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The harmonic Bergman kernel 
and the Friedrichs operator 

Stefan Jakobsson 

Abstract .  The harmonic Bergman kernel Q~ for a simply connected planar domain f~ can 
be expanded in terms of powers of the Friedrichs operator F~? if IIFf2 [I < 1 in operator norm. Suppose 
that f~ is the image of a univalent analytic function r in the unit disk with r where 
~(0)=0. We show that if the function ~p belongs to a space lP~(D), s>0, of Dirichlet type, then 
provided that II~ll~<l the series for Qfi also converges pointwise in f~• f~\&(0f~), and the rate 
of convergence can be estimated. The proof uses the eigenfunctions of the Friedrichs operator as 
well as a formula due to Lenard on projections in Hilbert spaces. As an application, we show 
that for every s>0 there exists a constant C.~ >0 such that if [[r <Cs, then the biharmonic 
Green fnnction for ~=r  is positive. 

1. I n t r o d u c t i o n  

Let ft be a bounded  s imply connected domain  in the complex plane C, and  let 

L 2 (ft) denote  the space of funct ions  f on ~ for which 

]lf]]~ : ~ tf(z)] 2 dE(z) < oo, 

where dE(z)=71 - 1  dx dy, z=x+iy, is the Lebesgue measure  normal ized so tha t  the 

un i t  disk D has mass 1. We denote  the Bergman  spaces of analyt ic ,  ant i -analyt ic ,  

and  harmonic  funct ions  on f~ by A2(~t), A2(f~), and  H L 2 ( ~ ) ;  they are defined as the 

intersect ion of L 2 (~) wi th  the corresponding class of funct ions on ~2. It  is evident  

tha t  the sum A 2 ( ~ ) + A 2 ( ~ )  is a subspace of the harmonic  Be rgman  space HL2(~) 
on ~,  and one can show tha t  equal i ty  A2(~)+A2(~)=HL2(f)) holds if and  only if 

there exists a cons tan t  ~ < 1 such tha t  

(1.1) f~ f2(z)  d~(z )  ~O~ilf(z)12dE(z) 
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for all fEA2(f t )  with zero mean value in f~, that  is, f~2 f d E = 0  (see Proposition 4.6 
in [7]). This is usually referred to as the Friedrichs inequality. Under the assumption 
that  the boundary of f~ has a continuous tangent except at a finite number of corners, 
Friedrichs proved in [1] that  the inequality (1.1) holds for A2(ft). Later it has been 
shown that  it is enough that  ft satisfies the interior cone condition [8], [9]. 

Related to the inequality is the Friedrichs operator defined on A2(~) as the 
conjugate-linear operator 

(1.2) = r 1 6 2  d (0, < 

where K~ is the analytic Bergman kernel. If the operator Fa is compact (as it is if 
the domain has no corners except for internal cusps [1]), it follows from the general 
theory of Hilbert spaces that there exists a complete orthonormal basis of analytic 

e oo functions { n}~=0 in A2(f~) and a corresponding sequence of positive constants 
{k,~}~_0, which tend monotonically to zero, as n--->oc, with the property that  for 
every function fcA2(Q) we have 

(1.3) ~ f2(z)dE(z)= s ;~(f,e,~)~, 
n = 0  

where (- ,. }a is the inner product in L2(f~). An equivalent way to write this is 
oo 

n : O  

e o o  We will refer to { ,~}n=0 as the eigenfunctions for the Friedrichs operator and 
A oo { ,~},~=o as the eigenvalues, although the operator is only conjugate-linear. Since 

the Friedrichs operator preserves constants, it is clear that ),0=1 and that  e0 is a 
constant function normalized to have norm 1. All the other eigenvalues are strictly 
less than 1. The next result, due to H. S. Shapiro and M. Putinar, shows the relation 
between the Friedrichs operator and the harmonic Bergman kernel Qa. 

L e m m a  1.1. Suppose that ~ is a simply connected domain and that the 
Fr'iedrichs operator on A2(~) is compact. Then the harmonic Bergman kernel for 
HL 2(~) has the following expansion in terms of the eigenfunctions and eigenvalues 
to the Friedrichs operator 
(1.4) 

_ X , r t , - - 1  

where 
=s dr,. 
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We remark that  if f~ is not simply connected but the Friedrichs operator  is 
still compact,  then (1.4) gives the reproducing kernel for the subspace of harmonic 
functions with well-defined harmonic conjugates on ft. Since {e,~}nc~= 0 is a complete 
orthonormal basis for A2(ft), we have the expansion 

1 OO 

= + e,,4 )en(0 

for the analytic Bergman kernel, and thus 

(1.5) 
-2ReK ( ,r 

- -2  Re e n  z e n  �9 

The idea to get control over the harmonic Bergman kernel is to estimate the left- 
hand side of this identity. In order to do the calculations, it is convenient to shift to 
disk coordinates. Let 6 be a conformal map of the unit disk D onto ft and define 
the kernel functions 

(1.6) K~o(z,g)=K~(6(z),r162 and Q~(z ,C)=@~(6(z ) , r  

It  is a simple exercise to show that  Kw and Q~ are the analytic and harmonic 
Bergman kernels for the weighted space L2(D,cz) in D fbr the weight co=l~b'l 2. 
Moreover, the weighted Friedrichs operator F~ associated to/Q~ defined by 

Foof(z) =/D K~o(z, ()f((-)co(() dE(() ,  z E D, 

k or F~, and the eigenfunctions {f,~}n~_0 of F~ are has the same eigenvalues { ,~}n=0 as 
related to the ones of F~ by fi~=e~o 6. For our calculations, we need the following 
explicit representation of the Bergman kernel K~ at hand 

1 1 
(1.7) K ~ ( z , ( . ) =  6 '(z)6 '(( .)  ~ ~)'1-z='2' z , ( . c D .  

If ft is a disk, then it is known that  all the eigenvahes ~.,~ are zero for n >  1, and 
it is obvious that  they are invariant under translation, dilation and rotation of the 
domain ft. Therefore, we have chosen to work within the class of domains which 
are the image of the unit disk under a function in the class S, that  is, f t=O(D)  for 
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r  We recall that  an analytic function r on D is in the class S if it is univalent 
on D and r  and 0'(0)--1. The derivative of such a function r is 

(1.8) r = l + 4 ( z ) ,  z e D ,  

where 4 is analytic in D and has 4 (0)=0 .  The normalized area of the domain f}, 
Iftl2, is then given by 

=/. i 'l 1+/. I< 
Loosely speaking, we can say that  the function 4 measures how much f}=r  
deviates from being the unit disk, and we claim that  it is possible to estimate the 
right-hand side of (1.5) in terms of the norm of 4 in some suitable function space. To 
formulate our main result, we introduce the family of Dirichlet type spaces 7?8(D) 
on the disk for s > - l .  An analytic function f in D with power series expansion 

f(z)=E~_o f ( n ) z  ~ belongs to V~(D), s > - l ,  if and only if 

(1.9) 
r(n+2+s) 2 

Ilfll~V~(D) = E n!F(2+s)  I](n)12 < oc, 
n : 0  

where 

-~==  _ ~ ) )  �9 

Since r  is in the denominator in the expression for the analytic Bergman 
kernel we must require that  4 does not attain the value -1 ,  and therefore we choose 
the norm condition on 4 in ;D~(D) to be such that  the sup-norm of 4 is strictly less 
than 1. The main result of the paper is the following theorem. 

where 

F(x) = t~-le -t  dt 

is the Gamma function. When s=0,  7?~ (D) coincides with the usual Dirichlet space 
but with a different norm. The reason for choosing this normalization is that/9~ (D) 
is isometrically dual to the weighted Bergman space A~(D) for the weight (1-IzI2) ~ 

of 59s(D) under the Cauchy pairing 
oo 

(f, 9}T=~-2~f(n)O(n), fE ;Ds(D) ,  g~A~(D) ,  
n ~ 0  

where f (n )  and ~0(n) are the Fourier coefficients for f and 9, respectively. By appeal- 
ing to the Cauchy Schwarz inequMity, it is easy to show that  7?~ (D) is continuously 
embedded in H~ for s>0  and 
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T h e o r e m  1.2. Suppose that s>0  and R < 3 s  1. Then there exists a constant 
CR,~ such that for all CE:D~(D) with IIr the harmonic Bergman kernel 
Q~ for the weight aJ=ll+g)l 2 in D satisfies the estimate 

I i -  z (I  2-~/2 ' 0 < s < 4, 

#~(z,  1 (z,r 1 
(1.10) 4 ) + ~  2 R e K ~  -< CR,~  l + l O g t l _ z ~ ] ,  s = 4 ,  

CR,s, s > 4 .  

Moreover, the constants CR,~ tend to zero, as R--+O. 

The constants CR,s depend in a quite complicated way on R, but they can be 
estimated in terms of certain integrals, as will be clear from the proof in Section 3. 

The main motivation for estimating harmonic Bergman kernels is the applica- 
tion to biharrnonic Green functions. If Gu is the harmonic Green function for a 
domain ft, then the biharmonic Green function Fu has the representation 

F~(z, ( ) =  f~  G~(z, ~,)G~(~h ( ) d E ( ~ ) - ~ / ~  G~(z, ~,)Q~(~I, ~)G~ (~, ()dE(~/)dE(~). 

By using this formula, P. R. Garabedian showed that  if the biharmonic Green 
function for a domain ft is positive then we must have Qu(z,()_<0 for z,(EOf~, 
z ~ (  [2]. On the other hand, if f~ is starshaped and the harmonic Bergman kernel is 
sufficiently negative on the boundary, then it can be shown that  the Green function 
is positive too [5, Chapter III]. To specify what sufficiently negative means, we 
change to the disk coordinates given by the conformal map 6. If the the weighted 
harmonic Bergman kernel Q~ on the disk for co=16~l 2 satisfies 

1 Re[O(z)zO'(z)] 1 
(1.11) Q,~(z, r < - 

lr 2 ae[ r162 I~- ( l  2' 

then the biharmonic Green function Fa is positive. This condition implies that  a 
semigroup of operators acting on HL2(~)  preserves the cone of positive harmonic 
function which, in turn, implies that  the biharmonic Green function is positive. We 
refer to [5, Chapter III] for more details. We obtain the following corollary. 

C o r o l l a r y  1.3. For every s> i ~, there is a constant C~ such that if ]]~DIIT)~(D) _< 
C,, then the biharmonic Green function for f~=r  is positive. 

As for the theorem, it is possible to estimate the constants C~ in terms of 
certain integrals, but we avoid this as the expressions are quite complicated. 

Finally, the choice of the spaces i98 (D) is a bit arbitrary and can certainly be 
replaced by other spaces. One could also consider other types of condition on the 
domain or the weight in order to obtain estimates for the harmonic Bergman kernel. 
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1.1. A n  o u t l i n e  o f  t h e  p r o o f  o f  t h e  m a i n  t h e o r e m  

For the proof of the main theorem, we need a result on orthogonal projections 
in a Hilbert space due to A. Lenard [6]. Let E and F be two closed subspaces of a 

Hilbert space H such that  IIPEPFII <1 in operator norm, where PE and PF are the 
orthogonal projections onto E and F,  respectively. Then E+F is a closed subspace 
of H,  and whence equal to/iTVF which, by definition, is the smallest closed subspace 
which includes both E and F.  The orthogonal projection onto E V F  is 

(1.12) PEvF = (Id --PF) (Id --PEPF)-IPF+(Id --PE) (Id --PFPE)-IPE. 

(see also Problem 122 in [3] for a discussion of a related result). For our application, 

we choose E and F to be the Bergman spaces A~(D,w) and A~(D,c~), where the 

subscript 0 indicates tha t  these are the subspaces of A2(D, cz) and A2(D, cz) which 

consist of those functions f with integral mean zero 

/D f(Z)W(Z ) dE(z) = O. 

In this case, the condition IIPEPF II < 1 is equivalent to tha t  the Friedrichs inequality 
holds with a constant strictly less than  1. The idea of the proof is to combine the 
representation of the harmonic Bergman kernel given by Lenard's  formula and the 
representation in Lemma 1.1. The lemma is actually a consequence of Lenard's  
result if the Friedrichs operator is compact.  A series expansion of (1.12) gives 
terms which are powers of the Friedrichs operator and it converges in operator 

norm if I IF~ II < 1, but we need pointwise convergence in D x D \  A(T) ,  where T is 
the unit circle and A ( T ) =  { (z, z):z E T}. To prove the pointwise convergence of this 
series, we use the duality between the Dirichlet type spaces ~D~ (D) and the weighted 
Bergman spaces A~(D). We show that  all but a finite number of the integral kernels 

are bounded functions on D •  and that  the tail of the series can be controlled 
with the aid of the first singular value )~1 and the sup-norm for the integral kernel 
of an even power of the Friedrichs operator.  The number of unbounded integral 
kernels depends on s, and if s>4 ,  then all terms, except for the Bergman kernel 
itself, are bounded. 

To carry out this program, we need some technical results which we present 
in Section 2. We introduce an integral operator which annihilates anti-analytic 
functions and enable us to convert certain integrals on the disk to integrals on the 
circle. Finally, we present some estimates of integrals which depend on several 
parameters  and variables. These estimates are crucial in order to get control over 
the series expansion of the harmonic Bergman kernel. 
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2. B e r g m a n  and Dirichlet  spaces of  analyt ic  funct ions  

The purpose of this section is to prove some technical results which we need for 
the proof of Theorem 1.2. These results are related to the general theory of weighted 
Bergman spaces, as presented by the books [4], [10]. We begin by introducing the 
weighted Bergman spaces AVe(D) and show that they are dual to the spaces Ds(D) 
for p = 2  and ct=s. We also present two families of integrals which depend on several 
parameters and variables and show how they can be estimated. Finally, we prove 
some properties of an integral operator P~/:LI(D)--+dg(D) which we need later. 
Here, O(D) is the space of all analytic functions on D. 

The weighted Bergman space AP(D), 0 < p < o o ,  c t > - l ,  is the class of all ana- 
lytic functions f in D such that  

]lfll~,~(e) = (c~+1)/D If(z) lP(1-Iz]2)~ d~(z) < oo. 

Here we are only concerned with the case p=2,  which is the Hilbert space case. For 
p=2,  the norm of a function f with power series expansion f(z)=E~__0 f ( n ) z  ~ is 

(2.1) ~o n!r(2+a) 12 . 

r t = 0  

A comparison with the norm for the Dirichlet type spaces shows immediately that  
Ds(D) and A~(D) are isometrically dual to each other under the Cauchy pairing 
as claimed. We will also use the integral version of the Cauchy pairing which looks 
like 

(f, 9}T = lira / f(rz)g(rz) dc~(z), 
t-+J_ JT 

where do-(z) is the Lebesgue measure on the unit circle T normalized so that  T has 
mass I. In the sequel, we will adopt the common practice of omitting the limit in 

the Cauchy pairing. 

Define the linear operator P$ :LI(D)--+O(D) by 

This operator has the property that  if f is an analytic function with f (0 )=0 ,  then 

(2.3) D f ( ( ' ) F ( (  dE(()  = / T  f(~)P+ [F] ((') dc~(() 
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whenever both sides are defined. The right-hand side should be interpreted in the 
sense of the Cauchy pairing. It is clear from the definition that  P+ annihilates anti- 
analytic functions, and by direct integration one shows that  for all positive integers 
k and l, 

zk-I 

if k>l, and that  the left-hand side is zero otherwise. For our application, F will be 
the weight co and f an analytic function of several variables. To apply the duality 
between Dirichlet type spaces 79~ (D) and the Bergman spaces A~ (D), we need some 
technical results. 

P r o p o s i t i o n  2.1. Suppose that s>0  and fCD~(D) ,  then P~[I] and PT[I/I 2] 
both belong to/?~+2(D), and if f ( 0 ) = 0 ,  then 

lIP+ [f]tlz>~+2(D) _< Ilfllz)~(D), 
IIP+[Ifl2]ll~+~(D)--<-Z; II f l l-~(D). 

Pro@ We start  with P+* If]. By expanding f in a power series and integrating, 
we obtain 

o o  

n + l  ' 

where f(z):EnOC_l f(n)Z n, and therefore 

�9 2 ~ F(4+s+n) 
IIPf[I]IID*+2(D) = n ! r ( 4 + s ) ( n + l ) ~  tf(n)lK 

n=l 

The first inequality now follows from well-known properties of the Gamma function. 

A similar calculation for the other term gives 

m[Ifl2]( ~ ) : ~ z  .~+k+l 
k = l  m = 0  

and 

rn~l n=l 

oo 
• r(4+s+k) 

k i k!r(4+s)(l+.~+k)(l+~+k) 
I/(-~+k)/(,~+k)l. 
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From the properties of the Gamma function, it follows that  

r(4+s+k) 
k ! r (4+s ) ( l §  ]./(~'t+]~)l 2 -< H/liVe(D) 

k= l  

and therefore, by Cauchy Schwarz inequality, we have 

iip+[lfl2] 2 2 ~ II~+~(D) <--IIflID~(D) Z I f (m)f (n) l"  
m = l  n = l  

Another application of the Cauchy-Schwarz inequality then yields 

11/9: 2 2 < ~ 2  4 [Ifl ]ll~+~<o>-- II/ll~<D>" 

The proof is complete. [] 

The next result is a classical integral estimate which has many applications in 
the theory of Bergman spaces [10], [4]. It is often used to treat  duality questions for 
different types of spaces of analytic functions in D and this is the way we intend to 
use it as well. 

T h e o r e m  2.2. For any real/3 and ~ > - 1  let 

D (1--1W12) ~ d ~ ( w ) ,  ~ ~ D .  
I~,~ (z) = 11 - zN 2+~+~ 

Then we have 

as { z { ~ l _ .  

1, 3 < 0 ,  
1 

log /3 = 0, 
z~,9(~)~ 1-1zl 2' 

1 3 > 0 ,  
(1- lz l2) ;  ~' 

By the symbol ~ we mean that  both sides are comparable in size asymptotically. 
We shall also use the symbol <, which should be interpreted as the left-hand side 
is asymptotically less than a constant times the right-hand side. We will need the 
following lemma which we state without proof (see [5, pp. 124-125] for a proof). 

L e m m a  2.3. For c~, 3 and ~/which satisfy 2 + a > max(3, 7) and rain(3, 7) > 0, 
define the function 

D (1-- [Wl2)~ dE(w), (z,r E D • 
&'Z'~(~'r I ( 1 - ~ ) Z ( 1 - r  
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Then we have 
1, / 3 + 7 < 2 + a ,  

1 / 3 + ~ =  2+a ,  
J~,/3,v(z, ~) < log [l_z~l , 

1 
11_z~1~+~_2_ a,  /3+7 > 2 + a ,  

3. Expans ion  of  the  harmonic  B e r g m a n  kernel 

The formula (1.6) shows that a Bergman kernel for a simply connected domain 
corresponds to a Bergman kernel for a weighted Bergman space in the unit disk. 
This follows from the fact that if ~b: D--+f~ is conformal, then the linear mapping 
L2(f't)~h~-->ho~EL2(D, co), co=l~'l ~, is an isometry which preserves analytic and 
harmonic functions. Similarly, the Friedrichs operator for f~ corresponds to the 
weighted Friedrichs operator F~ on D. 

To prove the main theorem, we apply Lenard's formula (1.12) for the Bergman 
spaces A~(D, co) and A2(D, co). The reproducing kernel or the Bergman kernel K~,0 
ibr Ag(D, co) is related to the Bergman kernel K~ for A2(D, co) by 

where f t = ~ ( D )  and 

1 
K~,0 = K~ - 

lal~' 

(Recall that q~'=l+~b and ~b(0)=0.) 
We now define two linear operators on L2(D,co): 

:/D Tw'O(Z' r162162 dE(C) T~,of(z)  

and 

which have the integral kernels 

T~,0 (z, ~) = / ~  K~,0(z, ~)K~,0(~, ~)co(~) dr(~)  

and 

s~,0(~, <)= [ [ ~c~,0(~, ~j)K~,0(~, ~)~,0(~, <)co(~)co(~)ds(~) ds(,j) 
JD JD 

S~,of(z) = fD S~,o(Z, r dX(r 
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Note that  the integral kernels are defined with respect to the weighted measure w dE. 
The operators T~,o and S~,o play the role of the composition operators PEPF 
and P ~ P ~ P ~  when E = A g ( D , ~ )  and F = A ~ ( D , ~ ) .  Restricted to the subspace 
A~(D,cz), we have the following relations to the l~'iedrichs operator: If C is the 
conjugation operator (Cf=f), then F~,o=T~,oC and S~,o=F2,0 . The operator 
S~,o is, in contrast to F~, linear and self-adjoint, and it satisfies the operator in- 
equality 0< S~,o <_Id (to be interpreted in the sense that  0_< (S~,of, f)~ <_ I lfll 2 for 
all fGA2(D,  c~)). The last property follows from the equality 

(S~,of, f )~  = IIF~,0fll~ 

and the fact that llF~,0[[_<l in operator norm. We point out that everything we 

have said so far also holds for the Friedrichs operator F~ on A2(D,w). The only 

difference between Fw and F~,0 is that the former preserves constants while the 

latter maps them to zero. To estimate the integral kernels for T~,0 and S,~,0, we 

need the P+ transform of the weight. Since P2 annihilates anti-analytic functions 

we have 

P2 [~] (~) = P2 [~] (~)+P; [1~ I ~] (~). 

So if s>O, we have by Proposition 2.1 

(3.1) 

For the rest of this section, we assume that II@H'D~(D)<'~s 1" We want to prove that  
the kernels for S~,0 and T~,0 are smaller and more regular than K~,0 in some sense. 
To do this, it is convenient to split K~,0 into two parts, one which is unbounded 
but contains the factor z (  and the other which can be estimated in sup-norm by 
the norm of ~P in the Dirichlet space. Specifically, we have 

/G,o(~, r = A.(~ ,  r  r 

where 
A.(~, () = K.(~, ( ) -  K~(~, 0) -K~ (0, ( )+ ~;. (0, O) 

and 
1 

An explicit computation of A~ yields 

~ , ( ~ ) o , ( 0 ( 1 - ~ ) ~  ' 
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and since Ir li~II~(D)), A~ obeys the estimate 

(3.2) i&,(z, OI <_ I<1 7 
(1-~]lr  2 I i -z~ l  2 

Since If~ls=l+ll~ll~S(D), the term B~ equals 

1 11~II~2(D) 
B~(~,r = (1+tt~11~2(D)) r162162 r162162 / 

and theretbre, 

(3.3) IB~(z, O l ~  

1 By property (2.3) of the operator P+, the where we have used that II~pItAo2(D)_< ~. 
integral kernel T~,0(z, C) can be split into a sum of the four terms 

T A~ (z, ~])A~ (r ~)P+ [w] (rl) do-(r/), 

s A~ (~, S)B~ (r S)P:  [~] (S) d~ 0~), 

/T B~ (z, rl) A~ (r rl) P+ [w] (rl) da (rl) , 

Proposi t ion  3.1. Suppose that s>0. Then there exists a constant D,  such 

that .for all ~bG2?,(D), IIr we have 

(3.4) IT~,o(Z,C)I~Ds 
1/2 
D,(D) 

1 
{ {1_zr , 0 < s < 4 ,  

1, S > 4, 

for the weight w=]l+~P] 2. 

Pro@ We denote the four terms which constitute T~,o above by T1, T2, T3, 
and T4. 

By the duality between A~+2(D ) and 77s+2(D), we have 

ITI(~, 01 ~ IIA~(~,- )A~ (r [~]II~+2(D>" 
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IIT~lloo ~ ck 

for k=2,  3, and finally for k=4,  

Since A~(z, ~) satisfies (3.2), the first factor on the right-hand side satisfies 

1 Z (1-1wl2)~+2 
liAr(z,. )A~(r ")ll~e+~(D) < (a_z~II~II~(D))8 ~-- I(I_z~)(I_C~)I ~ dE(w). 

Lemma 2.3 together with (3.1) shows that  the kernel T1 satisfies the right type of 
estimate. Similarly, by using Theorem 2.2 we obtain 

(1-Z~ IIr 4' 

2 

IIT411~ ~< C4 (1--~II~II~<D)) 4 

This proves the inequality. [] 

The operator S~,o, where n is a positive integer, is defined as the composition of 
S~,0 with itself n-times, and S~,0T~,o is the composition of this operator with To:,o. 
These operators arise when we expand Lenard's formula (1.12) in a Neumann series. 
The next result show that  their integral kernels can be estimated. Recall that  we 
consider the integral kernels with respect to the measure w dE. 

C o r o l l a r y  3.2. Suppose that s>0.  Then there ezists constants B,~,~ and D~,~ 
such that the kernel functions .for S~, o and S~,oT~,o can be estimated by 

1 

II IIDo(D) 1 
(3.5) IS~,o( z, ~)l < B~,~ (I_Z~IIOII~9,(D))S~, • l+ log  la_z~t,  2 = u s ,  

1, 2 < us, 

and 

(3.6) 

n4-1/2 
D~(D) 

ISLoT~,o(~, r Dn,~ ( 1 - I s  I I~II~(D))  8n+4 

1 
[ I/-z~l 2-(2'*+1)~/2 ' 

• l+ log  ~ _ ~ ,  

1, 

for n=l ,2 ,3 ,  .... 

2 = �89 

1 (2n+ 1)s, 2< f f  
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Pro@ The result follows from the previous proposition and Lemma 2.3 by 
applying the same techniques. [] 

In terms of the eigenvalues and eigenfunctions, the integral kernels T~,0 and 
S~,0 are given by 

oo oo 

and S~,0(z , r  E A~ff'~(z).f"(C)' 
n = l  

and the powers S~, 0 and S~,0T~,0 , have similar expansions: 

(3.8) Swk0(Z ~) ~ 2k - -  ,~2kq-1 Z = A,~f,~(z)f,~(r and S~,oT~,o(z,~)= ~ f~()f,~(C). 
n = l  n - - 1  

h'iedrichs showed in his original paper [1] that  the inequality which bears his 
name is equivalent to the existence of a constant 7 > 0  such that  

provided u is the harmonic conjugate to the harmonic function v, and u satisfies 

D u(z)~(z)  dr~(z) = 0 .  

The constant 0 in the Friedrichs inequality is related to "7 by 

(3.10) O -  7 - 1 .  
7+1  

The inequality (3.9) can also be stated as the operation of taking harmonic conju- 
gates being continuous in HL2(D, ca). As this operation is continuous on HL2(D) 
with constant 1, it follows that  the Friedrichs inequality holds for A2(D,w) if the 
norm is comparable to the unweighted norm. We use these facts to estimate the 
first eigenvalue A1 of the Friedrichs operator. 

P r o p o s i t i o n  3.3. Suppose that ~bED~(D), and 1. Then the 
first eigenvalue A1 for the friedrichs operator F~, c~=ll+~bl 2, satisfies 

2Z, IItlID (D> 
A1 < - 
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Pro@ Under the hypotheses of the proposition, the weight w satisfies the fol- 
lowing bounds 

inI" w(z) _> (1-Z~II~IIz~(D)) 2 and supw(z)  _< (l+Z~ll~llz~s(D)) 2. 
zED zED 

If n is the harmonic conjugate to vEHL2(D,w), and fD uwdE=O, the argument  
before the proposition shows that  

It~11~ < supped ~(z)IluN 2 < SUpzcD CO(Z) 
Ilvll~ - i n f z e D  w(z) Ilvll ~ - i n f z c D  w(z)' 

where we have used that  

inf w(z)llfll 2 <_ lifll 2 _< sup w(z)llfll 2 
zGD zED 

for all f E L 2 ( D ) .  Therefore the constant 7 can be chosen so that  

7 < supzED C0(Z) < 
- ~ - ( l _ Z ~ l l e l l ~ ( o ) ) ~  

Since A1 is the best constant in the Friedrichs inequality, the result now follows 
from (3.10) together with the bounds on the weight. [] 

We are now in a position to prove the main result. 

Proof of Theorem 1.2. Let k be the smallest positive integer which is larger 
than 2/s. It  follows from Lemma 1.1 together with the formulas (3.7) and (3.8), 
that  the identity 

k--1 k--1 
1 2aeK~ 0(~, r = 2Re ~ SL0(~, r ~e ~ Q~(z,r I~1~ ' j=l  j = l S w ' ~ 1 7 6  r 

/ oc A2 ~ _ _  ~ ~2k+i -~ 

t n = l  1--/~n n=l  

holds. To prove the theorem, we have to estimate the modulus of the left-hand side. 
According to Corollary 3.2, the integral kernel for S k is bounded on D x D, and w,0 
since A1 is the largest characteristic value, the modulus of the infinite series can be 
estimated by 

ATzk Z A 2k+1 I i~ 2k 2: 
2 V ~ T f ~ (  ) f n ( r  I-=-~F~(~)f~(C)I < ( l+a~)  ~ ~ If~( )fn(r 

2 
_< 1_),~ I1~,011oo. 

Here, we have also used the Cauchy Schwarz inequality in the last step. The theo- 
rem now follows from Proposition 3.1 and Corollary 3.2. [] 
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