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Nonperiodic sampling and the
local three squares theorem

Karlheinz Grochenig, Christopher Heil and David Walnut(!)

Abstract. This paper presents an elementary proof of the following theorem: Given {r; };-":1

with m=d+1, fir R>>7% ) r; and let Q=[-R, R)?. Then any fCL%(Q) is completely determined
by its averages over cubes of side r; that are completely contained in Q and have edges parallel to
the coordinate azes if and only if r; /vy is 4rrational for j#k. When d=2 this theorem is known
as the local three squares theorem and is an example of a Pompeiu-type theorem. The proof of
the theorem combines ideas in multisensor deconvolution and the theory of sampling on unions
of rectangular lattices having incommensurate densities with a theorem of Young on sequences
biorthogonal to exact sequences of exponentials.

1. Introduction

The three squares theorem [1] asserts that any continuous function defined in
the plane is completely determined by its averages over all squares of side r1, 72 and
r3 with sides parallel to the coordinate axes if and only if r1 /ra, r1/r3, and ro/r3 are
irrational. The present paper studies a local version of this theorem known as the
local three squares theorem [2] which asserts that any continuous function defined
on a square @CR? of side R>r;+ry+r3 with edges parallel to the coordinate axes
is completely determined by its averages over all squares of side 71, r2 and 73 that
are completely contained in @ and have edges parallel to the coordinate axes if and
only if r1, 79, 73 are pairwise irrationally related, that is, r1/rqe, 71 /73, and ro/r3
are irrational.(?)

(1) The third author was supported by NSF Grant DMS9500909 and gratefully acknowledges
the support of Bill Moran and the Mathematics Department of Flinders University of South
Australia where certain portions of this work were completed. The authors thank the referee for
valuable comments and suggestions.

(?) In [2], the condition “ry, r2, and 73 are pairwise irrationally related” is erroneously stated
as “ri, ra, and r3 are Q linearly independent”. The proof in [2] is of the theorem stated above.
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The purpose of this paper is to give a new proof of the local three squares
theorem. The new proof allows us to weaken the hypotheses, requiring only f&
L?(Q) instead of f continuous, and R>ry+ry+r3 instead of R>ri+ro+rs. We
also prove the more general theorem in higher dimensions. The novelty of the proof
lies in the fact that it uses only the sampling theory of bandlimited functions and a
result of Young [18] on biorthogonal systems. The value of this new approach is that
(1) the proof is elementary even in higher dimensions, (2) the close relationship of
the global and local versions of the three squares theorem (and its higher dimensional
generalizations) to the sampling theory of bandlimited functions has not previously
been observed, and (3) the present proof suggests an algorithm for the recovery
of a function locally from its local averages as indicated above. This recovery is
inherently an unstable process, and the proof shows that the instability is related
to the instability of recovery of a bandlimited function from its samples on so-
called nonperiodic lattices (see Section 5 of [16] and Remark 3.1 below). Efficient
algorithms exist in the case where only finitely many samples are available [7].

The three squares theorem is closely related to the multisensor deconvolution
problem (see [3] and the references cited in [6]): Given a collection of compactly
supported distributions {,uj}}"zl on R%, find a collection of compactly supported
distributions {v;}7L, such that

1) S ey =6,
j=1

A theorem of Hormander [8] asserts that (1) has a solution if and only if {p;}7%;
satisfies the strongly coprime condition

(2) ij )| > A(1+z|) Ne BImzl for all z€ C,

for some constants A, B, N >0.
If (1) could be solved with d=2 and with wj=x[ r, 12, j=1, 2, 3, then the
global three squares theorem would follow since

3

3 3
Z (f*pj)xv; = Z *(ph*1;5) f*z,uj*yj:f*ézf.

j=1 j=1 j=1

However, it turns out that an additional algebraic assumption on the numbers r; is
required in this case, namely that r; /1 be poorly approximated by rationals when
Jj#k [12] (a number « is poorly approximated by rationals provided that there exist
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constants C, N >0 such that if p and ¢ are integers then |a—p/q|>C|q|™"). If this
condition is satisfied then it is possible to find compactly supported solutions to the
equation

3
(3) D e =
j=1

for any pcC°(R?) supported in [—R, R]?, where R=r1+7a+73, and such that
supp v, C[—R+7j, R—7;]? (e.g., [6], [15], [17]). From this, the local three squares
theorem follows from the observations that @(z)=¢(—x) has the same smoothness
and support properties as ¢ and that

3 3
(4) <.f7 > f*‘p Z f*/‘l’J *V]L,D Z f*Uj,Vij
=1

=1

Note that computation of the last set of inner products only requires knowledge of
(f*u;) on [—~R+r;, R—r;]>. Since & was arbitrary, the local three squares theorem
follows.

The idea behind the proof of the local three squares theorem given in this
paper is to remove the algebraic requirement of being poorly approximated by
rationals by solving (3) with g€B where B is a suitable complete set in the Hilbert
space L?[—R, R]?. Then by (4), any function for which (fx*pu;)=0 on [~R+7;, R—
r;]%> must be orthogonal to every element of B and hence identically zero. It turns
out that the most convenient choice for B is the (countable) set biorthogonal to the
complete set of exponentials corresponding to sampling on a nonperiodic lattice.

Section 3 contains a brief summary of the one-dimensional nonperiodic sam-
pling results of [16] required for this paper. Section 4 uses a result of Young [18]
to show that the sequence biorthogonal to the set of exponentials corresponding
to a nonperiodic sampling set is itself complete. Section 5 contains the proof of a
one-dimensional version of the local three squares theorem. This proof is simple
and clearly illustrates all of the central ideas of the higher-dimensional proof. Sec-
tion 6 contains a proof of the higher-dimensional version of the local three squares
theorem. Section 7 contains some remarks on the completeness radius and frame
radius of certain nonperiodic sampling sets.

2. Notation and definitions

Given a multiindex a=(ay,...,aq)€Z?, we write |a|:Z?=1 lajl, and D f=
(9121 /9% . 9%4)f. Given a set A and a,be A, let 6, =1 if a=b and 0 otherwise.
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The Fourier transform of a function f is f fRd fz)e=2?m=¢ dy for ¢ eR? when-
ever the integral makes sense, and is interpreted distributionally otherwise.
Given 0>0, PWq(R%) denotes the Paley-Wiener space

PWo(RY) = {f e L*(R%) :supp f C [0, 10]*}.

Let I be a Hilbert space and {x,}aca & collection of vectors in H for some
index set A. Then {z,} is complete in H provided that any z€ H satisfying (z,z4)=
8, for all @€ .4, must be zerc. A collection {yg}pca is biorthogonal to {zq} provided
that (24, ys) =04 8, and {24} is minimal in H provided that a collection of vectors
biorthogonal to {z,} exists. A collection of vectors both minimal and complete in
H is said to be exact in H.

Given a finite set of positive numbers {r;}7>; and an integer d>0, p; will
always denote the function X[-r;,r;4, the value of d being clear from the context.

3. Nonperiodic sampling in one dimension

Let 0<r1<...<ry, be given such that r;/r,¢Q for j#k. Let R=3"" r; and
let A be defined by
(5) A={n/2r;:neZ\{0}, j=1,...,m}.
Our starting point is Theorem 3.1 of [16] which states that if fePWag(R), if f
vanishes on A, and if f9)(0)=0 for j=0,...,m—1, then f=0. Let
(6) A ={e?™M X e AYU{1, 2z, ..., (2miz)™ ).
Then Theorem 3.1 of [16] is equivalent to the following result.

Corollary 3.1. The system A* defined by (6) is complete in L?|—R, R].

In order to show that A* is exact, recall the following construction from [16].
For j=0,...,m—1, define g; EPWyr(R) by

(7) a,(t) = ' H sin 27‘1’7‘kt).

277t
Let fo,m—1=¢gm—1 and define fo ; EPWyr(R) recursively for j=m—2 down to j=0
by

m—1
® a0 =50+ Y- (50,0 fr(0)

I=j+1
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For A=n/2r; €A, define g» eEPW3r(R) by

sin(27mrt)

sin(27r;(t— X)) k2 2t

) gr(t) = 27r;(t—A) sin(2mr,A)
kl;[j 27T’)”k)\
and define f\€PWyr(R) by
m—1
(10) )= <dtlg’\(0 >foz(t)
1=0

Then the following theorem holds (cf. Proposition 3.1 of [16]).

Proposition 3.1. Let A be given by (5), fo; by (8), and fx by (10). Then

(a) fo;(N)=0 for 0<j<m—1 and A€ A, and (d*/dt*) fo ;(0)=0; k for 0<j,k<
m—1;

(b) AN)=0xx for A\, N €A, and (d*/dtF) fr(0)=0 for 0<k<m—1.

Let FO,j:fO,jy FA:f)\, and define the collection F by
(11) F={Fo i} U{F}rea-

Then F is biorthogonal to A* and the following holds.
Corollary 3.2. The system A* defined by (6) is ezact in L*[—R, R)].

Remark 3.1. The biorthogonality of A* and F means that for F€L?[—R, R),
we have the formal expansion

m—1
(12) (@)~ Y (P, Fy ) 2miz)y + Y (F, F))e*™.
Jj=0 AEA

However, it was observed in Theorem 5.3 of [16] that the collection A* is not a
frame for L?[—R, R] since it does not have a lower frame bound. This fact follows
from the observation that the set {gx}aca is not norm-bounded in PWor(R) which
implies that F does not have an upper frame bound. Therefore, the sequence on
the right-hand side of (12) need not converge in L?[— R, R] nor even in some weaker
sense.

However, we would like F to at least be complete in L?|—R, R| so that F
is uniquely determined by the inner products (F, Fy ;) and (F, Fy). It turns out
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that this statement is not obvious since there are examples of exact sequences in
Hilbert spaces whose biorthogonal sequences are not complete (see [18]). We will
show in Section 4 that the completeness of F in L?[—R, R] follows from a result of
Young {18], and in Section 6 that the inner products (¥, Fp ;) and (F, Fy) can be
easily and stably computed from the convolutions F'xpu. Hence the instability in
recovering F' from its local averages comes precisely from the possible nonconver-
gence of the sum (12). It may still be possible to recover a good approximation to
F from (12) if only a finite number of data are used [7].

4. Completeness of F
The goal of this section is to prove the following theorem.
Theorem 4.1. The collection F given by (11) is complete in L*[—R, R].
The proof of this theorem requires the following result of Young.

Theorem 4.2. ([18]) If a sequence of complex exponentials {e*'} is exact in
L?(—m,m), then its biorthogonal sequence is also exact.

Since the collection A* contains the monomials (2miz)* for 1<k<m-—1, it is
not a collection of complex exponentials. Therefore Theorem 4.2 cannot be applied
directly and the following lemmas are required.

Lemma 4.1. Let A be given by (5) and let w:{wj};";ol be a collection of
distinct points such that ANw=0. Then the system

A# ={¥™A N e AUW)

is ezact in L?[—R, R).

Proof. We must show that A# is minimal and complete.
To show completeness, let gcPW3z(R) be such that g(A)=0 for all AeAUw.
Define h by
tm

(t—wo) (t~wm,1)

Since gePWag(R), ¢ can be extended to an entire function of exponential type 2R
on C. Clearly & can also be extended to an entire function of the same exponential
type. Moreover, he L?(R) since h has the same decay at infinity as g. Thus,
he€PWyr(R), h vanishes on A, and h))(0)=0 for §=0,...,m—1. By Theorem 3.1
of [16] (cf. Corollary 3.1), h=0, whence g=0.

h(t) = 9(®)-
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To show minimality, we construct explicitly the sequence biorthogonal to A¥.
Define for w;€w the functions Vi GPWQR(R) by

ﬁ sin(27rgt)
27t
t—wr g1 k
Eo=11-—+— 5
CZa | sin(2mryw;)
27rrkwj

k

Il
=

and for each A€ A define gy by (9) and ff cPWsr(R) by

(13) FO=nn(t)— 3 aal@) ).
=0

Then
(a) fj’i( )=0 for A€ A, and f# (wg) =0, for wy€w, and
(b) f/\ (A)=8x » for \, N €A, and f# (w;)=0 for w,€w.
Let F# f# F# fj\#, and define the collection F# by

(14) F#={F# Y U{Ff Faea.

Then F# is biorthogonal to A#, and A¥# is exact. [l
Finally, we require the following lemma.

Lemma 4.2. Let F be given by (11) and F# by (14). If F# is complete in
L?[—R, R] then so is F.

Proof. Let GE€L?[~R, R] be given such that (G, F)=0 for all FeF. We will
show that (G, F#)=0 for all F#cF# which implies G=0 by the assumption of
completeness of F#.

Let gePWsg(R) be such that g=G. By the Parseval identity, (g, fo,;)=0
where fo; is given by (8), and (g, f)=0 where f\ is given by (10). It will suffice
to show that (g, ffj}z() for w;ew and that (g, ff>:0 for AeA.

Since (g, fo,;) =0, we have by (8) that (g, g;)=0 where g, is given by (7). There-
fore, for any polynomial P(t) of degree not greater than m—1, g is orthogonal to
functions of the form

sin(27rit)
P(t) H .

27T7"kt

Since fj_‘i has precisely this form, (g, fw]_>:0 for w;ew. Since g is orthogonal to
fo,; and also to fa, it follows from (10) that g is orthogonal to g» where g, is given



84 Karlheinz Grochenig, Christopher Heil and David Walnut

by (9). Since g is also orthogonal to fj; for w;€w, it follows from (13) that g is
orthogonal to ff for Ac A. This completes the proof. [

‘We can now prove Theorem 4.1.

Proof of Theorem 4.1. Since, by Lemma 4.1, A% is an exact system of com-
plex exponentials, Theorem 4.2 implies that F# is complete in L?[~R, R]. By
Lemma 4.2, F is also complete in L?[—R, R], which completes the proof. O

5. Uniqueness from averages on two intervals

In this section, we prove a one-dimensional version of the three squares theorem.
The proof contains the fundamental ideas of the proof of the higher-dimensional
result (Theorem 6.1). Define G; € L?[—R, R] by §; =G where g; is given by (7), and
define Gy € L?[— R, R] by g»=G, where g, is given by (9). Now define GC L?[—R, R]
by

(15) g:{Gj}T:Blu{G)\}AEA~

Since each F'€F can be written as a linear combination of elements of G, and since
F is complete in L2[—R, R}, so is G.

Theorem 5.1. Let 0<ri<rq, let R=r1+rq and let A be given by (5). Then
r1/r2¢Q if and only if the only f€L?[—R, R| satisfying

(a) fxp1(x)=0 for z€[—ry, 73], and

(b) frua(x)=0 for z€[—r1,m1]
is f=0.

Proof. Suppose that r1/ra¢Q and that fe L?*[—R, R] satisfies (a) and (b). We
will show that {f, G)=0 for all GEG, where G is given by (15) with m=2. Since G,
is a constant multiple of p1 *p2, (b) implies that,

R R o0
(f, Go) =c / @) epa) @) dr = / /(=) / s (8) oo —1) dt d

-R —o0

c/o:oul(t) /_Zf(x)ug(tx) dmdt:c/n (Frpa)(£) dt =0.

—7r1

Since Gy is a constant multiple of (d/dt)(u1*pe)(t)=pa(t+71)—p2(t—r1), (b) im-
plies that

(f.G1)=c / I@a(tr)—pa(t-r) (@) do
=c((f*p2)(=r1)—(f*p2)(r1))=0.
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If A=n/2r;€A then G, is a constant multiple of (e™2"Mp;}xpy(¢), where
ke{l,2} and k+#j. Therefore, by (a) and (b),
R
(Fon=c [ F@e P u1) @) do
-R
R 0 .
:c/ f(ac)/ e™ A (D pk(z—t) dt da
—R —o0

—c / iy, ) [ i F@)n(t—2) dz di

zc/ ’ eI (Fa g ) (8) dt = 0.

Since G is complete in L?[—R, R] we conclude that f=0.

For the converse, suppose that 7, /r2€Q. Then there exist n,m€eZ such that
n/2ri=m/2ry. Let A=n/2ry=m/2r, and let f(t)=sin(2n\t)x[—g g (t). Since f
has period 2r; and 2rg on {—R, E] (that is, if t1, 2 €[— R, ] with t1 —ta=2r1 or 2ra,
then f(t1)=f(12)), and since the integral of f on any interval of length 2r; or 2ry
is zero, (f*p;)(x)=0 for x€[—rg, k], J,k=1,2, j#£k. However, f#£0. O

Alternative proofs of Theorems 5.1 and 6.1 are presented in the note by K. Seip
following this article [14].

6. Nonperiodic sampling in higher dimensions
Since tensor products of complete sets are complete, the following is an imme-
diate consequence of Corollary 3.1.

Corollary 6.1. Let 0<r;<...<ry, be given such that r;/r,¢Q for j#k. Let
R=377", v and let A* be defined by (6). Define A3CL*[—R, R)¢ by

A= {e(:c):ﬁej(xj) cx = (21, ..., 2q), & eA*}.

=1
Then A% is complete in L?[—R, R]®.

In fact, A} is exact since its biorthogonal sequence is the collection Fy defined
by

d
(16) fd:{F(I):HFj(:Uj):mz(ml,...,azd), Fje]-'}’
j=1

where F is defined by (11). Also, it follows from Theorem 4.1 that Fy4 is complete
in L[~ R, R},
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Theorem 6.1. Let 0<r) <...<ry,, let m=d+1, and let R:E;n:l r;. Then
the following are equivalent:

(a) The collection {r;}7 ., satisfies r;/rx¢Q, j#k.

(b) If fEL?[—R, R]? satisfies

(17) (f*[/'])(x\) :O’ S [7R+IrjiR_lrj]d> .7: 1> , M,

then f=0.
Proof. (a) = (b) Define the collection G;CL?[—R, R]¢ by

d
gd*{G(JJ):HGj(LCj)'.17:(1131,...7%(1), Gjeg},

j=1

where G is defined by (15). It follows from the definition of Fy and Gy that any
element of F; can be written as a linear combination of elements of G;. Therefore,
since F, is complete in L?[—~R, R]%, so is Gg.

Suppose that the set {r;}7, satisfies r;/ry ¢Q if j#k, and that f€L*[—-R, R]¢
satisfies (17). We will show that f is orthogonal to every element of G4. To this
end, fix GeG,. Then there exists kpe{l,...,m} such that G has the form G=
Hxpy, where supp H C[~R+7,, R—rg,]%. To see why this is true, note that for
each I=1,...,d, G'€G and that, by (15), G' can be written either as G; for some
j=0,...,m—1, or as G for some A€ A. Now, G; has the form

di
G;(t) :Cj%(/il*w*ﬂm),

for some constant ¢;, and if A=n/2r; then G, has the form
GA(t) = ca(e™ 2™ M pp ) s (g % oo flgy 1 o1 % o [l )

Therefore, Ge€G has the form

(18) G(S‘C) :HGjL (:L‘g) HG/\z (373)7

1¢rT ler

where I'C{1,...,d}. Since m=d+1, |I'|<d<m so there exists ko€{1,...,m} such
that \j#n/2ry, for all I’ and neZ\{0}. Also, for each | we have that j;<m.
Hence each term in the product (18) is either of the form

di
G 6) = [ sty s, ) (0= (500
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or of the form

_%Mltuk)*lLkH*---*Hkg—l*ukOH Hoo® ) * g ) (2)

G, () = (ex, (pa*...x 1% (e
= (H)\L*/'Lku)(t>'
Note that supp H;, and supp H,, are both contained in [—R+7x,, R—7y,). Let
H(z)= H Hj,(z1) H Hy, (1)

1¢r ler

Then supp H C[~R+7k,, B—71,]¢ and G=Hxuy, as required.
By (17),

va=[

=/ f(x)/ ’(y)mm(x”y) dy dzx
[—R, )¢ [~R+reg,R—rry )¢

:/ )/ F (@) pwo (y—z) da dy
[ R+"’ko R— 'rko

- / | ﬁ(yxfwko)(y) dy =0.
[~ Rrkg,R—rry]¢

f(2)CTa) di = / F(@) (I x i) () da

14 [-R,R)¢

Since G4 is complete in L?[—R, R]%, f=0.

(a) <= (b) Suppose that r;, /1, €Q for some jo#kp. Assume without loss of
generality that jo=1 and ko=2. Then there exist n, k€ Z\ {0} such that A=n/2r =
k/2ry. Let Ry=r1+72 and let

fi(@) =sin(27A21)X] g, Rr,)a(@)-
Let Ro=R—R; and let

fa(z) = (zljlz Sin(%))XI~R2,R2]d($)‘

Finally, let f=fi*foe L2[-R, R]*.
Let j=1 or 2. Given z€[—R, R]¢, write x=(x1,7') where z,€[—R, R] and
'e[-R, R]*"1. Then

(frxp)(z) = Fiy)pi(z—y) dy
[— Ry, Ra}d

R,
Z/ Sin(2mAY1) X, v, (#1—Y1) dyl/ X[=ryory (2" =y") dy
—Ry [~ Ry, Ry]4—1

=0
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since the integral of sin(2wAt) over any interval of length 2r; or 2ry is zero. If
j#1, 2, then

)@= [ Bty
7 2
= (@) d (2 —y1) d
( sin Tm)X[ v (L= Y1) Z/z) /_R2X[ L@ —y1) din
=0

since for j=I[41, the integral of sin(nt/r;;1) over any interval of length 2r; is zero.
Thus, f*p;=fi*foxpu;=fox frxp;=0 for j=1,...,m, but f£0. 0

7. Further remarks on completeness of A™*

The purpose of this section is to examine the completeness radius and the
frame radius of the set A given by (5). The completeness radius of a set SCC is
the supremum of all numbers r>0 such that {e?™**},cg is complete in L2[—r,7]
(see [5], [11], and [13]). The frame radius of a set SCC is the supremum of all
numbers r>0 such that {€*™**},¢g is a frame for L?[—r,7] (see [9]). Assume that
the numbers 0<r; <...<r,, satisfy r;/rx¢Q when j#k, and that R:E;.n:l rj. The
set A is defined by (5), the set A* by (6).

We will prove the following theorem.

Theorem 7.1. (a) If <R then {€*™*} .4 is a frame for L?[—r,7].

(b) If r>R then A* is incomplete in L[, 7]. In this case, since {e2™3},c, C
A*, it follows that {€?™A%},, is also incomplete in L2[~r,7].

Corollary 3.1 addresses in part the question of what happens when r=R. The
answer is that {e?™*®},c is incomplete in L?[—~R, R]. With the addition of a
finite number of functions, namely {1, 27iz, ..., (2miz)™ '}, the resulting collection
is complete and in fact exact in L?[— R, R] (Corollary 3.2). However, it is not a
frame for L?|—R, R] (Remark 3.1).

In order to prove Theorem 7.1, we will need the following definition.

Definition 7.1. Given a set SCR and ¢>0, define

nt(t,S) =sup #(SN[z,z+t)) and n~ (¢, 5)= inf #(SN[x,z+t)).
z€ER z€ER

The upper uniform density of S is defined by

D*(8) =1imsup(n_+LtLS_))

t—o0 t
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and the lower uniform density of S is defined by

R )

t—00

It is easy to see that D*(A)=D~(A)=2R. We can now prove Theorem 7.1.

Proof. (a) Suppose that 7<R. In order to prove that {e*™**},., is a frame
for L*(—r,r], we use the following result ([4]; [L3, Theorem 2.1]; [9, Theorem 3]):
If SCR is such that (i) S is uniformly discrete, that is, inf, yes |z —y|=06>0, and
(i) D=(S)>2r, then {€*™} \cs is a frame for L?|-r,r]. Note that the set A is
not uniformly discrete, that is, there are pairs of points in A that are arbitrarily
close together. The idea of the proof is to show that A contains a uniformly discrete
subset with density arbitrarily close to 2R.

Given o, B€{r;}7*; with a<f and £>0, define

Na,ﬁ(s):{%, ne€Z\{0} and dlst<2ﬂ 21 z) <;}

Note that n/28€ N, g(e) if and only if dist(an/8,Z)<ae which holds if and only
if (an/B)€(0,ae]U[l—ae, 1)=K (here (x)=x—[z] where [z] is the greatest integer
less than or equal to z).

Since o/ is irrational, we know by Wey!’s equidistribution theorem ([10, p. 8])

that N
Jim (s 3 () ) = e =20

n=I[+1

We wish to estimate the upper uniform density of N, g(e). Given an interval
I with |I|=t>1, let m=min{n:n/20cl} and M=max{n:n/28cl}. Then 26t<
M—m+1<28t+1 and

#(Naﬁ(e)ﬂf) IZXK(< >)
= (M) e o el(5)

M—m+l

=il X ()

n=l

Letting t— oo forces M —m-+1— 00 so that

hmsup(sup M) <202ae =4afe.

t—oo \|I|=¢ t
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Therefore, D* (N, g(e)) <4dafe.
Let N(e)=U;y, Nry,ri.(€). Then

DY(N()) <Y _D*(Ny, ,,(2)) <42 Y 7)1

i<k j<k
Choose £>0 so small that 2r+D*(N(g))<2R. Then for each z€R and ¢>0,

#((A\N(e))N[z, 2+1)) = #(AN[z, z47)) = #(N(e)N[z, z+1))

#(Aﬂ[x,x+r))—sgg #(N(e)N[a, a+1)).

v

Therefore,
inf #((A\N(g))N[z,z+1t)) > inf #(AN[z,z+7r))—sup #(N(e)N]z, z+t))
z€R zER zER

and

liminf<w> > liminf(n(i’A)> _lim Sup<m_”+(t’N(5>>>

t—o0 t t—o0 t— oo

so that
D (A\N(e)) > D (A)—D*(N(¢))=2R—D*(N(g)) > 2r.

Thus A\ N(e) satisfies (ii). Also, if A, \’€A\N(e) and A#\ then [A—X|> 3¢, and
A\N(e) satisfies (i). Therefore, {€>™**}\cp\n(e) is & frame for L?[—r,7]. Hence,
the larger set {627”“} xeA has a lower frame bound. To see that it also has an upper
frame bound, note that A is the union of a finite number of lattices each of which
has an upper frame bound. It follows that {e****},ca also has an upper frame
bound.

(b) Suppose that r>R. Let e=r— R. By Proposition 3.1(a), we know that the
function fg ,—1=g¢gm—1 €EPWaor(R) defined by (8) satisfies fo m—1(A)=0 for A€A,
and (dk/dtk)fo’m_l(O)zo for k=0,...,m—2. Let FO,mflsz,mfl and define G(t)=
Fom—1(t+e)—Fy m-1(t—e). Then GeL?*{—r,r| and @(7):2if05m,1(7) sin{2mey).
Therefore G vanishes on A and (d*/dt*)G(0)=0 for k=0,...,m—1. Hence G is
orthogonal to every element of A* but clearly G#0. Therefore, {e2™}ycp is

incomplete in L?[—r,7]. O
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