side of the above
inequality. Assume first that F/F is torsion free and that F is of rank (.73}, thus
hY( T(I)) i hO( L (f)) =dim(F,/F,NF,(E);) for z€I; (i=1.2) and x(F(m))=
(c1r1+C2r2)( m—N)+x(F(N)). Let nf (z):=dim(F,NF,_1(E),/F:NFi(E),). As

la Ip+1
Z Z di{z)r;(z) = rZalﬂq(x)—Z Z a;(z)n;(x)
zel =1 xel rel i=1
ln
ZZdz(iE)dlmF =7 Zal +1<l‘ +r22a1 +1
xzel i=1 M xel z€lr
Ip+1
—Z Z a;(x)n
rel =1
we have
LHS(F (ZZd )+T‘ZQI+T01[+T'C2I) (X(F)—r(F)X>
zel i=1 z€el g
15
N) (r(F) Zaﬁr(f) 3OS dita)r, (I))
zel el i=1
(rl Z Oy +72 Z ar+ZZd ) dim —F—E—)
€l z€ls x€l i=1 ( )l
=kP(N) <par X (F)~— T(f) par X m (E)) )
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Thus the inequality implies the (semi)stability of E. and the (semi)stability of E
implies the inequality for subsheaves F such that £/F is torsion free.

Suppose now that F is (semi)stable and F is any nontrivial subsheaf, let 7 be
the torsion of E/F and F'CF such that 7=F'/F and E/F"' are torsion free. Then
we have LHS(F') <0 and. if we write r=7+3_ ;7. then

LHS(F)—LHS(F') = ~(c; +¢2)rlh%(r)
—-ZO(;E(T‘hO(T)—F ( )(ho( x(z)) ho( r(m))))

€l
~Z}:d (P)+P(N)(R(QF, ) —P*(QF )
zel i=1
:_hO (sz )+7~}:a1+rcll+chl>
zel =1 x€l
<Za RO(r)— ZZd (2)(h°(QF ) - hO(QF(T)))>
€l zel i=1
iz
<—kP(NRYT)+P(N) D a,h (1) + P(N) DY di(a)h’(7)
zel xzel i=1
=—kP(N)R*(F) = P(N) Y (k—ar—a, 11(z)+a1(2)h°(7)
xel

<0,

where we have used hO( r(r)) hO(Qf(/I)):—hO(TJ,). the assumption about {a,}
and hO(QF )~ (@7, (z)) h(r,). O

Lemma 1.1. There exists M1 (N) such that for m> A1 (N) the following holds.
Suppose (D, {Pr(z): Pry(z): -+ : Pri, () Jrel) ER is a point which 1s GIT-semistable then

for all quotients Efig—m we have

h(G(N)) > %((c1+c2)r(g)l+zthO(Qg(l) +sz (@)h(QF ) ))

ze] el i=1

In particular, E is torsion free and V—HC(E(N)) is an isomorphism.

Proof. Let

H(p(N))

H=Xker{V HY(E(N))— HY(G(N))}.
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and F'C E be the subsheaf generated by H. Since all these F are in a bounded family,
dim g(H®W,,)=h®(F(m))=x(F(m)) for m large enough. Thus there exists M (N)
such that for m>M;(N) the inequality of Proposition 1.1 implies (with h=dim H)

(c1t+e)l(rh—r(F)P(N +Zaz (rh—P(N)hO( r(m)))
zel

e
+3 3 " di(@)(ri(z)h— P(N)R(QF, )) <0,

x€i 1=1

where we used that g, () (H)= hO(QT(I)) and g,, () (H)=h"(QF, (z))- Now using the
inequalities

h> P(N)=h*(G(N\)).
r—r(F)>r(G).

r—= ho( r(m))>hO(Qr(r))
ri(z)—h( r(x))>h (Qri(z))e

we get the inequality

1y
RGN 2 (et @ arh @)+ X 3o (@)

zel zel i=1

Now we show that V—H°(E(N)) is an isomorphism. That it is injective is
easy to see: let H be its kernel, then g(H W) =0. g,(»)(H)=0 and g,, (5)(H)=0.
one sees that h=0 from Proposition 1.1. To see it being surjective, it is enough to
show that one can choose N such that H(E(N))=0 for all such E. If H'(E(N))
is nontrivial, then there is a nontrivial quotient E(N)—LCwy, by Serre duality,
and thus

R%{wx,) > hP(L) > (c1+e2) N+B.

where B is a constant independent of E, we choose N such that H'(E(N))=0 for
all GIT-semistable points.

Let r=Tor E, G=E/7 and applying the inequality. noting that h°(G(N))=
P(N)=ho(7), R(QF ) =r—h"(Q,)) and h®(Q¥ )=r;(x)—=h%(Q] ). we have

k(1) < 3 (as +ar, +1(x) a1 (2))A°(7,).
zel

by which one can conclude that 7=0 since a, <k—a; 4+1(z)+ai1{z). O
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Proposition 1.3. There exist integers N >0 and M(N)>0 such that for m>
M(N) the following is true. A point (p.{Dv(x)-Pri(z)s -+ Pry, (x) becl ) ER is GIT-
stable (resp. GIT-semistable) if and only if the quotient E is torsion free and a
stable (resp. semistable) sheaf and the map V— H°(E(N)) is an isomorphism.

Proof. It (p,{Pr(z): Pry(2)s -+ + Pre, (x) }ze1) ER is GIT-stable (GIT-semistable),
by Lemma 1.1, E is torsion free and V-+HC(E(N)) is an isomorphism. For any
subsheaf F'C E with E/F torsion free. let HCV be the inverse image of HY(F(N))
and h=dim H, we have x(F(N))P(m)—P(N)x(F(m))<hP(m)—P(N)h’(F(m))
for m>N (note that h*(F(N))>h'(F(m))). Thus

l
m—N

(X(F(N))P(m) = P(N)x(F(m)))+>_ a,(rx(F(N))= P(N)R(Q[)))
zel

ly
+3 Y di@) (r(@)X(F(N) = P(N)RY(QF, )
xzel i=1
ij(hP(m)—P(N) dimg(Hme))JrZ; ar(rh—P(N)dim g,(z)(H))

+3°N " di(@)(ri(z)h—P(N) dim g, () (H))

since g(H@Wp) SHO(F(m)). goey(H)<hO(QF,)) and g, (H)SAOQF,,) (the
inequalities are strict when h=0). By Propositions 1.1 and 1.2, E is stable (resp.
semistable) if the point is GIT-stable (resp. GIT-semistable).

The proof of the other direction is similar to [NR], one can prove the similar
Lemma A.9 and Lemma A.12 of [NR] by just modifying the notation. O

One can imitate [Se] (Théoréme 12, p. 71) to show that given a semistable
parabolic sheaf E, there exists a filtration of E
0=F,+1CE,C..CESCEyCEy=FE
such that F;/E;1 (0<i<n) are stable parabolic sheaves with the constant slope
par i, (E), and the isomorphic class of semistable parabolic sheaves

n
gt FE .=
i=0

E;
Einy

is independent of the filtration. Two semistable parabolic sheaves £ and E’ are
called s-equivalent if gr E2¢gr E.
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Theorem 1.1. For given data in Notation 1.1 satisfying (%), there exists a
reduced, seminormal projective scheme

Z/{ UXO(T X, LUl {Tl ) ( az}ae] O(l) )

which is the coarse moduli space of s-equivalence classes of semistable parabolic
sheaves E of rank r and Euler chracteristic x(E)=x with parabolic structures of
type {71(x)}zer and weights {@(x)}.cs at the points {z},.cr. The moduli space Ux,
has at most r+1 wrreducible components.

Proof. Let R** (R?) be the open set of R whose points correspond to semistable
(stable) parabolic sheaves on Xg. Then, by Proposition 1.3, the quotient

P:R* —Ux, :=R**JSL(V

exists as a projective scheme. That Ux, is reduced and seminormal follow from the
properties of R*® (see [F], [Se] and [Su]).

Consider the dense open set RgCR** consisting of locally free sheaves. For
each F'€Ry, let F} and F;, be the restrictions of F to X; and X,. We have

(11) 0——)F1(—I0)—)F——)F2——)0.

By the semistability of F' and par x,,{F))+par xm(F2)=par xm (F)+7, we have

C1
par xm (F) < par xm(F1) < i Xm (F)+r.

1 +Cz

par Xon (F) < pax xm (F2) € ——— par xm(F) 47
2

1 +02

Let for j=1,2, x; denote x(F};) and

12 :%(zz e Xty

€l

We can rewrite the above inequalities into
(1.3) m<x1<ni+r and np<xys<np+r.

There are at most r+1 possible choices of (. x2) satisfving (1.3) and x1 +x2=x+7,
each of the choices corresponds to an irreducible component of Ux,. O

For any x; and x2 satisfying (1.3), let Ux, (resp. Ux,) be the moduli space of
semistable parabolic bundles of rank » and Euler characteristic y; {resp. x2). with
parabolic structures of type {7i(z)},cr, (resp. {7i(z)}.ez,) and weights {a(z)}zer,
(resp. {@(z)}zcr,) at the points {x},c1, (resp. {x}.er, ). Then we have the following
result.
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Proposition 1.4. Suppose that Ux, and Ux, are nonempty. Then there exists
a semistable parabolic vector bundle E on Xy, with parabolic structures of type
{7i(z)}rer and weights {@(x)}.ecr at the points {x},cr. such that

E|X1 EUx, and E|x, €Ux,.

Moreover, if ny<xi1<ni+7 and no<xa2<nas+r, then E is stable whenever one of
Eq and E, is stable.

Proof. For any Fy€lx, and FE;€lUx,, one can glue them by any isomorphism
at zp into a vector bundle E on X, with the described parabolic structures at
the points {z},e; such that E|x, =F; and E|x,=F,. We will show that F is
semistable.

For any subsheaf F'CFE of rank (71, r2) such that E/F is torsion free, we have
the commutative diagram

0 — F F I 2 0
(1.4) l l l
0 —— Eqi(—x0) E Es 0,

where F5 is the image of F' under E— E>—0 and Fj is the kernel of F— F3~0.
One easily sees that F) and F; are torsion free sheaves of rank (r1.0) and (0.72).
From the diagram (1.4), we have the equalities

par xm(E)  par xm(F)

r r(F)
_ par Xm{E1(=20)) parxm(F1)  parxm(E2) parxm (F»)
" r(F) r r(F)
_ aiT) par Xm(El(—CEO)) —7 par X, (F1)+agrs par xm(E1(—20))
r(F)r
+ azr2 par Xm(E2) =7 par xm (F2) a7 par xm(E2)
r(F)r |

= %(par ,Ufm(El(_iEO))_pal'ﬂm(Fl))+%(parum(EQ)—par fm (F2))

, @2(ra=r1) par X (Ey (~20)) + a1 (r) —72) par yon(Es)

r(F)r 1

= ;%(Pa-rM(El(—aro))_par/l(Fl))+%(parmEﬂ_pMﬂ(B))

(r1—ra) (6::02 par Xm(E)+r—par xm (El))
r(F)r '

+
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where we used the notation ai:=c;/(c) +c2) and az:=cy/(c1+c2). The last equality
follows since
m(Er(—wo)) _m(Ey) _ 0 ) m(F)
T 1 T ()

Similarly, if we use the diagram
00— K F FF—— 0

! L

0 —— BEy(—29) —— E —— E; —— 0.

we get the equality

par XTm(E) B par:((}n)(F) _ T(T;) (par p(E2(—x0))—par u(Fy))

T (paru(E1)- par ()

c
(ro—ry) ( 2 par xm(E)-+r—par Xm(EZ))
+co

+ “a
r(F)r
Thus we always have the inequality
par xm(E) _parxm(F) -

T r(F)
and the equality implies that ri =r and that E; and E5 are both unstable. This
proves the proposition. [

By a family of parabolic sheaves of rank r and Euler characteristic y with
parabolic structures of type {7i(z)},cs and weights {@(z)},es at the points {z}.e;
parametrized by T', we mean a sheaf F on XgxT. flat over T and torsion free with
rank r and Euler characteristic xy on X x {t} for every t€T. together with, for each
z€l, a flag

Frayxt =Fo(Fizyx1) D Fr(Flayxr) D - D Fi (Fiayxr) D Fro41(Flayxr) =0

of subbundles of type 7i(x) and weights d(z). Let Q3«7 denote the quotients
Fiayxt/Fi( Fizy«1). then we define a line bundle © on T to be

e 2
(det RWTf)k®®{(det Flayxr)* 2 Q) (det Q{z}xr‘i)d'("r)}8®(det Flusyr)”
=1

zel j=1
where mr is the projection XoxT—T, and det RrrF is the determinant bundle
defined as

{det RmpF}y = {det H*(X. F;)} P 2 {det H'(X.F)}.
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Theorem 1.2. On the moduli space Ux,. there is a unique ample line bundle
Oux, =0O(k.l1,l2,d. 7, o, I) such that for any given family F of semistable parabolic
sheaves parametrized by T, we have 03Oy =OF. where or is the induced map
T_>UX0 .

Proof. By using the descend lemma (see Lemma 1.2 below). we will show that
the line bundle Orss:=0¢ on R** descends to the required ample line @“Xo* where
£ is a universal quotient over Xy x R*5.

We know that the stabilizer stab(g)=XA1id for ¢€ R*, which acts on Or-» via

AR ey i di(@)ri(@)4r T, oy antr(litlz) 30 _q
If geR**\R* has a closed orbit, we know that
Ey=miE1EmaEre. SmeEy.

with par pm (E;)=par fim, (&), which means that (assuming Ej; to be of rank (r.72))

1,
T E"
—k‘X(E]')—f‘T’l E Qpt+7T2 E a1+g E di(I)din]E‘—m}f(T)-‘f—Tﬂl-}-rglg:O.
z€l z€ls el i=1 Jorl Ry

Thus (Ayidm,, ..., Aridy, ) €stab(g)=GL(my) x...x GL(m;) acts trivially on Ore-.
which implies that stab(g) acts trivially on Ox«- and thus descends to a line bundle
@“Xo having the required universal property.

To show the ampleness of Oy, . noting that det RarssE(N) is trivial and

det Rrgs:€ = (det £, )~ 2 (det £,,)7" 2det Rrrs:E(N).

we see that the restriction of the polarization to R** is

le
(det Rszsg(m))l/(m”‘V)8®{(det £2)* 2 Q) (det Qr)dm} =ORes.
x€d i=1
Thus, by general theorems for GIT. some power of ©x-~- descends to an ample line
bundle, which implies that some power of Ouy, 1s ample. [

Lemma 1.2. Let G be a reductive algebraic group and V a scheme with G-
action. Suppose that there exists a good quotient w:V =V [ G. Then a vector bundle
E with G-action over V descends to VJ/G if and only if the stabilizer stab(y) of y
acts trivially on Ey for any yeV with closed orbit.

It is known that for any torsion free sheaf F' of rank (r;.r2) on Xy there are
integers a, b and ¢ such that

e C

~ a o b o
FIO - OXO.Ig—:;Oxl.IEO\J Xo.xo®
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where a, b and ¢ are determined uniquely and satisfy
ri=a+b, ro=a+c and dim(F,, &k(zp))=a+b+c.

Thus we can define a(F'):=a for any torsion free sheaf F on Xy. and we have the
following result.

Lemma 1.3. Let 0—-G—F—FE—0 be an eract sequence of torsion free
sheaves on Xg. Then
a(F)>a(G)+a(F).

Proof. This is clear by counting the dimension of their fibres at zy. O

Let Ro={FER|F©0,,=05"cms """}, and W,=RoUR,U...UR; (which
are closed in R) endowed with their reduced scheme structures. The subschemes
W; are SL(n)-invariant, and yield closed reduced subschemes of Ux. It is clear that

RDWT_1 DV’V‘;«-Q D...D 17\/\'1 D 17\/\'0 =Ry.
Ux DWr 1 DW,_o D ... D W) D Wy

Let go€R be a point corresponding to a torsion free sheaf Fy such that

- r—a 3 aQ
.7:080)(0_10 >~ My OeoXo.xQ'

We consider the variety
Z={(X.Y)YeM(r—ap)xM(r—ap)| XY =Y -X =0},

and its subvarieties Z'={(X.Y)eZ|rk X +rkY <a}. Then the reduced coordinate
ring of Z is

C[X.Y]
(XY.YX)
where X:=(Zi;)(r—ag)x(r-a0) 04 Y:=(Yij)(r—ao)x(r—as) (see Lemma 4.8 of [Su]),
and Z’ is a union of reduced subvarieties of Z (see the proof of Theorem 4.2 in [Su]).
Thus we can sum up the arguments of [NS] and [Su] (see also [F]) into a lemma.

ClZ] .=

Lemma 1.4. The varieties Z and Z' are the local models of R and W,, re-
spectively, at the point qy. More precisely, there are some integers s and t such
that

@R.qo [[ulv e Us]] = @Z,(()_Q) [[1‘1. e l‘t]].

o~

O, golltt o us)| 22020 0 [t o -]

In particular, W, (0<a<r) are reduced and seminormal.
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2. The moduli space of generalized parabolic sheaves

Let 7: Xo— X be the normalization of X, and 7~} (z¢)={z1, 22}, then X, is
a disjoint union of X, and X,, any coherent sheaf E on Xj is determined by a pair
(E1, E3) of coherent sheaves on X; and X,. We call as before that E is of rank

{ri1,72) if E; has rank r; on X; (i=1.2) and define the rank of E to be

_ari+cars
c1t+ceo

r(F):

We can also define similarly the modified parabolic Euler characteristic par X, (E)
if E has parabolic structures at the points z€n~1(I) (we will identify I with 7~ 1(I),
and note that m(E) defined in Definition 1.3 is only dependent on r; and ry since
O(1), a and d@(z) are fixed).

Definition 2.1. A generalized parabolic sheaf of rank (r;, r2) (abbreviated GPS)
E:=(E.E, =E,, —5Q)

on )?0 is a coherent sheaf E on )?0, torsion free of rank (r1,72) outside {x1, z2} with
parabolic structures at the points {x},¢;, together with a quotient Iy, @ E,, %Q.

A morphism f: (E, E,, & E,, 5>Q)—(E'.E, 2E. 5Q') of GPSes is a morphism
f: E— FE’ of parabolic sheaves, which maps ker ¢ into ker¢’.

We will consider the generalized parabolic sheaf (E.Q) of rank 71 =r;=r and
dim Q=r with parabolic structures of type {i(z)}.cr and weights {@(z)}es at the
points of 771(I), and we will call it a GPS of rank r. Furthermore, by a family of
GPSes of rank r over T, we mean

(1) arank r sheaf £ on Xox T flat over T and locally free outside {z1.2} x 7"

(2) alocally free rank r quotient Q of £,,=&,, on T

(3) a flag bundle Flagy,(£:) on T with given weights for each z€1.

Definition 2.2. A GPS (E,Q) is called semistable (resp. stable). if for every
nontrivial subsheaf E'C E such that E/E’ is torsion free outside {z;,x2}, we have,
with the induced parabolic structures at the points {z}.er,

P Xm(E)—dim Q (

m(E)—dim QF <1k
par xm(F)—dimQ~ <r T E

resp. <),

where QF’ =q(E, oF,,)CQ.

Let x7 and x2 be integers such that x; +y2—r=x. and fix. for =1, 2, the poly-
nomials P;(m)=c;rm+x; and W;=0Ox, (~N), where Ox, (1)=0(1)|x, =Ox, (civi)-
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Write V;=CPV) and consider the Quot schemes Quot(V; 2W;. P,). Let Q; be the
closure of the open set

{ V,®W; — E; — 0. with H*(E;(N))=0 and such}

that V — H°(E;(N)) induces an isomorphism

We have the universal quotient V;&W;—F'—=0 on X; XQI- and the relative flag
scheme

Ri= HQ, Flags . (FL) — Q.-
z€l; l
Let £ be the pullback of F* to X; xR; and

0 R= Grass, (€5 2€2)) — R1 xRa.

Then we see that, for N large enough. every semistable GPS appears as a point
of R. To rewrite R; x Rg so that it unifies the R in the last section, let V=V, 5 V5,
F=F'®&F? and E=E'§E2. We have

(2.1) RixRy= HQI &, Flaga(n(F2) — Q: x Q..
zel

Note that VW, VoW, —F—0is a~€)1 ><~Q2-ﬂat quotient with Hilbert poly-
nomial P(m)=P,(m)+Pa(m) on Xox(Q1xQz), we have for m large enough a
G-equivariant embedding

Q1 xQs—— Grassp(,m,) (Vi 2 W2V 2 W),

where W™=HO9(W,(m)) and G=(GL(V})xGL(V,))NSL(V).

A (closed) point (p=p1Ep2. {Pr(z): Pry(2)- - Py, (2)}rer) of R1 xRy by the ex-
pression of (2.1) is given by points V; 2 W; 25 E'—0 of the Quot schemes (i=1.2).
together with quotients {if we write Vi, =V12W1 V28 W; and E=E'SE?)

Prix) Pri(=z)

Priy(z)
{VYO QT‘(:{:)7V§‘(’O QT1(JJ)' VA?O an(x)}zels

where

r;(z) =dim

E;
FE). =ny(z)+...4+n;(x).
and Qr(x)::Eam er(:c)::Em/Fl (E)zs.on. Q-rzx(r) :=E;/F},(E)z. The morphisms
Pr(x) 804 Przy (J=1,....1;) are defined to be

Y4 N Prix EI
Pr(z): V_’)\fo —FE— E,. Prj(a): 1/;?0 R— Qr(l:) =F,— m
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Thus we have a G-equivariant embedding
R1 xRy — Grasspn) (Vi 2 WT" 212 2 W) xFlag.
where Flag is defined to be

Flag= H{Grassr(x) (V) xGrass,, (;)(V) x ... xGrass,,_)(V)},
zel
which maps a point (p=p1 ®p2: {Pr(x): Pry(x)s -+ + Pro, (x) Jzer) Of R1 xR to the point
9ry (=)

(H(Vg, (m) S UAV 2D U, 0.V 2B 0, o V=250, o) beer)
of Grassp(m) (Vi®@W" &V, & W3") x Flag, where
9:=H(p(m)). U= H(E(m)).
9r(@) = H0o(e)(N): Urgay = H(Qr())-
9ry(@) =H () (V). Upyoy = HYQry (). 3=1. s
Finally, we get a G-equivariant embedding
R~ G’ = Grass p(m) (V1 2 W]" 5V, 2 WJ") x Flag x Grass,(V; &V5)

as follows: a point of R is given by a point of Ry xR, together with a quotient
L, oL, 2,Q, then the above embedding maps ., S F,, LQ to

gc = H"(g(N)):VieVh = H'(V (N)) — H°(E(N)) — E,, 2E,, == Q.
Given G’ the polarization (using the obvious notation)

{miN X H{ax.dl(m). ..,«dla_(;c)}} k.

xel

we have the analogue of Proposition 1.1. whose proof (we refer to Proposition 1.14
and 2.4 of [B], or Lemma 5.4 of [NS]) is a modification of Theorem 4.17 in [N] since
our group G here is different from that of [N].

Proposition 2.1. A point (g.{g9r(z). 9ri(2): -+ 9r,, (x) J2el. 96 )EG' is stable
(resp. semistable) for the action of G, with respect to the above polarization {we
refer to this from now on as GIT-stability). if and only if for all nontrivial sub-
spaces HCV, where H=H,&Hs and H;CV; (i=1.2). we have (with h=dim H
and H:=H,@W @& Hy W)

: (hP(m)—P(N)dim g(H +Zal(rh P(N)dim g,(;)(H))

m—N
el
+ZZd (z)(ri(x)h—P(N)dim g,, ) (H))
z€l i=1

+k(rh—P(N)dimge(H)) <0 (resp. <0).
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Proposition 2.2. Suppose (p, {pr(gc).pn(x),...,p,.lr(l)}zel,q)eﬁ, is a point
such that E is torsion free outside {z,.x2}. Then E=(E.E; ©E,,>Q) is sta-
ble (resp. semistable) if and only if for every subsheaf 0#£F#E we have (using
Notation 1.2)

l

—— X(EFWV) P(m) —P(N)X(F(m)+Y_ ax(rx(F(N)) = P(N)R*(Q]()))
el

I
+Z Z di(f)(‘rf(I)X(F(N))—P(N)hfo(Qf,(x)))

zel i=1
+E(rx(F(N))=P(N)dim Q") <0 (resp. <0).

Proof. For a subsheaf FCE such that E/F is torsion free outside {z1,z5}, by
the same computation as in Proposition 1.2, we have

LHS(F)=kP(N) (par Xom (F) —dim QF —r( F)BE‘LX&(_E)_‘L') ,

r

Thus E is stable (resp. semistable) if and ounly if LHS(F)<0 (resp. <0) for the
required F. If E/F has torsion outside {x;.x2}. then LHS(F)<0. [

Lemma 2.1. There exist N and M, (N) such that for m>2M1(N) the follow-
ing holds. Suppose (p, {Dr(z): Pri(a): -+ Pri, () }ec1-9) ER 15 a point which is GIT-
semistable then for all quotients E-5G—0 we have (with QY:=Q/q(ker T))

1
1 xX
h(GN)) = ¢ (<cl+c2>r<g>l+2azh0<c2§<1)>+§:Zdi(:r>h“<Q?,.(I>>) +h%(Q).
zel xrel i=1
In particular, E is torsion free outside {x,.x2}. q maps the torsion on {x1.22} to
Q injectively and V—H(E(N)) is an isomorphism.

Proof. The proof of Lemma 1.1 goes through with obvious modifications except
that we cannot assume that the sheaves E are torsion free at x; and z5. To see it
clearly, we write out the proof of £ being torsion free outside {z1.z2}.

Let 7=Tor F and G=E/7. We note that h°(G(N))=P(N)—h"(7). h.D(Qf(z)):
r—h%(Q7,,) and h° (in(z)):'ri(:r)—hO(Q:i(I)). The above inequality gives

KRO(r) < kdim Q™+ 3 (as + a1, 41(2) ~ar (2))R0(7s).
xzel
by which one can conclude that 7=0 outside {z,.z,} and h®(7;, &7,,) —dim Q" =0
since oz <k—ay, 4+1(z)+a;(z). In particular, ¢ maps the torsion on {z1.z2} to Q
injectively. (O
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Remark 2.1. The proof of Lemma 1.1 and Lemma 2.1 actually implies that one
can take N large enough such that for a GIT-semistable point the sheaf E involved
satisfies the condition H'(E(N)(—z—z;—z2))=0 for any xr€X,. which implies
that E(N) and E(N)(—x;—x) are generated by global sections and HO(E(N))—
E(N)y, ®E(N),, is surjective. Conversely, it is easy to prove that every semistable
GPS will satisfy the above conditions if N is large enough.

Proposition 2.3. There exist integers N >0 and M (N)>0 such that for m>
M(N) the following 1s true. A point (p.{Pr(z)-Pri(x): - .pm_(l)}ze],q)eﬁ s GIT-
stable (resp. GIT-semistable) if and only if the quotient E s torsion free outside
{z1,22}, E=(E,q) is a stable (resp. semistable) GPS and the map V—H"(E(N))
18 an isomorphism.

Proof. The proof is the same as that of Proposition 1.3 with some obvious
modifications in the notation.

Notation 2.1. Define H to be the subscheme of R parametrizing the generalized
parabolic sheaves E=(E, E, ¢ F,, —q->Q) satisfying

(1) CPM=HO(E(N)), and HY(E(N)(—x1—15—12))=0 for any zeXy:

(2) Tor E is supported on {z;.22} and (Tor E),, &(Tor E)a, Q.
Let R*¢ (R*) be the open set of R consisting of the semistable (stable) GPS, then
it is clear that

open open ~
H

REEZHENR.

We will introduce the so called s-equivalence of GPSes later. in Definition 2.6.
It is also known that H is reduced, normal and Gorenstein with only rational sin-
gularities (see Proposition 3.2 and Remark 3.1 in [Sul).

Theorem 2.1. For given data in Notation 1.1 satisfying (*) and x1 and X2
with x1+x2—T=X, there exists an irreducible, Gorenstein, normal projective va-
riety Py, ., with only rational singularities, which is the coarse moduli space of
s-equivalence classes of semistable GPSes (E.Q) on Xo of rank r and x(E;)=x;
(7=1,2) with parabolic structures of type {fi(z)}.cr and weights {@(x)}zcs at the
points {x},c;.

Proof. The existence of the moduli space and its projectivity follow from Propo-
sition 2.3, the other properties follow from the corresponding properties of H and
the fact that RSSCH if N is large enough. O

Recall that we have the universal quotient £' on X; xR, flat over R;, and
torsion free of rank r outside {x;} with Euler characteristic x,. together with, for
each z€l,, a flag

g{lz}X’Rl :Fo(g{lz}le) By 3 (g{lr}le) 2.0 Fl.r (6{11}le> 2 Flr+1(£{1x}xR1) =0
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of subbundles of type 7i(z) and weights @(x). Let Ql‘-i:‘s{lx}xnl/Fz?(g{lx}xnl)' We
can define a line bundle ©%, on R; as

la:
(det R, £1)*® (X) { (det £y o, ) ©(X)(det Q, ;) } 2(det £f, ) xr))"-
i=1

zely

Similarly, we can define the line bundle ©%, on R, and the G-line bundle
O = 0" (Or, 8Or,) (det Q)

on R, where g*(é’;l EBE’%Q)—>Q—>O is the universal quotient on R. One can check
that © is the restriction of ample polarization used to linearize the action of G.
Thus some power of ©5 descends to an ample line bundle on Py, ,. In fact, we
have the following result.

Lemma 2.2. The line bundle © .. descends to an ample line bundle Or,, .,
on Py, -

Proof. The proof is similar to the proof of Theorem 1.2, we only make a remark
here. If (E, Q) is a semistable GPS of rank r and (E’. Q') a sub-GPS of (E. Q) with

par X'm (E) —dim Q
- .

par xm(E')—dim Q' = r(E’)
we have (assuming that £’ is of rank (ry.73))

!

e
—kx(E)+m Z Qpt+To Z a¢+zzdi(r)dim ———E—I——+T111 +rals

,I . g
zel z€l, z€l i=1 EImFI(EI)

—kx+r erl o D Zli":l di(z)ri(x)+r(lh+12) .
r

+kdimQ =

(E'Y=0. O

Notation 2.2. Let Ry pCR (resp. Rz, CRy) be the open set of points cor-

responding to the vector bundles on X; (resp. X3). and ’fé;zg_l(RLF xRa.r),
then

Q:RF —)RLF XRQvF

is a grassmannian bundle over R p xR2 ., and Ry CH. We define
R}pﬁa ={(F,Q) ERp | Ex, — @ has rank a},

and ﬁpﬁl(i)Z:R%‘.OU...UR%’i, which have the natural scheme structures. The sub-
schemes R, and Dy (i) are defined similarly. Let D; (i) and Dy (i) be the Zariski
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closure of ﬁpl(z) and ﬁpg(i) in R. Then they are reduced. irreducible and G-
invariant closed subschemes of R. thus inducing the closed subschemes D (i), x,
and D ()y, o Of Py, xo- Clearly. we have (for j=1.2) that

R>D;(r—1)>D;(r—2) ... >D,(1) > D;(0).
Pxixz 2 Di(r=1)x, %2 DDi(1=2) 51 x2 2+ 2 Dj(1)xaixe 2 P5(0)xs x2-

Lemma 2.3. The schemes H, @j(a) and D, (a)ﬁﬁg(b) are reduced and nor-
mal with rational singularities. In particular, Py, xz» Dj{@)x,.x2 @nd D1(a)y; x2 1
Dy(b)y, .x, are reduced and normal with rational singularities.

Proof. This is a copy of Proposition 3.2 in [Su] and the proof there goes
through. O

Let (E,Q) be a semistable GPS of rank r with E=(E;, E3) and x;=x(Ej)
(j=1,2). Then, by the definition of semistability., we have (for j=1.2) that

¢

par X (E;) —dim Q% < (par Xm{E)—r).
C1

+c2
Recall that x;+x2—r=x and
1 = .
ng=g (; ;di(a’)ri(£)+r§ a_,+rlj) . j=1.2
We can rewrite the above inequality into

ny+r—dim QF2 < x(E;) <n; +dim QF:.

2.2
22) no+r—dim QF1 < x(E>2) < ng+dim QF:.

Thus, for f'ixed X, the moduli space of s-equivalence classes of semistable GPSes
(E,Q) on X of rank r and x(F)=x+7 with parabolic structures of type {7(2)}es
and weights {@(z)},er at the points {x}.¢; is the disjoint union

P:= H Pyt xa

X1+Xx2=x+r

where Y1, X2 satisfy the inequalities

ny <x(Ey)<ni+r and no < y(E2)<na+r.
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Notation 2.3. The ample line bundles {©p, .} determine an ample line bun-
dle ©p on P, and for any 0<a<r, we define the subschemes

Dy (a) = H D, (a’)Xl-XZ and DQ(G) = H DQ(a)Xl-X2'
X1+x2=x+7 X1+Xx2=x+r
We will simply write D1:=D;(r—1) and Dy:=Dy(r—1).

In order to introduce a sheaf theoretic description of the so called s-equivalence
of GPSes, we enlarge the category by considering all of the GPSes including the
case 7(E)=0, and also assume that |I|=0 for simplicity.

Definition 2.3. A GPS (E, Q) is called semistable (resp. stable), if

(1) when rk E>0, then for every nontrivial subsheaf E’'CE such that E/E’ is
torsion free outside {z1,x2}, we have, with the induced parabolic structures at the
points {z}zer,
/PR Xom (E)—dim@Q

EN—~dimQF <
par Xm(FE ) ~dim Q¥ <rk W E

(resp. <),

where QF =¢(E, ©E. )CQ:
(2) when rk E=0, then E,, 6 E,,=Q (resp. E;, S E,,=Q and dim Q=1).

Definition 2.4. If (E.Q) is a GPS and rk E >0, we set

deg £ —di
hol(E, Q) = BTG,

It is useful to think of an m-GPS as a sheaf E on X’O together with a map
T — 2, Q—0 and hO(on)zm. Let Kg denote the kernel of 7, E—Q.

Definition 2.5. Given an exact sequence
0—E —E-—E"—0

of sheaves on )?0, and 7, E—@Q—0, a generalized parabolic structure on E. we
define the generalized parabolic structures on E’ and E” via the diagram

0 —— n.F s T E . E’ — 0
| | |
0 —— Q ) Q" —— 0.

The first horizontal sequence is exact because 7 is finite. Q' is defined as the image
in @ of m.E’ so that the first vertical arrow is onto, Q" is defined by demanding
that the second horizontal sequence is exact, and finally the third vertical arrow is
onto by the snake lemma. We will write

0—(F',Q)— (E.Q) — (E".Q")—0

whose meaning is clear.
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Proposition 2.4. Fiz a rational number u. Then the category C,, of semistable
GPSes (E,Q) such that tk E=0 or, rk E>0 with ug[(E.Q)|=pn. is an abelian, ar-
tinian, noetherian category whose simple objects are the stable GPSes in the cate-

gory.
One can conclude, as usual, that given a semistable GPS (E. @) it has a Jordan-
Hoélder filtration, and the associated graded GPS gr(£. Q) is uniquely determined
by (E,Q).
Definition 2.6. Two semistable GPSes (E;.Q;) and (E;, @Q2) are said to be
s-equivalent if they have the same associated graded GPSes. namely.
(B1,Q1)~(B2.Q2) <= gr(E1. Q1) =gr(E2. Q2).

Remark 2.2. Any stable GPS (F,Q) with rtk E>0 must be locally free (i.e.,
E is locally free), and two stable GPSes are s-equivalent if and only if they are
isomorphic.

Proposition 2.5. Every senustable (E'. Q") with tk E'>0 is s-equivalent to a
semistable (F,Q) with E locally free. Moreover.

(1) if E' has torsion of dimension t at xo, then (E'.Q’) is s-equivalent to a
semistable (E,Q) with E locally free and

rank(E,;, — @) <dimQ—t;
(2) if (E,Q) is a semistable GPS with E locally free and
rank(E,, — Q) =a.
then (E,Q) s s-equivalent to a semistable (E'.Q’) such that
dim(Tor E'),, =dim Q—a.
The roles of x1 and x4 in the above statements can be reversed.

Proof. We prove (1) first. For given (E’.Q’)€C, with rk £'>0, there is an
exact sequence

such that (Ej,Q5) is stable and pc[(E}. Q5))|=u if rk E5>0. It is clear that
gr(E'. Q") =gr(Ey. Q1) e (E;. Q).
When rk E5>0, then E} has to be locally free and E{ has the same torsion

as E’. Thus if rk E] >0, there is (by using induction over the rank) (E,.Q:)€C,
with Ey locally free and

rank{Eq », — Q1) <dim @, -t
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such that gr(E;, (Q1)=gr(F{,Q}). One can check that
(E.Q):=(E12E5. Q12@Qs) €C,
is s-equivalent to (E’, Q') and
rank(F,, — Q) <dim Q—t.
If rk B} =0, then gr(E’,Q')=(E%, Qb)=gr(Tor E'. Tor E'). Thus (E’,Q’) satisfies
(up to an s-equivalence) the exact sequence
0—(E'.Q)— (E'. Q") — (:,C.C) — 0.

where (E’ , @’)GC# has torsion of dimension t—1 at x». This is the typical case we
treated in Lemma 2.5 of [Su], and we will indicate later how to get our stronger
statement by the construction of [Su].

When rk E5=0 and dim(Tor E}),, <t, then (E}.Q5) has to be (5,C. C), which
is again the above typical case we will treat. If dim(Tor E}),,=t. by repeating the
above procedures for (E7, Q). we will reduce the proof. after a finite number of
steps, to the above cases again since dim @} decreases strictly. All in all, we are
reduced to treating the typical case

0— (E.Q")— (F'.Q") — (:,C.C) — 0.

where (E/, @’)ecﬂ and dim(Tor E'),, =t—1.

By using induction over ¢, there exists (E.Q)€C, with E locally free such that
gr(E,Q)=gr(F’,Q') and

rank(q : Ezl — @) <dim @— (t—1).
where ¢; and §> are the induced maps by ¢: E‘Il SEIQ —Q. Since (,C.C) is stable,
we have
gr(E'. Q') =gr(E.Q)2(:,C.C).
Let ngker((jg:]icz%@)‘ Choosing a Hecke modification h: E—E at 2 (see Re-
mark 1.4 of [NS]) such that Ky:=ker h,, CK> and dim Ko=1, we get the extension
0—E-SFE2, C—0

Let Q:Q@C and EQ:&IZ(EIZ)@VI for a subspace V7. We define a morphism
[ By, ®E,,—Q such that E, —Q to be

. o

Ey —5E, 5 Q—Q
and E,, —Q to be
~ (hitey) E, G2.id) ~
By =hay(Eyy ooV, —27223 o o 0 @204 o0 2,
2
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where hy,:Ey, /Ko=h,,(E,,) and cjg:fu/l?Qaé (note that K»CK3). Thus the
diagram

= =~ hey he 0.7
B, 0k, tul=l g oo, 02 ¢ 0
g al H
0—— Q@ — %  Q@sC C 0

commutes. One checks that f is surjective by this diagram, and thus
0— (E.Q) — (E.Q) — (;,C.C) —0.
It is easy to see that (E,Q)eC, is s-equivalent to (E'. Q") and
rank(E,;, — Q)= rank(Erl — Q) <dim Q—t.

To prove (2), let ¢: Ey, & E,, »Q and Q=q1(E,,)=C¥™@7¢. Take the pro-
jection Q5 CdimQ-a anqd define

E =ker(y: E— E,, 2,0 —p—>12 CdimQ—a).
We get a semistable (E, Q)ECM (Q being the kernel of p) such that
0— (B, Q) — (E,Q) — (;,CIm I~ C¥™974) — 0
is an exact sequence in C,,. Thus (E.Q) is s-equivalent to
(B'.Q)=(Ea,,Cctmee.QzCcime)
by Lemma 2.4 below. [
Lemma 2.4. Given an (E,Q)€C,. if there is an exact sequence
0— (E1,Qh) — (E.Q) — (E2.Q2) —0
such that (Ey,Q2)€C,, then
gr(E. Q) =gr(Er. Qr)egr(E2. Qo).
In particular, (E, Q) is s-equivalent to (E1S Ey. Q15Q2).
Proof. Since (E2,Q2)€C,, there exists an exact sequence
0— (E5, Q5) — (E2.Q2) — (E5.Q5) —0
such that (EY,Q5)€C,, is stable. Thus
gr(Es. Q2) = gr(E;. Q5) (B3 Q%)
On the other hand, if we define (E, é) by the exact sequence

0—(E,Q)— (E.Q) % (E}.Q4) —0,
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where g: (E, Q) —=(E2, Q2)—(E7,Q%), then we have an exact sequence
and (E}, Q4)eC,. By using induction over rk E, and h°(Ez) when rk E;=0, we
have

gr(E, Q) =gr(Ey. Q1) Sgr(E;. Q).

Now the lemma is clear. O

3. The factorization theorem

Recall that 7: 5(,0 — X is the normalization of Xg and 7! (zq)={z1,22}. Given

a GPS (E,E,, @EngQ) on )20: we define a coherent sheaf o(E,Q):=F by the
exact sequence

0—F —mE—,Q—0.

where we use ;W to denote the skyscraper sheaf supported at {z} with fibre W,
and the morphism 7, E—, Q is defined as

W*E — W*E|{Io} :TO(ElleE.L'Q) i} l‘oQ'

It is clear that F is torsion free of rank (r;.r2) if and only if (E, @) is a GPS of
rank (ry,72) and satisfying

(T) (Tor E),, &(Tor E),, — Q.

In particular, the GPS in H in this way gives torsion free sheaves of rank r with
the natural parabolic structures at the points of I.

Lemma 3.1. Suppose that (E. Q) satisfy condition (T). and let F=¢(F.Q)
be the associated torsion free sheaf on Xp.

(1) If E is a vector bundle and the maps E,,—Q are isomorphisms, then F is
a vector bundle.

(2) If F is a vector bundle on Xy. then there is a unique (E.Q) such that
P(E,Q)=F. In fact, E=7*F.

(3) If F is a torsion free sheaf, then there is an (E.Q). with E a vector bundle
on Xo, such that &(E,Q)=F and E,,—Q 1is an isomorphism. The rank of the map
E;,—=Q isa if and only if F»@@zog Afo“em%r‘“). The roles of 1 and x2 can be
reversed.

(4) Ewery torsion free rank r sheaf F on Xy comes from an (E,Q) such that
E is a vector bundle.

Proof. The proof is similar to the proof of Lemma 4.6 of [NR] and Lemma 2.1
of [Sul. O
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Lemma 3.2. Let F=0(E.Q). then F is semistable if and only if (E,Q) is
semistable. Moreover,

(1) if (E,Q) is stable, then F is stable:

(2) if F' is a stable vector bundle. then (E.Q) is stable.

Proof. For any subsheaf E'C E such that E/E’ is torsion free outside {z1.z2}.
the induced GPS (E’, QF") defines a subsheaf F'CF by

0—F —mE — ,,QF —0.

It is clear that par Xm(F’)=par xm(E’)—dim QF , thus F semistable implies (¥, Q)
semistable. Note that F may have torsion and thus (E.Q) may not be stable even
if F is stable (for instance, taking E’ to be the torsion subsheaf). In fact, (E,Q) is
stable if and only if F is a stable vector bundle.

Next we prove that if (E. Q) is stable (semistable). then F'is stable (semistable).
For any subsheaf F’ C F such that F/F’ is torsion free. we have canonical morphisms
7 F'sr*F—r*n,E—E. Let E’ be the image of #*F’. One has the diagram

0 0 0

I I l

0 —_— F/ _— W*El > IoQEI O

! I !

6 — F — . F D 0@ — 0

l J l

0 —— F/F —— m(E/E) — .,(Q/QF) —— 0
| | |
0 0 0

which implies that F/E’ is torsion free outside {r,.z2} (since F/F" is torsion free),
par x,(F') = par xm(E") —dim QE/ and par xm(F)=par xm(E)—dim Q.

Thus, noting that rk E/=rk F’ and rk E=rk F. one proves the lemma. [

Lemma 3.3. Let (E.Q) be a semistable GPS with E locally free and F'=
o(FE,Q) be the associated torsion free sheaf. Then (E.Q) is s-equivalent to a
semistable (E’, Q") such that E’ has torsion of dimension dim Q—a(gr F).
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Proof. We prove the lemma by induction over the length of gr F' (the num-
ber of components of stable sheaves of grF'). For any torsion free sheaf F, we
have a canonical exact sequence 0— F —mE —>(§—>0, where E=n*F / Tor n* F and
dim Q=a(F). If F=¢(E,Q) with E locally free, then we have the commutative
diagram

0 0
| |
0 —— F — 1,E ) 0

H | l

00— F —b 7, — ;,,QQ — 0

I I

Tl —— 5,Q3
| |
0 0.

where T:E/E‘, Q5=Q/Q and the map T = 2, @3 is defined such that the diagram
is commutative, which has to be an isomorphism. This gives an exact sequence
0>(E,Q)—(E,Q)—={r,Q3)—0inC,. thus (E.Q) is s-equivalent to (E@T Q=Qs)
and dim7=dim @—a(F). In particular, the lemma is true when gr F has length
one. For the general case, there exists an exact sequence 0— Fy;— F'— F, —0 with
F; stable and par y,, (Fz2)=par i, (F). Consider

0 0 0

| I |

0—— F, — % F — F, ——0

! ! |

(3.1) 0 —— 1B —— mE —— 1,E, —— 0
0 — @ 2@ 5@z — 0

! l !

0 0 0.
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where Ey=n*F;/ Tor n*Fy, dim Q,=a(F}). EQ:E/El and Q2=Q/Q,. The first
two vertical sequences are the canonical exact sequences determined by Fi and
F. The third vertical sequence is defined by demanding that the diagram com-
mutes, which has to be exact. Using par p,, (F2)=par y,,(F). it is easy to see
that pe|(Ea, Q)] =uc|(E, Q)] and (E», Q) is semistable (since F; is stable). Thus
gr(E, é):gr(El, Q1)@ gr(E2, Q2). On the other hand, (E1, @) is semistable with
E) locally free and F1=¢(F;,Q;). By the induction. there exists an (E7,Q})€C,
such that gr(E1, Q1) =gr(E;, Q}) and dim Tor E} =dim Q, —a(gr F1). Thus (E.Q) is
s-equivalent to (B, Q'):=(E{ & E2&7.Q1=Q22Q3). One checks that dim Tor Eo=
a(F)—a(F))—a(F) by restricting the diagram (3.1) to the point z¢ and count-
ing the dimension of the fibres (the first two vertical sequences remaining exact).
Therefore (note that dim @;=a(F})) £’ has torsion of dimension

dim Q1 —a(gr F})+dim Tor Eo+dim 7 = dim Q@ —a(gr Fy)—a(Fy),
which equals dim Q@ —a(gr F) since gr F=gr(Fy)<Fp. O

Consider the family o*E=(0*&L, 0*€?) of GPSes over R with the universal

quotient p*(£2 ®EZ )— Q. Using the finite morphism
ﬂxlﬁ“:f{g xRS — X xﬁ“,

we can define a family ., of semistable sheaves (Lemma 3.2) on Xo by the exact
sequence

(3.2) 00— Fa. — (ax L5 )u(0"€) — 1y Q@ —0.

Since p*€ is flat over R and Q locally free on RS, Fr.isa flat family over RS,
Thus we have a morphism

Osst R — R —s Ux,

such that ¢%

T0s OUx, =07, by Theorem 1.2.

Lemuma 3.4. The morphism Ofss induces a morphism

such that ¢§‘>Xl‘x2 Oux,=O7p, ,,-

Proof. The proof is clear. we just remark that one can compute O Fros =053,
by the exact sequence (3.2) defining the sheaf F5... U
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Let Uy, y, be the image of Py, ,, under the morphism op, . then U, y, is
an irreducible component of Ux, and OPy, 1, 15@ finite morphism since it pulls back
an ample line bundle to an ample line bundle. We will see that

O’PX1<X2 Pryxa \{ D1 Do} — Uy, o \Wr1

is an isomorphism. Thus ¢p,, , is the normalization of Uy, ,,. We have clearly
the morphism
o= [ op P —Uxe
X1+x2=x+7
which is the normalization of Ux,. We copy Proposition 2.1 from [Su].

Proposition 3.1. With the above notation and denoting Dy(r—1). Da(r—1),
Wy_1 by Dy, Do and W, we have

(1) ¢: P—Ux, is finite and surjective. and o(Dy(a))=0(D2{(a))=W:

(2) ¢(P\{D1UD2})=Ux,\W, and induces an isomorphism on P\{D1UD;}:

(3) 9lpy(a): Pila) =W, is finite and surjective:

(4) #(D1(a)\{D1(a)ND2UD;1(a—1)})=W,\W,_1. and o induces an isomor-
phism on D1(a)\{D1(a)NDUD;(a—1)};

(5) ¢: P—Ux, is the normalization of Ux,:

(6) Blp,(a): Pi(a)—=W, is the normalization of Wi:

(7) ¢(D1(a)ND2)=W,_1, and W,_1 is the nonnormal locus of Wj.

Proof. In proving (4), we used Lemma 2.6 of [Su] to show that ¢ induces a
morphism
(]52 Dl(a)\{Dl(a)ﬂDguDl(a—l)} —>WH\W,1_1.

But Lemma 2.6 in [Su] is not correct, we have to prove it without using the lemma
(also to fix the gap in [Su]). We will use [-] to denote the s-equivalence classes of
the objects we are considering. For any [(E.Q)]€Di(a)\{D1(a)ND2UD(a—1)}.
we can assume that F is a vector bundle by Proposition 2.5, and E,,—Q is an
isomorphism since [(E,Q)]¢Ds. Thus o(E,Q):FEWa\Wa;l by Lemma 3.1(3).
We need to show that [F]¢W, ;. If this is not so. then F is s-equivalent to a
semistable torsion free sheaf F’ ew\(a— 1) and (by Lemma 1.3)

a—1>a(F')>algr F')=a(gr F).

On the other hand, by Lemma 3.3, (E.Q) is s-equivalent to a semistable (E’. Q")
with dim Tor E/=r—a(gr F). By Proposition 2.5(1), E’ has no torsion at z; since
[E'.Q)]=/(E,Q)]¢Ds. Hence, by Proposition 2.5(1) again. (E’. Q") is s-equivalent
to a GPS (E, Q) with E locally free and

rank(E,, — Q) <a(gr F)=a(gr F')<a(F')<a-1.
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We get the contradiction [(E,Q)]=[(E.Q)]€D;(a—1). Thus ¢ induces a morphism
@: Dl(a)\{Dl(a)ﬂDQUDl(a—l)} —> Wa\Wa-L

The argument in [Su] for the other statements goes through using [B]. only (7)
is in doubt. This can be seen as follows, the fact o(D;(a)ND;)=W,_, follows the
local computation (see Proposition 3.9 of [B]). and the nonnormal locus of W, is
contained in W,_; by (4). If W, | is nonempty and not equal to the nonnormal
locus, there exists a nonempty irreducible component WX*}** of W,_; such that
#|D, () Is an isomorphism at the generic point of W) 1**. This is impossible since
the fibre has at least two points (one in D;(a—1)\D; by Lemma 3.1 and another
in Dy(a)NDy). O

Let Iz denote the ideal sheaf of a closed subscheme Z in a scheme X. When Z
is of codimension one (not necessarily a Cartier divisor). we set Ox(—Z):=Iz. If £
is a line bundle on X and Y is a closed subscheme of X. we denote LR I; and the
restriction I; @Oy of Iz on'Y by £(—Z) and Oy (—Z). We have the straightforward
generalizations of [Su, Lemma 4.3 and Proposition 4.1]. whose proof we omit.

Lemma 3.5. Assume given a seminormal variety V with normalization a;‘?—)
V. Let the nonnormal locus be W, endowed with its reduced structure. Let W be
the set-theoretic inverse image of W in V. endowed with its reduced structure. Let
N be a line bundle on V, and let N be its pullback to V (N=0*N). Suppose
HO(V,N)—HY(W,N) is surjective. Then

(1) there is an exact sequence

0— HY(V,Ngl+)— H'(V.N) — H*(W.N) — 0;
W

(2) if HY(W.N)—HY(W.N) is injective. so is H (V. N)>H' (V. N).

Lemma 3.6. The following maps are surjective for any 1<a<r,
(1) HO(Dl(a), @p)—)HO(Dl(a)ﬂDgUDl(a—-l). @p):
(2) HY(D)(a),0p)—H(D1(a)NDy.Op).

Lemma 3.6 tells us that the assumption (surjectivity) in Lemma 3.5 is satisfied
for the situation V=W,, V=Di(a), c=0|p, (,) and N =0y |w,. Thus we can use
Lemma 3.5 to prove the following result.

Proposition 3.2. We have a (noncanonical) isomorphism

H'(Ux,. Ouy, ) = HY(P.Op(-Dy)).

Proof. The proof is similar to the proof of Proposition 4.3 of [Su]. O
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Lemma 3.7. Let V be a projective scheme on which a reductive group G acts,
L be an ample line bundle linearizing the G-action, and V** be the open subscheme
of semistable points. Let V' be a G-invariant closed subscheme of V% and V' its
schematic closure in V. Then

(1) V'**=V’, and V' |G is a closed subscheme of V*° J|G:

(2) HO(V=s LYC=HY(W,L)C, where W is an open G-invariant irreducible
normal subscheme of V' containing V°% and (-)™ denotes the invariant subspace
for an action of G.

Proof. See Lemma 4.14 and Lemma 4.15 of [NR]. O

Lemma 3.8. LetV be a normal variety with a G-action, where G is a reductive
algebraic group. Suppose a good quotient m: V —U exists. Let L be a G-line bundle
on'V, and suppose it descends to a line bundle L on U. Let V'CV'CV be open G-
invariant subvarieties of V, such that V' maps onto U and V”:w:l(U”) for some

nonempty open subset U" of U. Then any invariant section of L on V' extends
to V.

Proof. See Lemma 4.16 of [NR]. O

Proposition 3.3. Let ﬁpCH be the open set consisting of (E.Q) with E
locally free. Then

HOR*,07..)¢ = H'(H.0x) = H'(Rr. 0z, )°.

where G=(GL(V1) x GL(V3))NSL(V,&V3).

Proof. The first equality follows from Lemma 3.7. the se~cond equality follows
from Lemma 3.8 by taking V=R*, U=Py, y,. V'=R*NRp and U"=Py, \,\
{D;,D2} (one needs Proposition 1.4 to show that U” is nonempty). [

Lemma 3.9. Suppose V=V /G is a good quotient and T is any variety with
trivial G-action. Then VxT =V /G xT is a good quotient.

Proposition 3.4. Let G and G2 be reductive algebraic groups acting on the
normal projective schemes Vi and Vi with ample linearizing L1 and Ly. Suppose
that L1 and Ly descend to ©1 and ©,. Then, for any G-invariant open sets Vy OV
and VQDVQSS,

HO(Vy x Vi, L@ Ly) %Gz = HO(Vy, L) 2 HO(Vy. Ly)©2.
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Proof. Using Lemma 3.7 and Lemma 3.9, we have

HO(Vi x Vi, L1 @ L)1 %%2 = {HO(Vy x V. L1 % Lp) O ¥ it Jlid} <G
= HO(V* Gy % V2. 0,8 Ly) (4}%C2
= HO (V2 Gy x V5* G2, 0, 202)
=HO(V?S ))G1.01) 2 HO(V5® [ G2. ©2)
=HO(V;. L)% 2 H'(Va. Ly)¢2. O

Notation 3.1. For p=(u1.....p,) with 0<p, <...<py <k —1, let
{di = Hr; _/17‘;+1}€':1
be the subset of nonzero integers in {y; —p;41}/;. Then we define

ri(xe) =1, di(x1) =d;. Ly, =1 oy =,
ri(@a) =r—ri_ip1. di(x2)=diip1. L, =l ag, =k—mn

and for 7=1,2, we set

le;
a( ) </17 o +d1 ;L”] et Z d -llr‘}‘zdi(xj))'
ﬁ(l‘j):(T1($j),rg($j)—r1($j).....T'[Ij ("j)—T'[ijl(.Tj)).

We also define

1 Ly
T:E(Iezhlggd )+rHEZIla;r+rl1>+E;ﬂiv
=2 (ZZd )+rZa_E+rlz>+r-—Z#1

z€ls i=1 z€I2

One can check that the numbers defined in Notation 3.1 satisfy (j=1,2)

Iy
(3.3) Z Zdi(:c)ri(a:)—kr Z ap+rl; =kxh.

zel;U{z;} i=1 zel;U{z;}



Factorization of generalized theta functions in the reducible case 199

Notation 3.2. For the numbers defined in Notation 3.1. let, for j=1.2,
U)‘z-j =Ux (xS LUz} A7) @) beer;ugasy - §)

be the moduli space of s-equivalence classes of semistable parabolic bundles E of
rank r on X; and Euler characteristic x(E)=x/ . together with parabolic structures
of type {7i(z)}reru(z,) and weights {@(x)},c uq.;) at the points {T}eroqe;;. We
define U;‘(] to be empty if x4 is not an integer. Let

@u)“(J =0k, 1, {7i(x). @(x). az }rer;uia,y - 1U{T5})
be the theta line bundle.
Theorem 3.1. There exists a (noncanonical) isomorphism
HOUx,uxa: Oux,ux, ) 2D HOWUY, - Ouy )2 HOUY, - Oy ).
“
where p=_(1, ... ptr) Tuns through the integers 0<p, <...<py1 <k~1.

Proof. As in Proposition 3.3, one can show that
H(Py, x0-Op,, ,(-D2)) = HY(Rp. 05 (~D2))°.

Note that Oﬁp(—ﬁg):det E.,®(det Q)71 and write n,,:=(det &,,) ' gdet Q. We
have

H'(Rp.©g,(=D2))" = H'(R1.r xRa . O, r 8Or, , & (det £,) 2 0.7 1)°.

Let p
B N LR,
Ry = Hél.F Flagy.) (F3) — Rj.F.
zel;uf{a;}

then, by Lemma 4.6 of [Su], we have
oc(n; ") = EP ph.(LY) B ph, (L5)
#

where p=(u1, ..., ¢tr) runs through the integers 0<p, <...<p;<k—1 and

[.L‘l
L = (det £} y*r £ ) (det Qs ;) 7).
i=1
lig
Lh = (det £2,)7 g (X)(det Qy, ;)"
=1
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are line bundles on RY xRY. By the definition

lr
Ore = (det Rrge€l)'® (X)) 4 (det £2)° 2 (X)(det Qx.i)dm}@(det £1)5,

z€l;U{x;} i=1

one sees easily that

Ory =pi" (Or, )2 LY.
@Rg :pg* (C—)R2.F g(det 5I2)L)8£5

Thus we have (for any x; and x2) the equality

HY(Pyy 22 Op,, 1, (—D2)) =P HO(RY x RE. Oy £Ory )<,
1

Since C* x C* acts trivially on R{ xR5, one can see that if
HO(RY xR Opu £Oxs) #0.

then the x; (j=1,2) has to satisfy

L
Yo Sd@re)tr Y astrl=ky

zel;u{z;} i=1 ze€l;U{z;}

Therefore x; has to be X?- In this case, C*x C* acts trivially on the line bundle,
HO(RY XRY, Oru ©Ops )¢ = HO(RY xRY . Opp 3Oy ) SH V1512,

Thus, by using Proposition 3.4, we can prove the theorem. [J

We end this paper by some remarks. In Notation 1.1, we chose and fixed the
ample line bundle O(1), the theta line bundle and the factorization are generally
dependent on this choice. In some cases. although the moduli space itself depends
on the choice, the theta bundle and the factorization (also the number of irreducible
components of the moduli space) are independent of the choice. For example, when
x=0, |I|=0, or the parabolic degree is zero, we have [ +lo=0. In any case, one
can see that x4 <n;+r, thus, for any choice. there are only » components of moduli
space contributing to the factorization.

The choice in Notation 1.1 has quite a lot of freedom, it is in general a choice of
the partitions of [; +15. In particular. if we are only interested in studying moduli
space, we can choose any O(1).
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Corollary 3.1. There is a choice of O(1) such that the moduli space Ux, has
T arreducible components and

Wo=0.
In particular, when r=2, Ux, has two normal crossing irreducible components.

Proof. One can easily choose O(1) such that n; and ny are nonintegers. Thus
n;<x;<n;j+r (j=1,2) has only r possibilities and for each such x; there is a
nonempty irreducible component by Proposition 1.4. Recall (2.2),

ny+r—dim Q%> < x(E;) <ny+dim Q"
no+r—dim Q¥ < x(E,) < ng+dim Q2.

We see that dim Q%7 >x; —n; >0, which means that
Dy (0) =D-{0)=9.

Thus Wy==0. In particular, when r=2, the local model of moduli space at any
nonlocally free sheaf is C[z, y]/(zy), by Lemma 1.4. O

Remark 3.1. When r=2 and O(1) is chosen such that n; and n, are noninte-
gers, P has two disjoint irreducible components P; and P, and D;CP; (j=1.2) is
isomorphic to WClUx,. Thus Uy, can be obtained from P; and P, by identifying
Dl and DQ.
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