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A new example of a uniformly
Levi degenerate hypersurface in C?

Hervé Gaussier and Joél Merker

Abstract. We present a homogeneous real analytic hypersurface in C3, two-nondegenerate,
uniformly Levi degenerate of rank one, with a seven-dimensional CR automorphism group such
that the isotropy group of each point is two-dimensional and commutative. The classical tube I'¢
over the two-dimensional real cone in R® is also homogeneous and has a seven-dimensional CR
automorphism group. However, our example is not biholomorphic to the tube over the real cone,
because the two-dimensional isotropy groups of I'c are, in contrast, noncommutative.

1. Introduction

In the paper Uniformly Levi degenerate CR manifolds: the 5-dimensional case
[E], Peter Ebenfelt presented the tube I'c:=C+iR3>CC? over the real two-dimen-
sional cone C:={(z1,z2,z3):23+75—72=0}CR? as a standard model among the
class of uniformly Levi degenerate, two-nondegenerate real analytic hypersurfaces
M in C3. Following the Elie Cartan algorithm to solve the equivalence problem,
[c is characterized by the vanishing of some curvature in [E]. It is also proved that
the isotropy subalgebra Autcr(M, p) of a point p€ A, namely the Lie subalgebra of
infinitesimal CR automorphisms K € Autcg(Af) defined in a neighborhood of p in M
and vanishing at p, satisfies dimg Autcg(M.p)<2. implying dimg Autcr(M)<T7.
As it is known that I'c is homogeneous and that dimg Autcr(Te.p)=2 for every
pelc (see [E]), one might ask whether the standard model T'c is characterized by
the maximal dimension of its isotropy CR automorphism subalgebras. However, we
present here a simple example of a homogeneous hypersurface Ay in C®, having two-
dimensional isotropy subalgebras, which is not locally biholomorphically equivalent
to Ic. In fact, the isotropy subalgebras Autcr(Mp.p) are commutative whereas
the corresponding Autcgr(I'c,p) are noncommutative. Analogously, the sphere is
not the unique flat standard model among Levi nondegenerate hypersurfaces in C?,
since there is also the quadric Imw=/|z;|?—|23|%. see [CM] and [M].
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2. Construction of the example
2.1. Preliminaries

A real analytic hypersurface A7 of C**! is uniformly Levi degenerate of rank
r at p if the Levi form is of constant rank equal to r<n over /. To study the
geometry of M, higher order nondegeneracy conditions are then necessary. Let
M={zeC"*1:p(z,7)=0} with ¢ real analytic and do#0 on M. Let pe M.

Definition 2.1. ([BER]) The hypersurface M is finitely nondegenerate at p if
there exists a positive integer k& such that

(2.1) span{L®Vo (p,p):a € N" and |a| <k} =C"T1,
where Vp is the holomorphic gradient of . (L. ... L,) is a basis of CR vector fields
near p and L*=L$" ... Lo,

The smallest integer k=:l, satisfying this condition is a local biholomorphic
invariant called the Leuvi type of Al at p (we put [,=xc if no finite k satisfies (2.1}).
We recall that M is called holomorphically nondegenerate if there is no nonzero
holomorphic vector field tangent to an open subset of M. It is known (see, e.g.,
[BER]) that if M is connected and holomorphically nondegenerate, then there is
a biholomorphic invariant l; called the Levi type of M with 1<ly;<n-1, and a
proper real analytic subset ¥ of M such that A is [y;-nondegenerate at each point
of M\X.

Hence there are three different types of (connected) real analytic hypersurfaces
in C* at a generic point: (A) the holomorphically degenerate ones. which are locally
biholomorphic to a product N x A, where N is a real hypersurface in C? and A is
the unit disc in C; (B) the Levi nondegenerate ones. whose Levi type equals one;
and (C) the two-nondegenerate ones which are uniformly Levi degenerate of rank
one.

2.2. General form of a two-nondegenerate hypersurface in C?

Let now M be a small piece of a rigid real analytic hypersurface passing through
the origin in C? given by M=:{(2y, zz. w):w+w=F(z.2)}. where z=(z1, 22). As-
sume that M is uniformly Levi degenerate of rank one. namely that the Levi form of
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M has exactly one nonzero eigenvalue at every point. So M ——-:{ {21, 22. w):w+wW=
2121+ pes FF(2,2)}, locally at the origin, where F* is a homogeneous polynomial
of degree k with respect to z and %, and the Levi determinant of A must vanish
identically:

14+>70 F"
(2.2) k= 3 2251 | =,
Zk =3 z122 ZI?CB 2920

In particular Fz3 5, =0 in a neighborhood of the origin, so there are four complex
constants asigo, @2001, a1110 and agiag such that F3( .V)-azmozl 21 +a20012122+
1110212271+ 012023 21 + 8210021 25 + 2001 2272 +@111021 21 22 + 8012021 23.

The transformation z—y=(y1,y2):=(21 +as10022 +a111021 22 +ag12025, 22) is a
local biholomorphic map at the origin. In the (y;.y2.w) coordinates A is repre-
sented by

x
M= {(yla Y2, w) wH W=y +a2001yfy2+6200137fy2+2 G*(y, 17)};
k=4

where G* is a homogeneous polynomial of degree k£ with respect to y and §. As-
suming that M is two-nondegenerate it follows that asgg; #0 and so by a rescaling
of the yo axis we may write

(2:3) M= {(yh Yo, ) wHT =y +yige e+ Y Gy, 17)}-
k1

2.3. Construction of the example

Coming back to the previous notation z instead of y in (2.3), the vanishing of
the Levi determinant (2.2) is now equivalent to the following equations:

(24)s GL; =4x7,

(24)5 GZ222 _2(21G +2’1G

2221)

2122 222 2221

(24)  Gi s =216t 42657 +Z Gl .,GE277 for every k> 6.

=0. We
set G*=0 for the construction of a particular hypersurface denoted by Ay in the
sequel.

The integration of (2.4), gives G4(z, 2):421212222+é4(z. z), where G4

z2%2
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Similarly, the integration of (2.4)5 gives G®(z. 2)=4(z{ 20524 3222%,)+GP(2, %),
where G2 . =0. We set G®=0 and subsequently G¥=0 for every k>6. so we obtain

222

the following expansion for the defining equation of Mg:

>
(25) My = {(Zl, 22, w) Tw+w = (2’151 +Z%ZQ+Z%22) Z 4k(2252)’{€}7
k=0

and My is uniformly degenerate. By the change of variables 2+ (21, 222) we obtain
the final form of M. More precisely we denote by Ay the connected piece passing
through the origin with |2o{<1:

2051+ 20+ 52
(2.6) Moz{(zl,zz,w):w+@: 1 1:Z1~222 172 2y <1},
—22%2

2.4. Geometry of M,
The (1,0) vector fields tangent to My are generated by

9] 2Z14+2212, O 0 (21+Z152)2 15)
97) =2 Bt 4L Gita®)® 9
( ) ! 821+ 1—202y Ow an 2 0 22 (1—2252)2 ow

The kernel of the Levi form is generated by the vector field

142122 O 0 (B+nz)? 0
2.8 I's———r———— 7
( ) 1—2925 821+822 (1_3222)2 ow

Indeed, we compute

Z1+21%22 -
(]. —2252)2

(29) [Ll, T] =— El and [L2, T] =

1—2025
Finally, according to a theorem of Freeman [F], M is necessarily foliated by complex
curves. In fact, My is foliated by the complex lines z1:=20—20(, 22:=¢ and w:=
z0Z0+1A—(z¢, where 20€C, A€R and where (cC satisfies |(]<1.

3. Biholomorphic inequivalence of I'c and M,

The inequivalence of I'c and Aly is based on the comparison of the isotropy
subalgebras of two reference points for these hypersurfaces. In the next two subsec-
tions, we determine the Lie algebra of the infinitesimal CR automorphisms of I'c
and of M.
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3.1. Geometry of I'c

The tube I'¢ is invariant under translations in the tube directions, dilatations
and automorphisms of the real quadratic form z?+z3~z3. The infinitesimal gen-
erators K, ..., K7 of these seven independent transformations form a Lie algebra
and are the real parts of the holomorphic vector fields

a 7] s}
Xl —_ X4 —_ i - —_.
! 8z’ L Oz ta B8z T Bzz’
0
X2=z'——a——, X5 =2 o -z —
Oz ZES Oz
(3.1) 5 9 5
X¥=i—, X®=: —,
718253 ’ 3(92’1 ta 623 '
0 0
X" =z23—+20—.
3 622 t22 823
The transformations K73, ..., K7 exhaust the infinitesimal CR automorphisms of ['c.

Indeed, let peT'¢ outside the singular locus. One can prove that any biholomorphic
local self-map of I'c defined in a neighborhood of p must be affine of the form
C35Z—®(Z)+ibeC?, where beR3 and ® is a linear mapping with real coefficients
which stabilizes C' near Re p. Then ® is necessarily a dilatation or an automorphism
of £ +a3—x3 (see [P} for the study of global biholomorphisms of tube domains or
[E] for the local study).

Since I'c is homogeneous, we can study its local geometry in a neighborhood
of the point pg:=(1,0,1). The (1,0) vector fields tangent to I'c are then generated
near pg by

19, Ty 15} a Io 19}
3.2 Ly=— 4" N Tt S
(3.2) ! loF2) + T3 023 and Ly Ozy + r3 023

Furthermore, the vector field T:=x,(8/0z;)+x2(0/0z2)+x3(0/0z3) spans the ker-
nel of the Levi form, because [Ly,T)=1L, and [L2,T]=3L,. Also, the regular
locus of I'c (cf. [F]) is globally foliated by the complex lines z,:=(r+is) cos 0+,
2g:=(r+1s)sin 0+ip and zs:=r+is. Also, computing (2.1), it is easy to check that
I'c is two-nondegenerate at every point.

Finally, the isotropy Lie algebra Autcgr(Tc.po) is generated by the two vector
fields Kg=K4— K¢ and Kg=K5+ K.

We observe that [2K3, 2K9]=2Kjy. Since the regular part of I'c is homogeneous,
it follows that the isotropy algebras Autcr(I'c,p) are all noncommutative.
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3.2. Computation of the Lie algebra of M,

The computation of the Lie algebra of Autcr(Afy) at the origin is based on
the Lie theory of the prolongation of vector fields (see [O1] and [02]) and on the
fundamental observation by A. Sukhov in [S] that the Segre varieties are solutions
of nonlinear systems of partial differential equations. We would like to mention that
the direct computation of this Lie algebra. using only the tangency condition for an
infinitesimal CR automorphism of Af, involves the resolution of a huge system of
approximatively sixty linear partial differential equations. Using the Lie theory we
restrict the study to a much simpler system of only nine linear partial differential
equations.

Let us write (x1, 22, u, Z1.To, 1) instead of (27, 22.w. 2.2, @) and let us con-
sider @, Z; and Z> as complex parameters. r; and r» as two independent variables
and u as a dependent variable. i.e. as a function of z; and z, in the defining equation
(2.6) of M. Then the two differential terms

ou 2(f1+$1fg) 9%u 2%9
33 === ——— D= —_—=
( ) U oz 1~zoZ0 and et BI% 1—25%5

are sufficient to express any partial derivative u,x,i =(9*u/0x}0x}).

1.2 Y —
Uy, = JUL, us =0.
1 1.2
24 Upizy = gUz; Ug?. Uply, = 5Up2:
(3.4) _ 1.2 -1 2
2 Zuzl Uy2 ul‘pv? - 2u11u12'
3 i 3 i
_ 3,2 .2
Uy = glUy, Uy2-

Let us denote by J3,(C) the jet space of partial derivatives up to order three of
one function v depending on the two complex variables 27 and zo, equipped with
the coordinates

(3.5) (1,200, UL UL UL U 5. US 5. U 1 U1 5. U 50U g 5).

To the system (3.4) corresponds the following complex submanifold of J3 (C):

=1} U, =0
(36) UIZ_%llell L112—‘(Ui2.1)2-,
U2,2 = %(Ul) U1‘1- 51.2.2 = %U11(U12.1)2=

U322=3(UN*(ULY)*.
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The computation of the Lie algebra Auteg{Ay) is based on the following three
observations:

(1) The solutions of the system (3.4) are exactly the Segre varieties of M.

(2) Every local biholomorphic map stabilizing 1/, maps every Segre variety
onto another one and hence is a symmetry of the system (3.4).

(3) Since My is holomorphically nondegenerate. it follows from [C. pp. 30-32]
that the group of CR automorphisms of A/ is a maximally real subspace of the
symmetry group of the differential system (3.4).

It remains to determine the symmetry group of (3.6). using the following cri-
terion.

Lie criterion. ([O1]) A vector field Y =Q'(8/0x,)+Q?*(8/dx2)+R(0/0u) is
an infinitesimal symmetry of the system (3.4) if and only if #s third prolongation
Y3 is tangent to the complex manifold defined by the equations (3.6) in J3 ,(C).

The third prolongation of Y can be written (cf. [S], [GM])

0
(3 7 Y+ Z R Z J1 J2 8L' ETI7I Z RJx J2-J3 U3 ’
Ji=1 J1 j1ge=1 J1-d2 Gy gegs=1 J1-jz-Js

where the terms R} , RS .. R3 . .. j;=1.2. are computed by induction,

2
R} =D;(R) —Z D;, (QMUL.
k=1

(38) R}, ;=D (Rj},)~ Z D;, (Q")UF,
2
3 k
R 4y5s=Di Jljo) ZDJB Q") /112*
k=1

using the operators of total derivative for j=1.2.3.

8 0
(3'9) D] +U1 Z g aUl Z D] JiJ2 aUZ
f1=1 I ji.ja=1 J1.J2

For instance, the expression of R} | | is
R?,l,l =R 3+[3Rur _Ql ]Ull ['—QQ‘ ]U?1+[3Ru22‘1 "‘3Q11n ](UI)Q

+=3Qa UL Uz +[Rie —3Q0 xJ(UfP [-3Q2%,,)(U})*U3
+[_ u3](U1)4 [_ u3](U1) 2 [ uzy 3Q1 ]U11+[ QQL%}U122
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(3.10) +[BR,2—9QL, JULUZ +[-3Q2, U UL | +[-6Q2, JUI UL,
+[-6Qu=](UD2UE  +[—3Q2 (UL UL o +[—-3Q2%: U Us UF |
+[‘3Q71J](U12,1)2+ [‘3Q3]U12.1U12,2+ (R ‘3Qi,}U13.1.1

+[_5Qi1]U§A142+[_4Q11£]U11U?‘1.1+[_SQIQI]U}UI:;,I,Z_‘}_[_Qi]UgUigyl,l'

The Lie criterion is equivalent to saying that the following equalities are satisfied
on the variety defined by (3.6):

Ry=3RiU}, R}, =0,
Ri?:%(RilUll*‘R%Uﬁl): R:f,l,z:R%lUﬁp
R}, =3 RIUIUT +1RT (U RY,,=3Ri(U,)*+RE UL

R}, ,=3RIU} (U} ) +RE(UD)°UF,.

(3.11)

Substituting the explicit expressions of the R terms., we get a system of linear
partial differential equations. We extract the following ones, which are sufficient to
determine Y completely:

constant term in R} : R,, =0,
U} term in R} : 22 = 3 Fay,
(UD)? term in RY - 1Q%, =1QL, —1R.,
(U$)*term in R} : 1Q.=—% 2
(3.12) (UH* term in RY: £Q2 =0,
(UD)? term in RY 51 —Qly,+5(Ruz, — Q2 1,) = 5(2Ruz, —Qy2).
(U})? term in R?,: H(Ry2 = Qi —Qitz,) = 5 (Ruz ~2Qyq, — %Qif)’
constant term in R?,l,l : Ry =0.
(U12,1)2 term in Ri’_/u : —%Qil ——3Q111 =0.

The resclution of these nine linear partial differential equations gives the fol-
lowing general form for a generator of the symmetry group of the system (3.4):

0 .
Y = (y+0z1+azs+82172) s— +(u+ (20 +2) 22+ 823)
(3.13) 0z, Iz

%)
+(A~2az, —su—ﬁzf)é—&,

where o, 8, 7, 8, €, A and u are complex constants.
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A basis of the infinitesimal CR automorphisms of My. expressed in the coordi-
nates (z1, 22, w), is given by the real parts of the following linear complex combina-
tions of the seven generators given by (3.13) [C, pp. 30-32)):

Xz—zla1 2u6—u
X3—z<21%+2 261)

(3.14) X4:(22—1)é%~2z1%
X5® ((H—zz)aal -2z (—9%)
XG'le""aal (z§_1)8822 %aiv
X7:i<zlzz%+(z§+l)§2—2—zf-a%).

3.3. Local biholomorphic inequivalence of I'c and M,

The isotropy algebra Autcgr(Mp,0) is generated over R by the real parts of
X? and X® and hence is commutative since [X2, X%]=0. On the contrary the
isotropy algebra Autcr(Tc,pg) is generated by the vector fields Kg and Ky (see
Subsection 3.1), satisfying the condition [2K3,2Kg]=2Ky. This implies that I'c
and My are locally biholomorphically inequivalent.

Open question. It would be of great interest to provide a complete classification
of real analytic homogeneous hypersurfaces in C3, in the spirit of Elie Cartan’s list
in dimension two {C].
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