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Factorization of generalized theta 
functions in the reducible case 

Xiaotao Sun( 1 ) 

I n t r o d u c t i o n  

One of the problems in algebraic geometry motivated by conformal field theory 

is to study the behaviour of moduli space of semistable parabolic bundles on a curve 

and its generalized theta functions when the curve degenerates to a singular curve. 

Let X be a smooth projective curve of genus g, a n d / g x  be the moduli space of 

semistable parabolic bundles on X. one can define canonically an ample line bundle 

@Ux (the theta line bundle) on L/x and the global sections H~ ) are called 
generalized theta functions of order k. These definitions can be extended to the 

case of a singular curve. Thus, when X degenerates to a singular curve X0. one 

may ask the question how to determine H~ by generalized theta functions 

associated to the normalization J(0 of Xo. The so called fusion rules suggest that 
0 ~," when X0 is a nodal curve the space H (Oux o) decomposes into a direct sum of 

spaces of generalized theta functions on moduli spaces of bundles over 3[0 with new 

parabolic structures at the preimages of the nodes. These factorizations and the 

Verlinde formula were treated by many mathematicians fl'om various points of view. 

It is obviously beyond my ability to give a complete list of contributions. According 
to [Be], there are roughly two approaches: infinite and finite. I understand that 

those using stacks and loop groups are infinite approaches, and working in the 

category of schemes of finite type is a finite approach. Our approach here should 
be a finite one. 

When X0 is irreducible with one node. a factorization theorem was proved 
in [NR] for rank two and generalized to arbitrary rank in [Su]. By this factorization. 

one can principally reduce the computation of generalized theta functions to the case 

(1) Th i s  research was done dur ing  a visit  to Univers i tSt  Essen  suppo r t ed  by D F G  Forscher- 

g ruppe  Arithmetik und Georrzetrie and  a g ran t  NFSC10025103 of China .  
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of genus zero with many parabolic points. In order to have an induction machinery 
for the number of parabolic points, one should prove a factorization result when X0 

has two smooth irreducible components intersecting at a node x0. This was done 
for rank two in [DW1] and [DW2] by an analytic method. In this paper, we adopt 
the approach of [NR] and [Su] to prove a factorization theorem for arbi t rary rank 

in the reducible case. 
Let I=I1UI2CX be a finite set of points and /dx x be the moduli space of 

semistable parabolic bundles with parabolic structures at the points { x } ~ .  When 
X degenerates to Xo=X~ UX2 and the points in Ij ( j = l ,  2) degenerate to ]Ijl points 

, ,  7111UI2 of /d  / and a z E I j C X j \ { z o } ,  we have to construct a degeneration UXo:=~x~ux2 
theta  line bundle OUXo on it. Fixing a suitable ample line bundle (9(1) on X0, 
we construct the degeneration as a moduli space of 'semistable '  parabolic torsion 

free sheaves on X0 with parabolic structures at the points z E I1 U I>  and define the 
the ta  line bundle OUXo on it. Our main observation here is that  we need a "new 

semistability'  (see Definition 1.3) to construct the correct degeneration of/d~:. But 
in the whole paper, this :new semistability'  is simply called semistable. It  should not 
cause any confusion since our "new semistability'  coincides with Seshadri 's semista- 
bility in [Se] when I=~, and coincides with the semistability of [NR] when X0 is 

irreducible. 
Let rr:)7(0--+X0 be the normalization of X0 and r r - l ( x 0 ) = { x l ,  x2}. Then for 

any #=(#1, ... ,#~) with O<pr<. . .<p l<k-1 .  we can define g(xj) ,  •(Xj) and axj 

( j=l ,  2) by using p (see Notation 3.1). Let 

/d" :=/dx~ (r, "" 

be the moduli space of s-equivalence classes of semistable parabolic bundles E of 
rank r on Xj  and Euler characteristic x(E)=XJ, together with parabolic structures 

of type {g(x)}xeIu{x~ } and weights {ff(x)}~eiu{x , } at the points {x}~:elU{:~ , }, where 
Xju is defined in Notat ion 3.1 and may. be nonintegers. Thus we define/d'xr to be 

is not an integer. Let empty  if Xj 

be the theta  line bundle. Then our main result is the following theorem. 

F a e t o r i z a t i o n  t h e o r e m .  There exists a (noncanonical) isomorphism 

H~ (/dXo , eUXo ) ~ 0 H~ (/d~ ' Ou~ ) ~ H~ (gt~2 , ~)u;~ ), 

where #=(#1, ... ,#,-) runs through the integers O< p,- <... < pl < k - 1 .  
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Section 1 is devoted to the construction of the moduli space UXo by general- 
izing Simpson's construction, and the construction of the theta  line bundle on it. 
Then we determine the number of irreducible components of the moduli space and 
proving the nonemptyness of them (see Proposition 1.4). In Section 2, we sketch 
the construction of the moduli space P of generalized parabolic sheaves (abbrevi- 
ated GPS) and construct an ample line bundle on it. Then we introduce and study 
the s-equivalence of GPSes (see Proposition 2.5), which will be needed in studying 
the normalization of L/Xo. In Section 3. we construct and study the normalization 
;~162 and then prove the faetorization theorem (Theorem 3.1). As a byproduct,  
we recover the main results of INS] (see Corollary 3.1 and Remark 3.1). They have 
used triples in INS] instead of GPSes. 

Acknowledgements. I would like to express my heart)" thanks to Prof. H. Es- 

nault and Prof. E. Viehweg for their hospitality. I benefited from the stimulating 
mathematical  atmosphere they created in their school. Prof. M. S. Narasimhan 
encouraged me to prove the factorization theorem in the reducible case. I thank 
him very much for consistent support.  It  is my pleasure to thank the referee, who 
pointed out an inaccuracy in the first version of the paper. 

1. T h e  m o d u l i  s p a c e  o f  p a r a b o l i c  s h e a v e s  

Let X0 be a reduced projective curve over C with two smooth irreducible 
components X1 and X2 of genus gl and g2 meeting at only one point x0, which is 

the node of X0. We fix a finite set I of smooth points on X0 and write I=IiUI2, 
where Ii={xEI[xEXi} ( i=1,  2). 

Definition 1.1. A coherent Oxo-module E is called torsion free if it is purely 
of dimension one, namely, for all nonzero Oxo-submodules E I C E .  the dimension 
of supp E1 is one. 

A coherent sheaf E is torsion free if and only if Ex has depth one at every 

xEXo as an O x o s m o d u l e .  Thus E is locally free over X0\{x0}.  

Definition 1.2. We say that  a torsion free sheaf E over X0 has a quasi-parabolic 
structure of type g ( x ) =  (nl(x),  ..., nl~+l(X)) at x E I ,  if we choose a flag of subspaces 

El~x~ = F0(E)x n F I (E)x  D ... D F,, (E)~ n FZx+l(E)~ = 0  

such that  nj(x)=dim(Fj_l(E)x/Fj(E)x). If. in addition, a sequence of integers 
called the parabolic weights 

0 < a l ( x )  < a s ( x )  < ... < a ~ + l ( X )  < ~" 
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are given, we say that  E has a parabolic structure of type g(x) at z, with weights 
g (x) :=(a l (x ) ,  ...,al~.+l(X)). The sheaf E is also simply called a parabolic she@ 
whose parabolic Euler characteristic is defined as 

/~.§ 
1 par X(E):= x(E)+~ Z Y ni(x)ai(x). 

.rEI i~1 

We will fix an ample line bundle O(1) on X0 such that degO(1)lx~=ci>O 
( i= 1, 2), for simplicity, we assume that O(1)=OXo (clyz +c2y2) for two fixed smooth 
points y~ EXi. For any torsion free sheaf E. P(E. n):=x(E(n)) denotes its Hilbert 
polynomial, which has degree one. We define the rank of E to be 

1 P(E,n) 
r (E)  .-- deg O(1) n ] i n l  ?'1 

Let r, denote the rank of the restriction of E to Xi ( i= 1.2), then 

C1 C2 
= r 1 Jr- ~ 1-2. P(E,n)=(c]rx+cur2)r?'+x(E) and r (E)  c l+e2 c1+c2 

Notation 1.1. We s w  that E is a torsion free sheaf of rar~k r on Xo if r l  =r2 = r ,  
otherwise it will be said to be of rank (/'1, r2). In this paper we will fix the parabolic 
data  {g(X)}xEX, {g(X)}~,  and the integers x = d + r ( 1 - g ) ,  11+12, k and 

O~ : =  { 0  ~ O~x < ~'--ala .+l(X)-FOl(X)}xEI  

such that  

lx 

( * )  Z Z < +r(Ix +12) = 
xCI i = 1  ocCl 

where di(x)=ai+](x)-ai(x) and ri(x)=nl(X)+...+l~i(x). We will choose Cl and c2 
such that  ll = q  (11 +12)/(cl +c2) and 12 =cz(lx +12)/(c1 +co.) become integers. 

Definition 1.3. With the fixed parabolic data in Notation 1.1, and for any 

torsion free sheaf F of rank (rl,  r2), let 

re(F) r (F) - r l  k Z (as.+l(x)+a~)_~ r(F)-r2 
- k 

xCI1 x~I2 

If F has parabolic structures at the points xEI, then the modified parabolic Euler 
characteristic and slope of F are defined as 

pa rx ,~ (F  ) : = p a r X ( F ) + m ( F  ) and parp,~,(F).-parxm(F) 
r(F) 
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A parabolic sheaf E is semistable (resp. stable) for (k, ca, g) if. for an)' subsheaf 
FCE such E/F is torsion free, one has. with the induced parabolic structure, 

parxm(F )<parxm'E'r(F)( ~ (resp. <). 
�9 - ~ ( E )  ' 

Remark 1.1. When the curves are irreducible, then re(F)=0,  the above semi- 
stability is independent of the choice of c~ and coincides with Seshadri's semistability 
of parabolic torsion free sheaves. 

In this section we will only consider torsion free sheaves of rank r with para- 
bolic structures of type {~(x)}~e I and weights {ff(x)},e~ at the points {X}x~, and 
construct the moduli space of semistable parabolic sheaves. Let W=Oxo (-N) and 
V = C  P(N), we consider the Quot scheme 

T-fiat quotients V~I/V ~ E ----+ 0 over]  

Quot(V|  P)(T)= Xo xT with Hilbert polynomial P ~ 

and let Q c Q u o t ( V |  P) be the open set 

{ V@IA; ----+ E ---+ 0, with RlpT,(E(N)) = 0 and such ;  

Q(T) = that  VGOT---+pT,E(N) induces an isomorphism j 

Thus we can assume (Lemma 20 of [Se], p. 162) that N is chosen large enough 
so that  every semistable parabolic torsion free sheaf with Hilbert polynomial P 
and parabolic structures of type {~(z)}xeI, weights {6(x)}xe/at  the points {:c}:~r 
appears as a quotient corresponding to a point of Q. 

Let I~ be the closure of Q in the Quot scheme and V:gW--+~---+0 be the 
universal quotient over X0 x Q and 3c,: be the restriction of )c to {3:} x Q ~ Q .  Let 
Flag~(~/(~)--+Q be the relative flag scheme of type g(x). and 

7~ = H Q  Flag~(*) ('~c~:) -~ ~ 
xEl 

be the product over Q. A (closed) point (p, {P,.(z),P,.I(z),... ,P,-zx(x)}zez) of 7~ is 

by definition given by a point V| of the Quot scheme, together with 
quotients 

P r z x  ( x )  ~ -, 
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where ri (x) =dim(Ex/Fi (E)~) =nl (x) +... + ni (x), and 

E~ Ex 
Qr(x)  : -=Ex ,  Q r l ( x ) . -  f l ( E ) x ,  .-.. Q r , x ( x ) . -  f l x ( ~ )  x " 

For large enough m,  we have an SL(V)-equivariant embedd ing  

T~ ~ > G = G r a s s p ( m ) ( V ~ I ' l ; , )  x F l a g ,  

where  Wm=H~ and F l a g  is defined to be 

F l a g  = l - [  {Grass,~(.~)(V) x G r a s s r l  (x ) (V)  x ... • G r a s s r t  ~ (x ) (V)} ,  
x E t  

which maps  a point  (p, {P~(~),Pr~(x), ... ,P~zx(z)}~1) of fr to the point  

(V|  g > U, {V  g"(~)) Ur(~), V ~"~(% U,.~(x), ..., V g"~(% U,-~(x)}~e~) 

of G ,  where  

g := H~ 

9~-(~) := H~ 

H ~ N g~(~) := (p~(~) ( ) ) ,  

U := H~ 

U,.<~) := H~ 

U~,(~) := H~ i = 1 . . . . .  l~. 

For any rat ional  number  l sat isfying cil=l~+cikN ( i = l ,  2), we give G the polariza-  

t ion (using the obvious notat ion)  

1 
. ~ - x  • H { ~ x ' d ' ( x ) ,  ,d,~(x)}, 

xCI 

and we have a s t ra ight forward  general izat ion of [NR, Propos i t ion  A.6] whose proof  

we omit .  

P r o p o s i t i o n  1.1. A point (g, {g~(x), grl(x), "" �9 9"~x (x) }xCl) E G is stable (resp. 
semistable) for the action of SL(V), with respect to the above polarization (we refer 
to this from now on as GIT-stability). if and only if for all nontrivial subspaces 
H c V  we have (with h = d i m H )  

m l N ( h P ( m ) - P ( N )  dim g(U•:IVm)) + Z ax(rh-P(N)dimg~(x)(n))  
xCI 

+ ~  ~ di(x)(ri(x)h-P(N)dimgr~(z)(H)) < 0  (resp. <_0). 
xCI i=1 
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Notation 1.2. Given a point (P,{P,.(x),P,-~(z),... ,p%~:(x)}x~i)ET~, and a sub- 
. F (resp. F sheaf F of E we denote the image of F in Q~(x) (resp. Qr(x)) b) Q,.~(x) Q~(~))" 

:=Q~,(~)/ImkerT (resp. Q~(x) '-  Similarly, given a quotient E~G--+0,  set Q.,(x) "- 
Qr(x)/ Im ker T). 

P r o p o s i t i o n  1.2. Suppose (p, {Pr(x). Pq (~), ..- -P,,:~ (,r) }x~:) ET~ is a point such 
that E is torsion free. Then E is stable (resp. semistable) if and only if for every 
subsheaf OCFCE we have 

l ( x (F(N) )P(m)_P(N)x (F(m) ) )+  Z a , , ( rx(F(X))_p(N)hO(Q~)) )  
? T t  - -  N 

,rC I 

p y  o F +Z~d~(x)(r~(x)x(F(X))- (~)h (Q,.,(x)))<~ (resp. <0). 
x G I  i = 1  

Proof. For any subsheaf F let LHS(F) denote the left-hand side of the above 
inequality. Assume first that. E/F is torsion free and that F is of rank @1- r2), thus 

0 F h (Q,.(x))=ri, h~ for xCIi ( i = 1 . 2 )  and x ( F ( m ) ) =  

(clrl+c2r2)(m-N)+x(F(N)). Let n~(x):=dim(F, NFi_l(E)x/F~NFi(E):,:). As 

l ~, l ,~. -t-1 

Z 
x E I  i = l  

lx 

~Z<(x)dim ~:~ 
x C I  i = 1  

we have 

x E I  :rC1 i = 1  

-rl Z <+l(x)+r2 ~ ~,~+l(x) 
x E I 1  x C I 2  

/ x + l  

-Z Z 
z ' E /  i = 1  

+P/N) rIr)Z~+ Z ~ </~)",/x) 
x E I  .rGI i = 1  

- P ( N )  rl ECtx+r2 ~ a : ~ + Z Z d i ( x ) d i m  F~:A-~i(E)~ ' 
x C I i  x E I 2  x E I  i = 1  

=k'(N)( par >' (F)- r(F)r p~r>~(E)). 
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Thus the inequality implies the (semi)stability of E, and the (semi)stability of E 
implies the inequality for subsheaves F such that  E l F  is torsion free. 

Suppose now that  E is (semi)stable and F is ans" nontrivial subsheaf, let r be 
the torsion of E l F  and U C E  such that r = F ' / F  and E l F '  are torsion free. Then 
we have LHS(F ' )<O and, if we write r = ~ + ~ , . c i  %., then 

L H S ( F ) - L H S ( F ' )  = - ( c l  +c2)rlh~ 
F '  - ~ ~(rh ~ +P(X)(h ~  h ~ 

xEI 
Ix 

(~)h (T)+P(..)(h (Q,.~(x))-h (Q(x)))) 
~cEI i = 1  

=-h~176 i=l :,:EI 

)) +P(X)(Xo~h~ h ~ ~ hO.~ '  
\xGI" x E I  i = 1  

<- -kP(N)h~ Z ~176 + P(X) Z ~ < (x)h~ 
xEI xEI i = 1  

= - k P ( N ) h ~ 1 7 6  
xEI 

<0, 

hO(tOF ~_hO(g)F  ' ~--_hO@- ) where we have used ~'~r(~)J ~'~,.(,)J- ~ *J" the assmnption about {ax} 
F ~ and h~176176 �9 [] 

L e m m a  1.1. There exists MI(N)  such that for m >_ 5I~ (N)  the following holds. 
Suppose (p, {p~(~). p~ (x), ... : p,,,~. (x) }.,:E r) E 7"4 is a point which is GIT-semistable then 

for all quotients E ~+G--+O we have 

xEI xEI i = 1  

In particular, E is torsion free and V-+ H ~  ) is an isomorphism. 

Proof. Let 

H = ker{V H~ H ~  --+ H~ 
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and FCE be the subsheaf generated by H. Since all these F are in a bounded family, 
dimg(H|176 for m large enough. Thus there exists MI(N) 
such that  for m_>MI(N) the inequality of Proposition 1.1 implies (with h = d i m H )  

(Cl + c2)l (rh- r(F)P(N)) + E ax (rh- P(N)h ~ (Q~x))) 
xEI 

+ E E di(x)(ri(x)h- P(X)h~ ) ) <- O, 
xEI i=1 

where we used that  gr(x)(H) o F h o F = h  (Q,.(~)) and g,.,(~:)(H)= (Q,.~(x)). Now using the 
inequalities 

h >_ P ( N ) - h ~  

~ - ~ ( F )  _> r(6) ,  

T 0 F 0 g - h  k h 

_> o h 

we get the inequality 

,x ) 
z z  o o h~ ( C l + C 2 ) r ( ~ ) l + E ( ~ x h  (~r(x))+ di(x)h (Qr~(x)) " 

xEI xEI i=l 

Now we show that  V-+H~ is an isomorphism. That  it is injective is 
easy to see: let H be its kernel, then g ( H ~ . W ~ ) = 0 ,  g,~(x)(H)=O and 9~(~)(H)=0.  
one sees that  h = 0  from Proposition 1.1. To see it being surjective, it is enough to 
show that  one can choose N such that  HI(E(N))=O for all such E. If HI(E(N)) 
is nontrivial, then there is a nontrivial quotient E(N)-~LC~'Xo by Serre duality, 
and thus 

h~ > h~ L ) >_ (cl +c2)N + B. 

where B is a constant independent of E.  we choose N such that Ht(E(N))=O for 
all GIT-semistable points. 

Let T = T o r E ,  G=E/7 and applying the inequality, noting that h ~  
h ~ 1 7 6  ~--r h ~  ~ o g _ h O ( ~ r  P(N)-h~ t ' ~ ( ~ ) ; -  - t~(:~)J and h (Q,.(~.))=ri(x) ~.~,.(x)j, we have 

lch~ ~ E ( c t x + a G + l ( x )  - a l  ( x ) ) h ~  ('5T), 

xEI 

by which one can conclude that  ~-=0 since ax<k-al~.+l(x)+al(x). [] 
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P r o p o s i t i o n  1.3. There exist integers N > 0  and M ( N ) > 0  such that for m>_ 
M(N) the following is true. A point (p, {Pr(~),P,.~(~),..-~p,.~(~)}~ex)ET4 is GIT- 
stable (resp. GIT-semistable) if and only if the quotient E is torsion free and a 
stable (resp. semistable) sheaf and the map V--+ H~ is an isomorphism. 

Pro@ If (p, {p~(~), p~(~), ..., Pr,~. (.~) }~EI) E T4 is GIT-stable (GIT-semistable), 
by Lemma 1.1, E is torsion free and V-+H~ is an isomorphism. For any 
subsheaf F c E  with E/F torsion free. let H c V  be the inverse image of H~ 
and h = d i m H ,  we have x(F(N))P(m)-P(N))~(F(m))<hP(m)-P(N)h~ 
for m>N (note that  hl(F(N))>_hl(F(m))). Thus 

_l N (x(F(N))P(,-)- + 
xEI 

p ~ r  o F (-)h (Q,.,(x))) 
xEI i=1 

l 
~- m -  N (hP(m)- P( N) dim g( H , I,I,'~,) ) + E a ~ . ( r h - P ( N )  dim g~(~)(H)) 

xEI 

+ ~ ~ di(x)(r,(x)h- P(N) dim g~,(,:)(H) ) 
xEI i=1 

since g(H|176 gr(x)(H)<_h~ and gr~(~)(g)<h~ (the 

inequalities are strict when h=0) .  By Propositions 1.1 and 1.2, E is stable (resp. 
semistable) if the point is GIT-stable (resp. GIT-semistable). 

The proof of the other direction is similar to [NR], one can prove the similar 
Lemma A.9 and Lemma A.12 of [NR] by just modifying the notation. [] 

One can imitate [Se] (Th~or~me 12. p. 71) to show that  given a semistable 
parabolic sheaf E,  there exists a filtration of E 

0 = E n + l  C E n C . . .  C E 2 C E 1  C E  0 = E  

such that  El~El+ 1 (0~i%'r/) are stable parabolic sheaves with the constant slope 
par #,~(E), and the isomorphic class of semistable parabolic sheaves 

gr E := Ei+l 
'=0 

is independent of the filtration. Two semistable parabolic sheaves E and E'  are 
called s-equivalent if gr E ~ g r  E' .  
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T h e o r e m  1.1. For given data in Notation 1.1 satisfying (*), there exists a 
reduced, seminormal projective scheme 

b/X0 :=  ~'~Xo (r; X, I1 ~I2-  {~(X). ~(X), (1 x }~:E I. O(1) ,  k), 

which is the coarse moduli space of s-equivalence classes of semistable parabolic 
sheaves E of rank r and Euler chracteristic X(E)=X with parabolic structures of 

type {g(z)};c~ and weights {ff(x)}~e / at the points {z}~et .  The moduli space ldXo 
has at most r + l irreducible components. 

Proof. Let 7 ~  ( ~ )  be the open set of 7~ whose points correspond to semistable 
(stable) parabolic sheaves on X0. Then, by Proposition 1.3, the quotient 

~ : n  ~ )UXo :=n~'//sL(v) 

exists as a projective scheme. That/dXo is reduced and seminormal follow from the 
properties of 7~ ss (see [F], [Se] and [Su]). 

Consider the dense open set 7~0C7~ s'~ consisting of locally flee sheaves. For 
each FcT~0, let Ft and F2 be the restrictions of F to XI and X2. We have 

(1.1) 0 ~ FI(-xo)----4 F-----+ F2----+O. 

By the semistability of F and par X,,~(F~) +par  x ~ ( F 2 ) = p a r  X-, (F)+r ,  we have 

cl parxm(F)<_parxm(F1)< - c__21parxm(F)+r ' 
cl +c2 cl +c2 

c2 parx,~(F)_<parx,m(F2) <_ c2 parx , , , (F)+r.  
el q-c2 cl +c2 

Let for j = l ,  2, Xj denote x(Fj)  and 

1 Z o  +rlj . (1.2) nj = ~ �9 i=1 .~I) 

We can rewrite the above inequalities into 

(1.3) nl<;gl<<_nl+r and n 2 < X 2 < n 2 + r .  

There are at most r + 1 possible choices of (X 1, X2 ) sat is~-ing (1.3) and X 1 + X2 = X + r, 
each of the choices corresponds to an irreducible component of b/xo. [] 

For any XI and X2 satisfying (1.3), let b/x1 (resp. b/x2) be the moduli space of 
semistable parabolic bundles of rank r and Euler characteristic X1 (resp. X2), with 
parabolic structures of type {if(x) }x6Ii (resp. { if(x) }.,:e12) and weights {if(x) }xe l~ 
(resp. {ff(x)}~e/2) at the points {X}xclx (resp. {x}zer~). Then we have the following 
result. 
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P r o p o s i t i o n  1.4. Suppose that lgxl andb(u 2 are nonempty. Then there exists 
a semistable parabolic vector bundle E on Xo, with parabolic structures of type 
{n(X)}x61 and weights {a(X)}xc I at the points {xIx~,, such that 

EIx 1 Eb{x, and EIx 2 ELIx2. 

Moreover, if nl <_Xl<nl+r and n2<_x2<n2+r, then E is stable whenever one of 
E1 and E2 is stable. 

Pro@ For any E1 EL/x1 and E2 eNx2, one can glue them by any isomorphism 
at Xo into a vector bundle E on 3/o with the described parabolic structures at 
the points {X}xci such that  EIx I=E~ and EIx 2=E2. We will show that E is 
semistable. 

For any subsheaf F C E  of rank (rl, r2) such that E / F  is torsion free, we have 
the commutative diagram 

0 ~ F~  ~ F  ~F2 ~ 0  

0 > E~(-xo) > E > E2 > O, 

where F2 is the image of F under E-+E2-->O and F1 is the kernel of F--~F2-40. 
One easily sees that  F1 and F2 are torsion flee sheaves of rank (rl, 0) and (0, re). 
From the diagram (1.4), we have the equalities 

par xm(E) par X.~ (F) 
r r(F) 

= par Xm(E2 ) parxm(F2) parx .~(El ( -x0) )  parx. , (F1)  -~ 
r r(Y) r(F) 

a rx par par xm(Yl)+a    par 
r(F)r 

a2r2 par Xm (E2) - r  par Xm (F2) +air1 par Xm (E2) 
d 

r(F)r 
_ _  r l  
- -  r (F---7 (par #m (El (-Xo)) - par p, .  (F1)) + ~ (par Pm (E2) - par #~ (F2)) ( )  

a2(r2 - - r l )  par Xro (ET1 (--X0))q-al (F1 --r2) par Xm (~'2) 
d 

r(F)r 
_ _  r l  
-- r(F---~ (par >(El (-Xo)) - p a r  ].t (El)) -}- ~ (par p(E2) - p a r  p(F2)) 

(r l -r2)(cl@c2 parx . , (E '+r -parxm(E1) )  



F a c t o r i z a t i o n  o f  g e n e r a l i z e d  t h e t a  f u n c t i o n s  in t h e  r e d u c i b l e  c a s e  177 

where we used the notation al :=c l / ( c l  +c2) and a2 :=c2/(cl +c2). The last equality 
follows since 

?" ~'1 

Similarly, if we use the diagram 

0 > F2 

1 
0 > E2(-Zo) 

we get the equality 

par X.~ (E) par X,~ (F) 

~, ~(F) 

- - = 0  and re(E2) r e ( F 2 ) = 0 .  
r r 2 

F > F 1 -  > 0  

1 1 
E > E~ >0. 

_ T2 
r(F) (par p(E2(-xo))-par p(F2)) 

r l  
+r---~(par p(E1)-par p(Fa)) 

(r2-rl) ( c l ~  par xm(E)+r-par xm(E2)) 
+ 

r(F)r 
Thus we always have the inequality 

parxm(E ) par t i ta(F)  > 0  
r r(F) 

and the equality implies that  r l  =r2 and that E1 and E2 are both unstable. This 
proves the proposition. [] 

By a family of parabolic shea~Tes of rank r and Euler characteristic ~( with 
parabolic structures of type {~t(x)}xe I and weights {g(x)}~6z at the points {x}~6z 
parametrized by T, we mean a sheaf )c on X0 x T, flat over T and torsion free with 
rank r and Euler characteristic X on X0 x {t} for ever), tcT, together with, for each 
xEI ,  a flag 

J={~} • = F0 (f{~} xY) n F1 (J:{~} • D ... D F~.~ ( f ~ }  • D f ,=+, (Y(.~} • 7) = 0 

of subbundles of type g(x) and weights if(x). Let Q{:~}• denote the quotients 
5c{:}xT/E/(.T{:}• then we define a line bundle 0 y  on T to be 

(detR~T$-)k| ( de t$ -{~}x r )~x~@(de t  Q{~}xr.i) d'(~:) $@(de tSC{yj}xr )  ~j, 
x E l "  i = 1  j = l  

where Try is the projection Xo • and det R~ryY is the determinant bundle 
defined as 

{det R~rr ~-}~ := {det H ~ (X, Set) } -1 S {det H t (X, 7,) }. 
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T h e o r e m  1.2. On the moduli space lgxo, there is a unique ample line bundle 
OUXo =@(k, 11,12; if, ~, ~, I) such that for any given family ~ of semistable parabolic 
sheaves paramctrized by T, we have O*TOUxo = O y ,  where Or is the induced map 

T-+LIxo. 

Proof. By using the descend lemma (see Lemma 1.2 below), we will show that 
the line bundle On~, :=OE on T~ ~'~ descends to the required ample line OUXo, where 
g is a universal quotient over X0 x T~ ~.  

We know that  the stabilizer stab(q)=A id for q~T~ ~, which acts on On~.~ via 

A-kX+Exc, ~ ' ~  d~(.~)r~(.T)+r E.~.~I a~+,'(h+12) = AO = 1. 

If qET~S\T~ ~ has a closed orbit, we know that 

gq = rolE1 @m2E2@... @ratEr, 

with par # , ,  ( E j ) = p a r  #m (gq), which means that (assuming Ej to be of rank (r l, r2)) 

l ~, E j , x  
--~X('/~J)-~TI Z Ogx~-F2 ~ O~xnt-Z Z di(x) dim Ej, ,AFi(E).r ~-rlllq-r212 =0 .  

xEI1  x ~ I 2  ,rG1 i=1 "'" 

Thus (A~ id,~l,. . . ,  At id,,. ,)Estab(q)=GL(rrq) x ... x G L ( m t )  acts trivially on On*.-: 
which implies that  stab(q) acts trivially on (9~z,~ and thus descends to a line bundle 
OUxo having the required universal property. 

To show the ampleness of @Uxo, noting that  det R~r~z,.~g(N) is trivial and 

det Rrrn,~ g = (det s  )c~ x ~ (det gy2 )~:2 x ~ det Rrcn~ E(N),  

we see that  the restriction of the polarization to 7~ s* is 

l.c / 
(det Rrcn~e(m))  ~/(~-'v) g@[.~" (det g , ) ~  3 @ ( d e t  Q:~:)< (*) = On~ .  

x E I  i=1 

Thus, by general theorems for GIT. some power of Or~-~ descends to an ample line 
bundle, which implies that some power of Ouxo is ample. [] 

L e m m a  1.2. Let G be a reduetive algebraic group and V a scheme with G- 
action. Suppose that there exists a good quotient rr: I~--+ V//G. Then a vector bundle 
E with G-action over V descends to V//G if and oMy if the stabilizer stab(y) of y 
acts trivially on Ev for any y E V  with closed orbit. 

It is known that  for any torsion fi'ee sheaf F of rank (rl,  r2) on X0 there are 
integers a. b and c such that  

z Xo.xo T X l  .xo ~ -u .xo " 
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where a, b and c are determined uniquely and satisfy 

r l = a + b ,  r 2 = a + c  and dim(Fzo~k(xo) )=a+b+e.  

Thus we can define a ( F ) : = a  for any torsion free sheaf F on X0, and we have the 
following result. 

L e m m a  1.3. Let O--+G-+F--+E--+O be an exact sequence of torsion free 
sheaves on Xo. Then 

a (F )  _> a(G) + a ( E ) .  

Proof. This is clear by counting the dimension of their fibres at x0. [] 

Let Tga={FETgIF| ~'me('-~ :~o 3, and Wi=7~oU'R1U...UT~i (which 
are closed in Ts endowed with their reduced scheme structures. The subschemes 

YYi are SL(n)-invariant, and yield closed reduced subschemes of ldx. It  is clear that  

D W,._~ D W,--2 D ... D W~ D Wo = ~o,  

~'X D W r - 1  O Wr . -2  D ... D W 1  D ~/~f). 

Let q0ETr be a point corresponding to a torsion free sheaf ~-0 such that  

FO ~OXo.xo ~ mr-a~  ~Oa~ :Co ~ X O  . X o  " 

We consider the variety 

z = { ( x ,  Y) ~ M ( r -  ao) • .U(r-ao) lX.Y = Y . X  = 0}, 

and its subvarieties Z' = { (X, Y)  E Z lrk X + rk Y < a }. Then the reduced coordinate 
ring of Z is 

C [ Z ] . -  C[X.Y]  
(xY. YX)  

where X:=(xij)(r_ao)x(r_ao ) and Y:=(Yij)(,--,o)x(,,-~o) (see Lemma 4.8 of [Su]), 
and Z '  is a union of reduced subvarieties of Z (see the proof of Theorem 4.2 in [Su]). 

Tiros we can sum up the arguments of INS] and [Su] (see also [F]) into a lemma. 

L e m m a  1.4. The varieties Z and Z' are the local models of R and Wo, re- 
spectively, at the point qo. More precisely, there are some integers s and t such 
that 

@~,qo [[u,, ..., ~ ] ]  ~ 0 z  (0 0)[Iv, . . . . .  vt]]. 

In particular, W~ (O<_a<r) are reduced and seminormal. 
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2. The moduli  space of  generalized parabolic sheaves 

Let 7r:-~0--+X0 be the normalization of Xo and 7r -~ (x0 )={x l ,  x2}, then X0 is 
a disjoint union of X1 and X2, any coherent sheaf E on Xo is determined by a pair 
(E l ,E2)  of coherent sheaves on X1 and X2. We call as before that  E is of rank 
(r~,r2) if Ei has rank ri on )2/ ( i=1 ,2)  and define the rank of E to be 

r(E) . -  C l r l  +C2r2 
cl +c2 

We can also define similarly the modified parabolic Euler characteristic par X-, (E) 
i r e  has parabolic structures at the points xE~r-l(I) (we will identify I with 7r-~(I), 
and note that rn(E) defined in Definition 1.3 is only dependent on rl and r2 since 
O(1), a and g(x) are fixed). 

Definition 2.1. A generalized parabolic sheaf of rank (rl,  r2) (abbreviated GPS) 

E:=(E,E~E~:~ - ~ Q )  

on J~0 is a coherent sheaf E on J(0, torsion free of rank (rl,  r2) outside {xl, x2} with 

parabolic structures at the points {x}xeI, together with a quotient E l i  @Ex2-~O. 
/ 

q t ' m F '  -%0% of GPSes is a morphism A morphism f :  (E, Exl| ,E~ . ~  -~ , 
f: E--+E' of parabolic sheaves, which maps ker q into ker q~. 

We will consider the generalized parabolic sheaf (E, Q) of rank rz =r2 = r  and 
dim Q=r with parabolic structures of type {g(X)}x~I and weights {g(z)}x~x at the 
points of ~r-l(I) ,  and we will call it a GPS of rank r. Furthermore, by a family of 
GPSes of rank r over T, we mean 

(1) a rank r sheaf s on 2(o x T flat over T and locally free outside {zl,  x~} x T; 
(2) a locally free rank r quotient Q of g,~-~gxa on T: 
(3) a flag bundle Flaga(,)(s ) on T with given weights for each xcI .  

Definition 2.2. A GPS (E, Q) is called semistable (resp. stable), if for every 
nontrivial subsheaf E '  C E such that E/E' is torsion free outside {xl, x2}, we have, 
with the induced parabolic structures at the points {z}~.e~, 

, , x m ( E ) - d i m Q  (resp. <), par xm(E  ) - d i m Q  E _< r k E  tpar r k E  

where QE'___q(E, 1  E,2 ) cQ.  

Let X1 and X2 be integers such that )(1 + x 2 - r = x ,  and fix. for i=1 .2 ,  the poly- 
nomials Pi(rn)=cirrn+xi and Wi =Ox, ( - N ) ,  where Ox~ (1)=O(1)[x~ =Ox~ ( c i Y i ) .  
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Write V~ = c e d  N) and consider the Quot schemes Quot (E  ~Wi.  Pi). Let Qi be the 
closure of the open set 

1//| ' )E i  > 0, with HI(Ei (N))= 0 and such~ 

Qi = that V ) H~ induces an isomorphism J } " 

We have the universal quotient PTi@l/Vi-+.~'i-+o on X i x Q i  and the relative flag 
scheme 

n i  = I-IQ~ Flaga(x) ('7-~'-) > Qi- 
xCIi  

Let g i be the pullback of b r-i to Xi x 7~i and 

Then we see that, for N large enough, every semistable GPS appears as a point 
o f ~ .  To rewrite/~1 x7~2 so that  it unifies the R in the last section, let V=VI-~V2, 
bc=b r l  @b t-'2 and g=g 1 | We have 

(2.1) "]'~1 X7~2 = ~IQ~ xh2 Flag,~(;~) (Y:,:) ----+ Q, x Qi- 
xCI  

Note that  Vz | W~ @ V2 | --+.Y--+ 0 is a Q ~ x Q~-flat quot lent with Hilbert poly- 
nomial P(m)=Pl(m)+P2(m) on ) (0x( l~ l  x Q2), we have for m large enough a 
G-equivariant embedding 

Q1 •  ~ ) (~rasse(m) (Vl * 1 l"lr~' @ 1/7'2 ~ l'I"2m ), 

where Wim=H~ and a = ( a L ( V 1 ) •  
A (closed) point (p=pl  @p2, {p,-(~), pq  (x), .-., P,-,~, (x)},-cI) of R1 x 7~2 by the ex- 

pression of (2.1) is given by points E@I/Vi/L~E~---~0 of the Quot schemes ( i=1,  2), 
together with quotients (if we write Vg0 =I71 ~14~'1 -~V2 ~l/V2 and E = E  1 -SE 2) 

where 

ri (x) = dim - -  - yl 1 (x) +...  + 7li (x): 

and Q,.(,):=E~, Q,.:(,):=Ex/F~(E) ... . .  ,Qr<(z):=Ex/Ft~(E)x. 
p,.(~) and P~5(~) ( j = l ,  ..., I~) a~e defined to be 

The morphisms 

E~ P> : - - .  
p~(x): 12~o E > Ex. p,.~(~:) 12~o > %  Q,.(.,:) = Ex ~ Fj (E)~: 
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Thus we have a G-equivariant embedding 

~-1 • ~P~2 r Grass p(,,)(V1 ~ ll'{r'@ k.) g I V~ '~) x Flag.  

where F lag  is defined to be 

F lag  = H {Grassy(x)(V) x Grass,.~ (,)(V) x... • Grass~.~ (x)(V)}, 
xEI  

which maps a point (P=Pl @P2, {P~(~), Pr~ (m) .... , P,-z,. (=~) } met) of ~1 x 7~2 to the point 

) C r l ( x ) :  ... V ft.. (m) } x e l )  

of Grassp(m) (V1 | Iu "~ O V2 | lg2 m) x Flag,  where 

g := H~ U := H~ 

9,,(x) :=H~ Ur(~.) := g~ 

9~j(x) :=H~  U,-~(x):=H~ j =  1,...,I:~. 

Finally, we get a G-equivariant embedding 

~ r G' = Grass p(m) ( Vl ~ W~" -.~ V2 ~ W~" ) • F lag • Grass~ ( Vl ~" V2 ) 

as follows: a point of 7~ is given by a point of 7~1 x 7~2 together with a quotient 
Ez~ | ~ Q ,  then the above embedding maps E:~ & ~ E ~  Q to 

ga  :=  H ~  = H~ ~ Q. 

Given G'  the polarization (using the obvious notation) 

{ m l~_N • ~{a~,dl(X),. . . ,dl:,  (x)} } xk.  

we have the analogue of Proposition 1.1. whose proof (we refer to Proposition 1.14 
and 2.4 of [B], or Lemma 5.4 of INS]) is a modification of Theorem 4.17 in fNl since 
our group G here is different from that of IN]. 

P r o p o s i t i o n  2.1. A point (g,{g,,(x),g,,~(x),... ,g~,~.(x)}x~r,gc,)EG' is stable 
(resp, semistable) for the action of G, with respect to the above polarization (we 
refer to this from now on as GIT-stability), if and only if for all nontrivial sub- 
spaces HCV,  where H=H~@H2 and H~C~ ( i=1.2) ,  we have (with h = d i m H  
and H:=H1 |174174  

1 
m -  N ( hP(m) - P( N) dim g (_H)) + Z a~. (rh - P( N) dim gr(~)(H)) 

x E I  

+ E Z di (x)(ri (x)h - P(N) dim g,.~ (x)(H)) 
x C I  i = l  

+k(rh-P(N)d imga(H) )<O (resp. <_0). 
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P r o p o s i t i o n  2.2. Suppose (p, {P,-(x),Pm(~),... ,P , , ,~ (~)}~ ,q)C~ is a point 
�9 such that E is torsion free outside {xl,x2}. Then E=(E, Ex~E~ ~ A~Q) is sta- 
ble (resp. semistable) if and only if for every subsheaf OCFr  we have (using 
Notation 1.2) 

z_ N (X(F(N))P(~) - P(N)x (F(m))) + ~ o~ (~X (Y (.\')) - P(N)h 0 (Q ~,))) 
.rE/ 

+ ~  ~ d~(x)(r~(x)X(r(X))-P(X)h ~ 
xE I  i=1 

+k(r)c(F(N)) -P(N)dimQ y)<O (resp. <<_0). 

Proof. For a subsheaf F C E  such that E / F  is torsion flee outside {xl, x2}, by 
the same computation as in Proposition 1.2. we have 

LHS( F) = kP( N ) (par x,~( F ) -d im  QF - r( F) par xr;( E ) - r  ) . 

Thus E is stable (resp. semistable) if and only if LHS(F)<0  (resp. <0) for the 
required F. If E / F  has torsion outside {Zl, x2}, then LHS(F)<0.  [] 

L e m m a  2.1. There exist N and ~II(N) such that for m > 3 l l ( N )  the follow- 
ing holds. Suppose (p, {P,-(~),Pm(~),-.-,P,.~(z)}a, EI.q)E~ is a point which is GIT- 

semistable then for all quotients E ~+G--+O we have (with QG:=Q/q(ker T) ) 

h~ >- -i ( e l + c 2 ) r ( G ) l + ~  0 ~ 0 a.h (Qr(x))+EEdi(x)h ( Q r i ( x ) )  + h ~  
xE I  xEI  i=1 

In particular, E is torsion free outside {xl, x2}, q maps the torsion on {xl, x2} to 
Q injectively and V-+H~ is an isomorphism. 

Proof. The proof of Lemma 1.1 goes through with obvious modifications except 
that  we cannot assume that the sheaves E are torsion free at Xz and x2. To see it 
clearly, we write out the proof of E being torsion fi'ee outside {xl, x2}. 

Let r = T o r  E and G=E/r. We note that h~176 h ~ 
r-h~ and 0 g 0 r h (Q,,~(~) h (Q,,~(:~))=ri(x)- ). The above inequality gives 

kh~ < k dim Q" + E ( a x  -{-al~+l (x )  -- a 1 ( x ) ) h ~  (7-x), 
xE I  

by which one can conclude that  r = 0  outside {xl, x~} and h~ ~ % 2 ) - d i m  Q~ =0 
since o~,<k-alx+l(x)+al(x). In particular, q maps the torsion on {xl,x2} to Q 
injectively. [] 
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Remark 2.1. The proof of Lemma 1.1 and Lemma 2.1 actually implies that  one 
can take N large enough such that  for a GIT-senfistable point the sheaf E involved 
satisfies the condition H I ( E ( N ) ( - X - X l - X 2 ) ) = O  for any xEXo, which implies 
that  E(N) and E ( N ) ( - X l - x 2 )  are generated by global sections and H~ 
E(N)xl | is surjective. Conversely, it is easy to prove that  every semistable 
GPS will satisfy the above conditions if N is large enough. 

P r o p o s i t i o n  2.3. There exist integers N > 0  end M ( N ) > 0  such that for m>_ 
M(N)  the following is true. A point (p, {P,-(x).P,-~(,), ... P,.,~ (x)}x~I, q )E~ is GIT- 
stable (resp. GIT-semistable) if and only if the quotient E is torsion flee outside 
{Xl, x2}, E = ( E ,  q) is a stable (resp. semistable) GPS and the map V-+H~ 
is an isomorphism. 

Proof. The proof is the same as that of Proposition 1.3 with some obvious 
modifications in the notation. 

Notation 2.1. Define ~ to be the subscheme of ~ parametrizing the generalized 
parabolic sheaves E = (E, E~ 0 El2 3+ Q) satisfying 

(1) cP(N)~H~ and H l ( E ( N ) ( - x l - x 2 - x ) ) = O  for any xEX0; 

(2) Tor E is supported on {xl, x2} and (Tor E).~.~ ~ (Tor E)x2 ~-~Q. 
Let 7~ ss (7~ s) be the open set of 7~ consisting of the semistable (stable) GPS, then 
it is clear that  

~]~s8 open open 
�9 ~ ~7~. 

We will introduce the so called s-equivalence of GPSes later, in Definition 2.6. 
It is also known that  ?-I is reduced, normal and Gorenstein with only rational sin- 
gularities (see Proposition 3.2 and Remark 3.1 in [Su]). 

T h e o r e m  2.1. For given data in Notation 1.1 satisfying (*) and X1 and X2 
with XI+X2-r=x~ there exists an irreducible, Gorenstein, normal projective va- 
riety Px~,x2 with only rational singularities, which is the coarse moduli space of 
s-equivalence classes of semistable GPSes (E, Q) on Xo of rank r and X(Ej)=Xy 
( j = l ,  2) with parabolic structures of type {ff(x)},-cI and weights {g(x)},~x at the 
points {x}~ei. 

Proof. The existence of the moduli space and its projectivity follow from Propo- 
sition 2.3, the other properties follow from the corresponding properties of 7/ and 
the fact that  7 ~ C 7 - / i f  N is large enough. [] 

Recall that  we have the universal quotient s on X~ • fiat over 7~1, and 
torsion free of rank r outside {Xl} with Euler characteristic X1, together with, for 
each x E I1, a flag 

S~X} X.]p 1 = F0 (S{3~} x ~/~1 ) 1  DFI(S~=}xZe~)D...DFi~(C.~,I•215162 . 1 
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of subbundles of type g(x) and weights g(x). Let Qx.i=Elz xre,/Fi(glx)• We {-} . ~ ,  �9 

can define a line bundle On,  on 7~1 as 

{ } (de tRvrn l s  (detg~z}xg~)a~::g@(det Qx.i) d~(a:) *(detg~m}xr%)/~. 
xEI1 i=1 

Similarly, we can define the line bundle On~ on Tr and the G-line bundle 

O~ := 0*(Orq gOre2)=g(det Q)~ 

~.tgl @Ex22)__+~__+0 is the universal quotient on ~ .  One can check on 7~, where g ~ x~ 
that  ( ~  is the restriction of ample polarization used to linearize the action of G. 
Thus some power of O~ descends to an ample line bundle on 7)x~,x~. In fact. we 
have the following result. 

L e m m a  2.2, The line bundle 07~ descends to an ample line bundle OpX1,X2 
o n  "/)x1,x2 �9 

Proof. The proof is similar to the proof of Theorem 1.2. we only make a remark 
here. If (E, Q) is a semistable GPS of rank r and (E', Q') a sub-GPS of (E, Q) with 

par X,~(E ' ) -d im Q' = r(E') par ~,,, ( E ) - d i m  Q 
F 

we have (assuming that  E '  is of rank (rl, rz)) 

I~ E'x 
-kx(E')q-rl  E Ctm-kr2 E ~  E di(x)dim S;NFi(Sx) [ - r l l l -~ - r2 1 2  

xGI1 xEI2 xCI i=1 " 

+k  dim O' = -kx+r 2xex ~ +~xez 2~=1 d~(z)r,(z)+r(l~ +12) r ( U )  = 0. 
r 

[] 

Notation 2.2. Let T~I:FC']P~ i (resp. Tg2.FCT~2) be the open set of points cor- 
responding to the vector bundles on X1 (resp. X2), and ~F=O-I(RI.F• 
then 

~o: 7~F ---+ 7-Q.F x 7r 

is a grassmannian bundle o v e r  "]-~I,F X " ~ 2 . F ,  and ~vCT-/. We define 

R 1 S,a := {(E, Q) c ~ F  ]Exl -----+ Q has rank a}, 

and T)F,I(i):=_R1FOU...UR1F, i which have the natural scheme structures. The sub- 

schemes R~, a and ~3u, u(i) are defined similarly. Let 7)1(i) and 7)2(i) be the Zariski 
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closure of ~F,I(i)  and  ~F.2(i) in ~ .  Then the3' are reduced, irreducible and G- 
invariant closed subschemes of ~ .  thus inducing the closed subschemes ~Px(i)x~.x~ 
and 7?2(i)x~,x: of 7)x~,x ~. Clearly, we have (for j = l .  2) that 

7~ D 5 j  ( r -  1) D 9 j ( r - -2 ) . . .  D 7Pj (1)D ~j(0) .  

Px~,x~ D 7)j(r-- 1)xx,x2 D Z)j(r--2)x~.x2 D ... D Z)j (1)x~.x2 D ~j(0)x~,x2. 

L e m m a  2.3. The schemes 7{, ~j(a) and ~l(a )N~2(b)  are reduced and nor- 
mal with rational singularities. In particular, :Px~.x~, DJ(a)xx.x2 and :Dl(a)x~,x2A 
:D2(b)x ~,x2 are reduced and normal with rational singularities. 

Proof. This is a copy of Proposition 3.2 in [Su] and the proof there goes 
through. [] 

Let (E,Q) be a semistable GPS of rank r with E=(E~, E2) and Xj=X(Ej) 
( j = l ,  2). Then, by the definition of semistability, we have (for j = l ,  2) that 

parxm(Ej)_dimQEj < cj ( p a r x m ( E ) - r ) .  
- -  Cl nt_C2 

Recall that X1 + x ~ - r = x  and 

x E I j  i=1 x G I j  

We can rewrite the above inequality into 

(2.2) 
nl + r - d i m  QEe < x(E1 ) _< I11 +dim QE1. 

n2 + r - d i m  QE~ < X(E2) _< n2+dim QK2. 

Thus, for fixed X, the moduli space of s-equivalence classes of semistable GPSes 
(E, Q) on X0 of rank r and X ( E ) = x + r  with parabolic structures of type {~(z)}zei 
and weights {g(x)},e /  at the points {z}xci is the disjoint union 

~D :=  I I  ~?(t .?(2' 
XI+X2=X+r 

where X1, X2 satisfy the inequalities 

n 1 < X(E1) < D 1 -t-r and n2 _< x(E2) _< n2+r.  
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Notation 2.3. The ample line bundles {O~,1 ~2 } determine an ample line bun- 
dle O~, on P,  and for any O<_a<r, we define the subschemes 

Dl(a)  := H Dl(a)xl,x2 and D2(a) :=  H 7P2(a)xl,x2" 
X 1-{-X2 =XH-T X l  4-X2=XH - r  

We will simply write D1 := D1 ( r -  1) and D2:=D2(r -  1). 

In order to introduce a sheaf theoretic description of the so called s-equivalence 
of GPSes, we enlarge the category by considering all of the GPSes including the 
case r ( E ) = 0 ,  and also assume that  I i t=0  for simplicity. 

Definition 2.3. A GPS (E, Q) is called semistable (resp. stable), if 
(1) when r k E > 0 ,  then for every nontrivial subsheaf E'cE such that  E/E' is 

torsion free outside {zl,  z2}, we have, with the induced parabolic structures at the 
points {x}x~r, 

parxm(E')-dimQ E' <rkE 'parX''~(E)-dimQ (resp. <), 
- r k E  

E' E' where QE '=q(  x~O ~2)CQ; 

(2) when rk E = 0 ,  then Ex~ @E~2 = Q  (resp. E ~  ~E~.~ = Q  and dim Q = I ) .  

Definition 2.4. If (E,Q) is a GPS and r k E > 0 ,  we set 

deg E -  dim Q 
#G[(E,Q)] = r k E  

It is useful to think of an rn-GPS as a sheaf E on J~0 together with a map 
rr.E-%oQ~O and h~ Let KE denote the kernel of rr.E--+Q. 

Definition 2.5. Given an exact sequence 

0 > E' > E > E" ~ 0 

of sheaves on X0, and rr, E--+Q--+0, a generalized parabolic structure on E, we 
define the generalized parabolic structures on E '  and E"  via the diagram 

0 > 7~.E' > 7r.E > 7c.E" > 0 

l 1 l 
0. > Q' > Q ~ 0" >0. 

The first horizontal sequence is exact because 7~ is finite, Q' is defined as the image 

in Q of ~.E' so that the first vertical arrow is onto, Q" is defined by demanding 

that  the second horizontal sequence is exact, and finally the third vertical arrow is 
onto by the snake lemma. We will write 

0 - -~  (E', Q') > (m Q) ---+ (E", O") ~ 0 

whose meaning is clear. 
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P r o p o s i t i o n  2.4. Fix a rational number p. Then the category C, of semistable 
GPSes (E,Q) such that r k E = 0  or. r k E > 0  with pc[(E,Q)]=p,  is an abelian, ar- 
tinian, noetherian categouy whose simple objects are the stable GPSes in the cate- 
gory. 

One can conclude, as usual, that given a semistable GPS (E, Q) it has a Jordan- 
H51der filtration, and the associated graded GPS gr(E, Q) is uniquely determined 
by (E, Q). 

Definition 2.6. Two semistable GPSes (E1,Qt)  and (E2,Q2) are said to be 
s-equivalent if they have the same associated graded GPSes. namely. 

(E1 ,Q1)~ (E>Q2)  < > gr(E1,Q1)~-gr(E2. Q2). 

Remark 2.2. Any stable GPS (E,Q)  with r k K > 0  must be locally free (i.e., 
E is locally free), and two stable GPSes are s-equivalent if and only if they are 
isomorphic. 

P r o p o s i t i o n  2.5. Every semistable (E'. Q') with r k E ' > 0  is s-equivalent to a 
semistable (E, Q) with E locally free. Moreover. 

(1) if  E'  has torsion of dimension t at x2, then (E', Q') is s-equivalent to a 
semistable (E, Q) with E locally free and 

rank(Exl > Q) < dim Q - t ;  

(2) if (E, Q) is a semistable GPS with E locally free and 

rank(E~.~ ) Q) = a. 

then (E, Q) is s-equivalent to a semistable (E', Q') such that 

dim(Tor E')x~ = dim Q - a .  

The roles of xl  and x2 in the above statements can be reversed. 

Proof. We prove (1) first. For given (E ' ,Q ' ) cC ,  with r k E ' > 0 ,  there is an 
exact sequence 

0 )~ (l~'l, Qi)  ) (l~', @') ) (E; ,  O;)  -----} 0 

such that  (E~, Q;) is stable and #a[(E~, Q;) ]=p  if rkE~>0.  It is clear that 

gr(E ' ,Q' )  ~ ' ' ~" ' = r QI )~  (K2' Q;)" 

When rkE~>0,  then E~ has to be locally free and E~ has the same torsion 
as E'.  Thus if rkE~>0,  there is (by using induction over the rank) (EI, Q1)ECt, 
with E1 locally free and 

rank(El,x~ ~ Q1) < -d imQ~- t  
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such that gr(E1, Q1)=gr(E~, O4). One can check that 

(E, Q) := (El  E2, Q1 eQ;) c C, 

is s-equivalent to (E t, Q') and 

rank(Exl > Q) _< dim Q - t .  

_,r/E/ ,~/~ t e l  If rkE~=0,  then g t , t c ) = t  2, Q~)@gr(TorE'.TorE') .  Thus (E' ,Q')  satisfies 
(up to an s-equivalence) the exact sequence 

0 >(E',Q') >(E'.#')  (x2c, c)  >0. 

where (E', Q1)EC, has torsion of dimension t - 1  at x2. This is the typical case we 
treated in Lemma 2.5 of [Su], and we will indicate later how to get our stronger 
statement by the construction of [Su]. 

, E I ! When rk E ; = 0  and dim(Tor E~)x~ <t.  then ( 2, Q2) has to be (~ C, C), which 
is again the above typical case we will treat. If dim(Tor El)x2' =t., bv~ repeating the 

; I above procedures for (El, Q1), we will reduce the proof, after a finite number of 
steps, to the above cases again since dim Q'l decreases strictly. All in all. we are 
reduced to treating the typical case 

0 > (E', Q') ~ (E'. Q') --~ (x~C, C) >0. 

where (F,',~)')CC, and dim(TorE')~.~=t-1.  
By using induction over t. there exists (/~. (~) EC~, with/~ locally free such that 

r E ~ g r ( E , Q ) = g  ( , Q )  and 

rank(~l : E:~I ----4 (~) _< dim (~-  ( t -  1). 

where 01 and q2 are the induced maps by q:/~x~ @/~x2 -+(~- Since (~2C, C) is stable, 
we have 

gr(E', Q') = gr(E. Q)@(x~C, C). 

Let K 2 = k e r ( 0 2 : / ~  ~ ) ) .  Choosing a Hecke modification h:/~--+E at x2 (see Re- 
mark 1.4 of INS]) such that  _~2:=ker h,,~ c K 2  and dim K2=1, we get the extension 

O ---~ E h ~ E ----+ ~: 2 C -----+ O. 

Let Q = Q |  and E:~=hx~(/~:~)@V~ for a subspace I'i. We define a morphism 
f : E ~ |  such that  EXl-+Q to be 

h - 1  

and E~--+Q to be 

Ks 



190 Xiaotao Sun 

where [~::E~/Is and 02:/?x~//s (note that K2CK2). 
diagram 

/ ~ |  (hx~,h~)) ExI-@E~ (0n~-2)> C > 0 

0 ~ ~) > ~ ) ~ c  > c > 0 

Thus the 

commutes. One checks that f is surjective by this diagram, and thus 

0 >(E,Q)---+(E.Q) > (x2C. C) >0. 

It is easy to see that  (E, Q)EC~ is s-equivalent to (E',  Q') and 

rank(Exx ~ Q )  = rank(E:~ 1 ---+ (~) _< dim Q - t .  
('~dim Q - a  To prove (2), let q:Ezl@Ex2-+Q and Q=qi(Exl)~-  Take the pro- 

jection Q - ~ C  dimQ-a and define 

/ ~ : = k e r ( ? : E  )Ex: q2)Q p>:r2CdimQ-a). 
We get a semistable (/~, ~)) EC, (Q being the kernel of p) such that 

0 ) (E, (~) ) (E, Q) ~ (x2 cdim Q-a. cdim Q - a )  _____+ 0 

is an exact sequence in C,. Thus (E, Q) is s-equivalent to 

(~  ~-~ ("~dim Q-a ~) ~ cdim Q-a ) (E' ,  Q ' ) : - - ,  ~ 2 ~  . . , =  , 

by Lemma 2.4 below. [] 

L e m m a  2.4. Given an (E. Q)EC,, if there is an exact sequence 

0 >(El,Q1) )(E,Q) > (E2, Q2) ~0 

such that (E2, Q2) ECru, then 

gr(E, Q) = gr(E1, Q1)@gr(E2, Q2). 

In particular, (E, Q) is s-equivalent to (EI-~E2, Q1-CQ2). 

Proof. Since (E2, Q2)cC~, there exists an exact sequence 

~Elf ~ f f \  0 )(E~,Q;) > (E2, Q:) ---~ t 2"~2)  >0 

Elf  If such that ( 2 , Q 2 ) c C ,  is stable. Thus 
! I ~ Elf l! ~r(E~, Q2) = gr(E.~, 02)~ ( 2. Q'~). 

On the other hand, if we define (E, Q) by the exact sequence 

o > (E, 0) > (E, Q) ~ > (E~', Q~') > o, 
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11 I t '  where g: (E, Q)-+(E2, Q2)--+(E 2 , Q2), then we have an exact sequence 

(E,, --+ (z, Q) (E;. 0;)  0, 

and (E~,Q~)CC u. By using induction over rkEz  and h~ when rkE2=0 ,  we 
have 

gr(E, Q) = gr(E1, Ol)  ~ o- ' ~ , r  (E2, Q;). 

Now the lemma is clear. [] 

3. T h e  f a c t o r i z a t i o n  t h e o r e m  

Recall that  7c: J(0 -+X0 is the normalization of X0 and ~r -1 (x0) ={xl ,  x2}. Given 

a GPS (E, E x ~ |  on Jr0, we define a coherent sheaf o ( E , Q ) : = F  by the 
exact sequence 

0 - - + F  ~ . E  ~xoQ t0. 

where we use xW to denote the skyscraper sheaf supported at {x} with fibre W, 
and the morphism 7r.E-%:oQ is defined as 

7r.E-----+Tr.E]{~o)=:co(E~.~&E:~2) q ~ ~.oQ. 

It is clear that  F is torsion free of rank (r~, r2) if and only if (E, Q) is a GPS of 
rank @1, r2) and satisfying 

(T) (Tor E)x~ G(Tor E)x2 ~ q ~ Q. 

In particular, the GPS in 7-/ in this way gives torsion free sheaves of rank r with 
the natural parabolic structures at the points of I. 

L e m m a  3.1. Suppose that (E, Q) satisfy condition (T), and let F = O ( E , Q )  
be the associated torsion free sheaf on Xo. 

(1) I f  E is a vector bundle and the maps Ez~--+Q are isomorphisms, then F is 
a vector bundle. 

(2) I f  F is a vector bundle on Xo, then there is a unique (E .Q)  such that 
r  Q ) = F .  In fact, E=Tr*F.  

(3) I f  F is a torsion free sheaf, then there is an (E. Q), with E a vector bundle 
on Xo, such that 4)(E, Q ) = F  and E ~ - + Q  is an isomorphism. The rank of the map 

E ~ - + Q  is a if and only " ~ ~ _ ~  -~(r-~) if  F| ~m~  o . The roles of xl  and x2 can be 
reversed. 

(4) Every torsion free rank r sheaf F on Xo comes from an (E, Q) such that 
E is a vector bundle. 

Pro@ The proof is similar to the proof of Lemma 4.6 of [Nt/] and Lemma 2.1 
of [Su]. [] 
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L e m m a  3.2. Let F=O(E,Q) ,  then F is semistable if and only if (E, Q) is 
semistable. Moreover, 

(1) if (E, Q) is stable, then F is stable: 
(2) if F is a stable vector bundle, then (E. Q) is stable. 

Pro@ For any subsheaf E ' C E  such that E / E '  is torsion free outside {3:1, x2}, 
the induced GPS (E' ,  QE') defines a subsheaf F ' c F  by 

0 > F ' - - -+  7r.E' ~ xoQ E' > O. 

It is clear that par X,~(F') =par  )m (E')  - d i m  QE', thus F semistable implies (E, Q) 
semistable. Note that  E may have torsion and thus (E, Q) may not be stable even 
if F is stable (for instance, taking E '  to be the torsion subsheaf). In fact, (E, Q) is 
stable if and only if F is a stable vector bundle. 

Next we prove that  if (E, Q) is stable (semistable), then F is stable (semistable). 
For any subsheaf F ' C F  such that F/F '  is torsion free. we have canonical morphisms 
7r*F'--+Tr*F--~Tc*Tr.E--+E. Let E '  be the image of ~r*F'. One has the diagram 

0 0 0 

1 1 1 
0 > F '  > : r .E '  > ~oQ E' > 0 

1 1 1 
0 > F > ~ , E  > xoQ > 0 

1 1 1 
0 > F /F '  > 7c.(E/E') > zo(Q/O E') > 0 

1 1 1 
0 0 0 

which implies that  E / E '  is torsion free outside {3:1,3:2} (since F / F '  is torsion free), 

! ! 

p a r x m ( F ' )  = p a r x ~ ( E  ) - d i m Q  f and p a rx m (F )  = p a r x m ( E ) - d i m Q .  

Thus, noting that  r k E ' = r k F '  and r k E = r k F ,  one proves the lemma. [] 

L e m m a  3.3. Let (E,Q) be a semistable GPS u~ith E locally free and F =  
~(E,Q) be the associated torsion free sheaf. Then (E,Q) is s-equivalent to a 
semistable (E', Q') such that E' has torsion of dimension dim Q -  a(gr F) .  
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Pro@ We prove the lemma by induction over the length of gr F (the num- 

ber of components of stable sheaves of g rF ) .  For an3" torsion free sheaf F,  we 

have a canonical exact sequence O--+F~rr.E--+Q--+O, where E=rr*F/Tor rr*F and 

d i m Q = a ( F ) .  If  F=O(E, Q) with E locally free. then we have the commutat ive 

0 ..... > F 

0 ) F ~  

diagram 

0 0 

1 l 

rr, E + a~oQ 

l i 
~r. 3- § xo Q3 

0 0. 

> 0  

> 0  

where "r=E/.E, Q3 =Q/~) and the map r r . r -%oQ3 is defined such that  the diagram 
is commutative,  which has to be an isomorphism. This gives an exact sequence 

O--~(E, Q)--+(E, Q)---~('r, (23)--->0 in C,, thus (K, Q) is s-equivalent to (/~@r, Q-SQ3) 
and dim r = d i m  Q - a ( F ) .  In particular, the lemma is true when gr F has length 
one. For the general case, there exists an exact sequence O--+F1--~F--+F2-~O with 
F~ stable and par #,,~(F2) = p a r  p, ,  (F).  Consider 

0 0 0 

0 ~ ['1 - -  > F > F2 > 0  

t 1 1 
(3.1) 0 ) 71".E 1 - -  > 7 F . E  > 7 r . E  2 ) 0 

1 1 1 
0 > ~-oQ~ - -  ~ ~ o 0  ~ ~-oQ2 ~ o 

1 1 l 
0 0 O. 
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where El=~r*F1/TorTr*F1, d imQi=a(F1) ,  E2=E/E1 and Q2=O/Q1. The first 
two vertical sequences are the canonical exact sequences determined by F~ and 
F. The third vertical sequence is defined by demanding that the diagram com- 
mutes, which has to be exact. Using parp,,~(F2)=parpm(F), it is easy to see 
that  #c[(E2, Q2)]=pG[(E, Q)] and (E~, Q2) is semistable (since F2 is stable). Thus 
gr(E, Q)=gr(Ei ,  Qi)@gr(E2, Q2). On the other hand, (Ei,Qi) is semistable with 
E1 locally free and Fi=o(Ei, Q~). By the induction, there exists an (E[, Q~)EC, 
such that  gr(Ei, Q~)=gr(E~, Qi) and dim ror  E~ =dim Q i - a ( g r  Fi). Thus (E. Q) is 
s-equivalent to (E', Q ) '=( '~1 w/~2~T, Q1 ~Q2~Q3)"  One checks that dim Tor E2 = 
a ( F ) - a ( F a ) - a ( F 2 )  by restricting the diagram (3.1) to the point x0 and count- 
ing the dimension of the fibres (the first two vertical sequences remaining exact). 
Therefore (note that  dim Q1 =a(F i ) )  E' has torsion of dimension 

dim Q 1 -- a(gr F1) + dim Tot" E2 + dim r = dim Q -  a(gr F1) - a(F2), 

which equals dim Q -  a(gr F)  since gr F = gr (F1) ~ F.2. [] 

Consider the family o*s163 i, o*s 2) of GPSes over 7~ ~ with the universal 
quotient * i g2 co (gx~ �9 ~2) --+ Q" Using the finite morphism 

7 r x I ~ : _ ~ 0 x ~  ~ > X o x ~  ~.  

we can define a family 5 c ~  of semistable sheaves (Lemma 3.2) on X0 by the exact 
sequence 

(3.2) 0 

Since g*g is fiat over ~s~ and Q locally free on ~'~~: ) c ~  is a fiat family over ~s~. 
Thus we have a morphism 

such that  0"~ Ouxo = O ~ s  by Theorem 1.2. 
"]-r s s 

L e m m a  3.4. The morphism 0~r induces a morphism 

O~x~.x2 : ~Xl.X2 ----+ ~Xo 

such that r "Px~ ~20b/Xo ----O'Px~-x2 

Proof. The proof is clear: we just remark that one can compute O~-~  = O ~  
by the exact sequence (3.2) defining the sheaf j c ~ .  [] 
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Let b/xl,X2 be the image of "Pxl,x2 under the morphism O'PXl.~2, then/dxl,x2 is 
an irreducible component of/dXo and Opt, .~ is a finite lnorphism since it pulls back 
an ample line bundle to an ample line bundle. We will see that 

~ . . . .  ~: ~ 1 ~ \ { 1 9 , ,  192} ~ z %  ~ \Wr-~ 

is an isomorphism. Thus 0W~l.• ~ is the normalization of b/x~.x2. We have clearly 
the morphism 

0:= 11 Op~I.~:P >UXo. 
X I + X 2 = x + r  

which is the normalization of/dx0. We copy Proposition 2.1 from [Su]. 

P r o p o s i t i o n  a.1. With the above notation and denoting 191(r-1), 192(r-1), 
14;,.-1 by 191,192 and W, we have 

(1) 0: P-+blXo is finite and suvjeetive, and o(19~(a))=o(192(a))=Wo; 
(2) r and induces an isomorphism on P\{191U192}; 
(3)  0 l 'Dl (a) :  191(a)---}~A2 a i8 j~nite and sarjective: 
(4) O(191(a)\{191(a)N192U191(a-1)})=lA;~iV~'~,_l, at~d o induces an isomor- 

phism on 191(a)\{191(a)f-1192U191(a-1)}; 
(5) 0:P--+/dx0 is the normalization of/dxo: 
(6) r 191(a)--+}/~?a is the normalizatior~ of W,: 
(7) r and I/V~,_I is the nonnormal locus of l/Va. 

Proof. In proving (4), we used Lemma 2.6 of [Su] to show that 0 induces a 
morphism 

*: 191 (a) \ {19~ (a) n19~ u19~ (a -  1) } ~ w .  \ w~,_~. 

But Lemma 2.6 in [Su] is not correct, we have to prove it without using the lemma 
(also to fix the gap in [Su]). We will use [. ] to denote the s-equivalence classes of 
the objects we are considering. For any [(E, Q)]E191(a)\{191(a)A192U191(a-1)}, 
we can assume that  E is a vector bundle by Proposition 2.5. and Ex2-+Q is an 
isomorphism since [(E, Q)] ~192. Thus o(E, Q)=FEW~ \l/Y~_l by Lemma 3.1(3). 
We need to show that  [F]~W~_I. If this is not so. then F is s-equivalent to a 
semistable torsion free sheaf F 'EI /V(a-1)  and (by Lemma 1.3) 

a -  1 _> a(F ' )  _> a(gr F ' )  = a(gr F). 

On the other hand, by Lemma 3.3, (E, Q) is s-equivalent to a semistable (E ~, Q~) 
with d imTorE~=r-a (grF) .  By Proposition 2.5(1), E '  has no torsion at xl since 
[E', Q')]=[(E, Q)] ~192. Hence, by Proposition 2.5(1) again, (E', Q') is  s-equivalent 
to a GPS (E, Q) wi th/~  locally free and 

rank(/~;~ ---+ Q) _< a(gr F)  = a(gr F ' )  <_ a(F ' )  _< a -  1. 
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We get the contradiction [(E, Q)] = [(E, Q)] C~)I (a--1). Thus 6 induces a morphism 

e: z~l(a)\ {~l(a)nz~2 uz~l(a- 1)} --+ wa\W~_l. 

The argument in [Su] for the other statements goes through using [B], only (7) 
is in doubt. This can be seen as follows, the fact O(DI(a)ND2)=kVa-1 follows the 
local computation (see Proposition a.9 of [B]), and the nonnormal locus of kV~ is 
contained in W,-1  by (4). If I/V~_I is nonempty and not equal to the nonnormal 
locus, there exists a nonempty irreducible component ~A:X~,X~ of 1/Va_l such that  

�9 ~ a - - 1  

61D,(~) is an isomorphism at. the generic point of l/Vx*'x=~-i . This is impossible since 
the fibre has at least two points (one in D l ( a - 1 ) \ T ) 2  by Lemnm a.1 and another 
in DI(a)AD2). [] 

Let I z  denote the ideal sheaf of a closed subscheme Z in a scheme X. When Z 
is of codimension one (not necessarily a Cartier divisor), we set ( .9x( -Z) :=/z .  If 12 
is a line bundle on X and Y is a closed subscheme of X. we denote 12S:Iz and the 
restriction I z |  o f l z  on Y by 12(-Z) and O y ( - Z ) .  We have the straightforward 
generalizations of [Su, Lemma 4.3 and Proposition 4.1]. whose proof we omit. 

L e m m a  3.5. Assume given a seminormal variety V with normalization ~r: V-+ 
V. Let the nonnorvnal locus be W, endowed with its reduced structure. Let W be 
the set-theoretic inverse image of W in ~. endowed with its reduced structure. Let 
N be a line bundle on V, and let ~ be its pullback to V ( N = a * N ) .  Suppose 
H~ N) -+H~ N)  is surjective. Then 

(1) there is an exact sequence 

O----~ H~  N|  > H ~  H~ 

(2) if HI(W. N) -+HI( I~  7~7. ~') is injective, so is Hl(V, N)--+H 1 (C/. =~). 

L e m m a  3.6. The following maps are surjective for any l<a_<r ,  
(1) H~ Op)--+H~ Op); 
(2) H~ Op)--+H~ Op). 

Lemma 3.6 tells us that  the assumption (surjectivity) in Lemma 3.5 is satisfied 

for the situation V=]/V~, V=DI (a ) ,  er=01~)~(~) and X = O u x  [w.. Thus we can use 
Lemma 3.5 to prove the following result. 

P r o p o s i t i o n  3.2. We have a (noncanonical) isomorphism 

//~ Oux )~g0(p O~(zb)) 
O~ 0 

Pro@ The proof is similar to the proof of Proposition 4.3 of [Su]. [] 
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L e m m a  3.7. Let V be a projective scheme on which a reductive group G acts, 
be an ample line bundle linearizing the G-action, and V s~ be the open subscheme 

of semistable points. Let V ~ be a G-invariant closed subscheme of V ~ and V ~ its 
schematic closure in V,  Then 

(1) V's~=V' ,  and V' ffG is a closed subscheme of V'~S//G; 
(2) H ~ 1 6 3 1 7 6 1 6 3  G, where W is an open G-invariant irreducible 

normal subscheme of V containing V ~ and (.)inv denotes the invariant subspace 

for an action of G. 

Proof. See Lemma 4.14 and Lemma 4.15 of [NR]. [] 

L e m m a  3.8. Let V be a normal variety with a G-action, where G is a reductive 
algebraic group. Suppose a good quotient 7c: V--+U exists. Let s be a G-line bundle 
on V, and suppose it descends to a line bundle s on U. Let V"  c V '  c V  be open G- 
invariant subvarieties of V,  such that V'  maps onto U and V"=Tc -1 (U") for some 
nonempty open subset U" of U. Then any invariant section of s on V ~ extends 
to V.  

Proof. See Lemma 4.16 of [NR]. [] 

Proposit ion 3.3. Let ~FCT-I be the open set consisting of (E ,Q)  with E 
locally free. Then 

H~ s s ~  ,0-~r j~G -- H ~  ~ , On)G = H~ (7~F. OT~r) G �9 

where G=(  GL(V1) x GL(V2) )ASL(V1O V2). 

Proof. The first equality follows from Lemma 3.7. the second equality follows 

from Lemma 3.8 by taking V = ~  ~,  U = P x l  x, 2, V ' = ~ N T " i F  and U"=Pxl.x2 \ 
{T)~,~)2} (one needs Proposition 1.4 to show that U" is nonempty). [] 

L e m m a  3.9. Suppose V-+ V//G is a good quotient and T is any variety with 
trivial G-action. Then V • 2 1 5  is a good quotier~t. 

Proposit ion 3.4. Let G1 and G2 be reductive algebraic groups acting on the 
normal projective schemes V1 and 1/2 with ample linearizing L1 and L2. Suppose 
that L1 and L2 descend to @)1 and @)2, Then, for any G-invariant open sets V1DV~ s 
and V2 D V,2 ~, 

H~ • 1/2, L1 @L2) G1 •  = HO(v1, L1)G~ ~ Ho(V2, L2)G2. 
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Proof. Using L e m m a  3.7 and Lemma 3.9. we have 

H~ x V2, L1 @L2) ~ • c~ = { HO (V1 x l/), L 1 3 L 2 )  c~ x {ia} }{ia} • 

= H~ • ItS, 01 @L2){id} xa~ 

: H~ 1 X ?2ss//G2, O 1 ~ 0 2 )  

= H~ 01) ,H~ O2) 

= H~ ~H~ L2) G2. [] 

Notation 3.1. For p = ( t t  I .... , / / r )  with 0_<p,._<..._<pl_<k-1. let 

{di t = ~ri --]lri+l }i=1 

be the subset of nonzero integers in {Pi r-1 -- / / i+1}i=1" Then  we define 

ri(xl)=ri, di(Xl)=di, lzl=l, o'xl = #r,  

r i ( x2 )=r-r~_ i+l ,  d i (x2)=dl- i+l ,  l~,2=l, ax2=k-Pl 

and for j = l ,  2, we set 

I,,.j - -  1 l,r3 
a ( x j ) =  (]2v,l~r-l-dl(3;'j) .... ,//;,,Jl- E di("rJ)'llr-I-Edi(xJ))' 

i=1 i=1 

~(Xj) =(TI(Xj)  ,T2(x j ) -FI (x j ) , . . . ,F I :  U(xj)-FI~j I(Xj)). 

We also define 

u 1 E d i ( x ) r i ( x ) + r  Z a r + r l '  +k E p i '  Xl = ~  
i=1 :rEI1 i=1 

1 Ed~(x)ri(x)+r E a r + r l 2  + r - - s  
xP = k . i=1 a:cI2 i=1 

One can check tha t  the numbers  defined in Nota t ion  3.1 satisfl, ( j = l ,  2) 

(3.3) 
lx 

XE]'jU{Xj} i=1 xEIjU{xj} 
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Notation 3.2. For the numbers defined in Notation 3.1. let. for j = l .  2. 

Xy �9 " : 

be the moduli space of s-equivalence classes of semistable parabolic bundles E of 
rank r on X j  and Euler characteristic x ( E ) -  # - X  j ,  together with parabolic structures 

of type {ff(x)}zezu{~} and weights {ff(x)}zelu{a,:} at the points {X}xffIU{xj }, W e  

" is not an integer. Let define Lt" to be empty if Xj Xj 

O / ~ )  : =  O(~ ; ,  l j ,  {?~(Z) :  a ( x ) ,  Ox}x.Elju{x , }. I j U { x j } )  

be the theta  line bundle. 

T h e o r e m  3.1. There exists a (noncanonical) isomorphism 

H~ (blx~ ux2 , OUxl~x2 ) ~- ( ~  H~ (U~h �9 O u ~  ) 7> H~ (Lt~'2 , Ou~- 2 ), 
P 

where # = (#1, .-., #<) runs through the integers 0 <_ p,. <... << Pl < k -  1. 

Proof. As in Proposition 3.3, one can show that 

: 

Note that  (97~ y ( - ~ 2 )  = det s @ (det Q) -  1 and write rl.,.2 := (det ga2 ) -  1 ~ det Q. We 
have 

HO(~,~F, OT~v (_~2)  )G = HO(T~l.F X T~2.F. Ont  r 3:O,R., F ~ (det gx2)k ~ (l]x 2k-1 )).o 

Let 

Flag,~(~) (Sr~) 
Pj 

p 

T~j.F , . -  1-IQ  
xEIjU{xj} 

then, by Lemma 4.6 of [Sul, we have 

k--1 

P 

where # = (#1, ..., #~) runs through the integers 0 < p,. <... < p 1 <_ k -  1 and 

l,r 1 

s (det g l  ),,. ~ @ ( d e t  Qx~.i) a~('~). 
i=1  

1.r 2 

Z~ = (det ez22) - '~  ~ @ ( d e t  Q~.~)~t~(.~) 
i=1 
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are line bundles on 7 ~  x T ~ .  By the definition 

'+ } 
Ore 2 :=(detnTrn2gJ)kG'  @ { ( d e t E ~ J ) ~ 3 @ ( d e t  Qx.i) d~(z) @( detgjyj)lj 

xEIjU{xj } " i = 1  

one sees easily that  

[1" Orq, =pl (07+1~)~s 
iz* O7~ =P2 (Orr g (de tgx2)k )Ss  

Thus we have (for any ;~1 and g2) the equality 

Since C* •  acts trivially on 7~  xTZ~ +, one can see that if 

H~162 ' • ~ .  O~, ~ O ~  )G # 0. 

then the Xj ( J= I ,  2) has to satis~, 

X Z d+(~/~(~) +~ Z ~+~lj=kz~. 
xEIju{xa} i--1 xe l jU{x j }  

Therefore Xj has to be X~. In this case. C* x C* acts trivially on the line bundle, 

Thus, by using Proposition 3.4, we can prove the theorem. �9 

We end this paper by some remarks. In Notation t.1, we chose and fixed the 
ample line bundle O(1), the theta line bundle and the factorization are generally 
dependent on this choice. In some cases, although the moduli space itself depends 
on the choice, the theta  bundle and the factorization (also the number of irreducible 
components of the moduli space) are independent of the choice. For example, when 
x=0, II1=0, or the parabolic degree is zero, we have /1+/2=0.  In any case, one 
can see that  x~<nl+r, thus, for an5" choice, there are only r components of moduli 
space contributing to the fa.ctorization. 

The choice in Notation 1.1 has quite a lot of freedom, it is in general a choice of 
the partitions of ll +/2. In particular, if we are only interested in studying moduli 
space, we can choose any+ O(1). 
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C o r o l l a r y  3.1. There is a choice of O(1) such that the moduli space L/x0 has 
r irreducible components and 

W0=0. 

In particular, when r=2, LtXo has two normal crossing irreducible components. 

Pro@ One can easily choose O(1) such that nl and n2 are nonintegers. Thus 

n j < x j < n j + r  ( j=1 ,2 )  has only r possibilities and for each such Xj there is a 

nonempty irreducible component by Proposition 1.4. Recall (2.2), 

nl  + r -  dim QE2 < x(E1) < nl +d im QE~ 

n 2 + r - d i m  QE~ < x(E2) < n2 +dim QE2. 

We see that dim QEj ~-xj--nj >0, which means that 

D~(0)=z~(0)=0. 

Thus t420=0. In particular, when r=2 ,  the local model of moduli space at any 
nonlocally free sheaf is C[x,y] / (xy) ,  by Lemma 1.4. [] 

Remark 3.1. When r = 2  and (9(1) is chosen such that r~l and nz are noninte- 

gets, P has two disjoint irreducible components Pl  and P2 and Dj CPj ( j = l ,  2) is 

isomorphic to 1/VCb/Xo. Thus b/x0 can be obtained from Pl  and Pz by identi~ing 
Z?i and D2. 
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