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Nonperiodic sampling and the 
local three squares theorem 

K a r l h e i n z  GrSchen ig ,  C h r i s t o p h e r  He i l  a n d  D a v i d  W a l n u t ( 1 )  

A b s t r a c t .  This paper presents an elementary proof of the following theorem: Given {rj }~jn 1 
with m d+ l, fix R> ~jrn=l rj and let Q=[ -R ,R]  d. Then any fCL2(Q) is completely determined 
by its averages over cubes of side rj that are completely contained in Q and have edges parallel to 
the coordinate axes if and only if r j / rk  is irrational for j r  When d--2 this theorem is known 
as the local three squares theorem and is an example of a Pompeiu-type theorem. The proof of 
the theorem combines ideas in multisensor deconvolution and the theory of sampling on unions 
of rectangular lattices having incommensurate densities with a theorem of Young on sequences 
biorthogonal to exact sequences of exponentials. 

1. I n t r o d u c t i o n  

T h e  three squares theorem [1] a s se r t s  t h a t  any  c o n t i n u o u s  f u n c t i o n  de f ined  in 

t h e  p l ane  is c o m p l e t e l y  d e t e r m i n e d  by  i ts  ave rages  over  all  s qua re s  of  s ide r l ,  r2 a n d  

r3 w i t h  sides pa ra l l e l  to  t h e  c o o r d i n a t e  axes  if  a n d  on ly  if r l / r 2 ,  r l / r 3 ,  a n d  r2 / r3  are  

i r r a t i ona l .  T h e  p r e sen t  p a p e r  s tud ie s  a local  ve r s i on  of  th i s  t h e o r e m  k n o w n  as t h e  

local three squares theorem [2] w h i c h  asse r t s  t h a t  a n y  c o n t i n u o u s  f u n c t i o n  de f ined  

on  a s q u a r e  Q c_ R 2 of  s ide R > r l  + r 2  + r 3  w i t h  edges  pa ra l l e l  t o  t h e  c o o r d i n a t e  axes  

is c o m p l e t e l y  d e t e r m i n e d  by  i ts  ave rages  over  al l  s qua re s  o f  s ide r l ,  r2 a n d  r3 t h a t  

a re  c o m p l e t e l y  c o n t a i n e d  in Q a n d  have  edges  pa ra l l e l  to  t h e  c o o r d i n a t e  axes  if  and  

on ly  if r l ,  r2, r3 a re  pa i rw i se  i r r a t i o n a l l y  r e l a t ed ,  t h a t  is, r l / r 2 ,  r l / r a ,  a n d  r2 / ra  

are  i r r a t iona l . (2 )  

(1) The third author was supported by NSF Grant DMS9500909 and gratefully acknowledges 
the support of Bill Moran and the Mathematics Department of Flinders University of South 
Australia where certain portions of this work were completed. The authors thank the referee for 
valuable comments and suggestions. 

(2) In [2], the condition "rl, r2, and r3 are pairwise irrationally related" is erroneously stated 
as "rl, r2, and r3 are Q linearly independent". The proof in [2] is of the theorem stated above. 
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The purpose of this paper is to give a new proof of the local three squares 
theorem. The new proof allows us to weaken the hypotheses, requiring only f c  
L2(Q) instead of f continuous, and R>rl+r2+r3 instead of R>rl+r2+r3.  We 
also prove the more general theorem in higher dimensions. The novelty of the proof 
lies in the fact that  it uses only the sampling theory of bandlimited functions and a 
result of Young [18] on  biorthogonal systems. The value of this new approach is that  
(1) the proof is elementary even in higher dimensions, (2) the close relationship of 
the global and local versions of the three squares theorem (and its higher dimensional 
generalizations) to the sampling theory of bandlimited functions has not previously 
been observed, and (3) the present proof suggests an algorithm for the recovery 
of a function locally from its local averages as indicated above. This recovery is 
inherently an unstable process, and the proof shows that  the instability is related 
to the instability of recovery of a bandlimited function from its samples on so- 
called nonperiodic lattices (see Section 5 of [16] and Remark 3.1 below). Efficient 
algorithms exist in the case where only finitely many samples are available [7]. 

The three squares theorem is closely related to the multisensor deconvolution 
problem (see [3] and the references cited in [6]): Given a collection of compactly 

pt m supported distributions { j}j  1 on R d, find a collection of compactly supported 
distributions {~'J}j'~ 1 such that 

Yr~ 

(1) 
j 1 

A theorem of H5rmander [8] asserts that  (1) has a solution if and only if  {~tj}jm 1 
satisfies the strongly coprime condition 

(2) ~ If~j(z)l > A(l+lzl)-N e -BlImzl for all z e C  d, 
j = l  

for some constants A, B, N > 0 .  
If (1) could be solved with d=2  and with # j=) / [  ,.j,r~]2, j = l ,  2, 3, then the 

global three squares theorem would follow since 

3 3 3 

~-~ . ( f ,# j ) ,u j= ~-~ . f , (p j ,u j )  f ,~-~,#j*uj  
j l  j l  j l  

= f * a = f .  

However, it turns out that  an additional algebraic assumption on the numbers rj is 
required in this case, namely that  rj /rk be poorly approximated by rationals when 
j r  [12] (a number c~ is poorly approximated by rationals provided that  there exist 
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constants C, N > 0  such that  if p and q are integers then ]a-p/ql >>_Clql-X). If this 
condition is satisfied then it is possible to find compactly supported solutions to the 
equation 

3 

j = l  

for any q o e C ~ ( R  d) supported in [-R, RI 2, where R='r~+r2+ra, and such that  
supp ~j,~C[-R+rj, R-rj] ~ (e.g., [6], [t5], [17]). From this, the local three squares 
theorem follows from the observations that  ~ ( x ) = ~ ( - x )  has the same smoothness 
and support properties as ~ and that  

3 3 

(4) (f,~)=(f*~)(O)=~((f*#j)*~j,~)(O)=~(f*pj,~j,~). 
j = l  j = l  

Note that  computation of the last set of inner products only requires knowledge of 
( f * # j )  on [-R+rj, R-rj] 2. Since ff was arbitrary, the local three squares theorem 
follows. 

The idea behind the proof of the local three squares theorem given in this 
paper is to remove the algebraic requirement of being poorly approximated by 
rationals by solving (3) with ~CB where B is a suitable complete set in the Hilbert 
space L2[ -R ,R]  2. Then by (4), any function for which ( f * # j ) = 0  on [ - R + r j ,  R -  
r3] 2 must be orthogonal to every element of B and hence identically zero. It turns 
out that  the most convenient choice for B is the (countable) set biorthogonal to the 
complete set of exponentials corresponding to sampling on a nonperiodic lattice. 

Section 3 contains a brief summary of the one-dimensional nonperiodic sam- 
piing results of [16] required for this paper. Section 4 uses a result of Young [18] 
to show that  the sequence biorthogonal to the set of exponentials corresponding 
to a nonperiodic sampling set is itself complete. Section 5 contains the proof of a 
one-dimensional version of the local three squares theorem. This proof is simple 
and clearly illustrates all of the central ideas of the higher-dimensional proof. Sec- 
tion 6 contains a proof of the higher-dimensional version of the local three squares 
theorem. Section 7 contains some remarks on the completeness radius and frame 
radius of certain nonperiodic sampling sets. 

2. N o t a t i o n  a n d  d e f i n i t i o n s  

Given a multiindex a=(al, ,Ctd)~Z d, we write lal d . . . .  ~ j = l  laJl, and D~f= 
(c01al/0~ ... co~d)f. Given a set .4 and a, bcM, let (~a,b=l if a=b and 0 otherwise. 
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The Fourier transform of a function f is f ( { ) = f R e  f(x) e-2~i~'g dx for ~Ef i  a when- 
ever the integral makes sense, and is interpreted distributionally otherwise. 

Given f~>0, P W a ( R  d) denotes the Paley-Wiener space 

1 P W a ( R  d) = { f  E L2(Rd):  supp f _c [-~f~, �89 

Let H be a Hilbert space and {x~}~<A a collection of vectors in H for some 
index set .4. Then {x~} is complete in H provided that any xEH satisfying (x, x~) = 
0, for a11 c~eA, must be zero. A collection {y~}r is biorthogonal to {x~} provided 
that (z~, yo)=6~,~, and {x~} is minimal in H provided that a collection of vectors 
biorthogonal to {x~} exists. A collection of vectors both minimal and complete in 
H is said to be exact in H. 

Given a finite set of positive numbers {rj})"~l and an integer d>0,  #j will 
always denote the function X[_rj,rjja, the value of d being clear from the context- 

3. N o n p e r i o d i c  sampl ing  in one d imens ion  

Let 0<%<. ._<r ,~  be given such that  rj /rk~Q for j~:k. Let R ~ j  1 ry and 
let A be defined by 

(5) A =  {n/2rj : h E  Z\{0},  j = 1, . . . ,m}. 

Our starting point is Theorem 3.1 of [16] which states that if f E P W 2 R ( R ) ,  if f 
vanishes on A, and if f(J)(o)=o for j=O, ... , m - l ,  then f -O.  Let 

(6) A* - {e2~iat: A �9 A}U{1, 2rcix, ..., (2rcix)'~-I }. 

Then Theorem 3.1 of [16] is equivalent to the following result. 

C o r o l l a r y  3.1. The system A* defined by (6) is complete in L2[-R,R]. 

In order to show that A* is exact, recall the following construction from [161. 
For j = 0 ,  ... , m - l ,  define g j ~ P W 2 ~ ( R )  by 

tJ f i  sin(2rrrkt) 
(7) 9j(t) = ~. 2rcret 

k = l  

Let fo ,~ - i  = g ~ - I  and define f0,j cPW2R(R)  recursively for j = m - 2  down to j ~ 0  
by 

m - - 1  ( dl ) 
(8) fa,j(t)=gj(t)4- E ~79a(0) /Q,z(t). 

l = j + l  
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For A=n/2rj cA, define g~EPW2R(R) by 

(9) 

kItr sin(27crkt) 

sin(27rrkA) 
27cry(t-A) H 27crkA 

kCj 

and define f;~EPW2R(R) by 

(10) f~(t) = g ~ ( t ) -  E d~ g~(0) fo,l(t). 
l=O 

Then the following theorem holds (cf. Proposition 3.1 of [16[). 

P r o p o s i t i o n  3.1. Let A be given by (5), f0,j by (8), and fa by (10). Then 
(a) fo,j(A)=O for O<_j<_m-1 and AE A, and (dk/dtk)fo,j(O)=Sj,k for O<<_j,k< 

m 1; 
(b) f~(A')=5~,~, for A, A'cA, and (dk/dtk)f~(O)=O for O < k < m - 1 .  

Let Fo,j = ]o,j, F~--f~, and define the collection .T by 

(11) Fr r a - 1  

Then .7- is biorthogonal to A* and the following holds. 

C o r o l l a r y  3.2. The system A* defined by (6) is exact in L2[-R, R]. 

Remark 3.1. The biorthogonality of A* and ~- means that  for FcL2[-R,  R], 
we have the formal expansion 

(12) 
m--1 

y(x) ~ }2 (r, ro,5)(2 ix)J + (r, 7 le 
j = 0  A~A 

However, it was observed in Theorem 5.3 of [16] that  the collection A* is not a 
frame for L2[ R, R] since it does not have a lower frame bound. This fact follows 
from the observation that  the set {gx}~A is not norm-bounded in PW2R(R) which 
implies that  5 does not have an upper frame bound. Therefore, the sequence on 
the right-hand side of (12) need not converge in L2[ R, R] nor even in some weaker 
sense. 

However, we would like .7- to at least be complete in L2[-R, R] so that  F 
is uniquely determined by the inner products (F, Fo,j) and <F, Fa). It turns out 



82 Kar lhe inz  GrSchenig,  Chr i s tophe r  Hell and  David  W a l n u t  

that  this s ta tement  is not obvious since there are examples of exact sequences in 
Hilbert spaces whose biorthogonal sequences are not complete (see [18]). We will 
show in Section 4 tha t  the completeness of 5 c in L 2 [ -R ,  R] follows from a result of 
Young [18], and in Section 6 tha t  the inner products  (F, Fo,j) and (F, Fa} can be 
easily and stably computed from the convolutions F*pk .  Hence the instability in 

recovering F from its local averages comes precisely from the possible nonconver- 
gence of the sum (12). It  may still be possible to recover a good approximation to 
F from (12) if only a finite number of data  are used [7]. 

4. Comple t enes s  of  ~" 

The goal of this section is to prove the following theorem. 

T h e o r e m  4.1. The collection 5 given by (11) is complete in L2[-R, R]. 

The proof of this theorem requires the following result of Young. 

T h e o r e m  4.2. ([18]) If a sequence of complex exponentials {e ~nt} is exact in 
L2(-7c,7c), then its biorthogonal sequence is also exact. 

Since the collection A* contains the monomials (27cix) k for l < k < m  1, it is 

not a collection of complex exponentials. Therefore Theorem 4.2 cannot be applied 
directly and the following lemmas are required. 

aY f(.d l m - 1  L e m m a  4.1. Let A be given by (5) and let L JJj=0 be a collection of 
distinct points such that ANw=0.  Then the system 

A # = {e 2 ~ t  : A E AUto} 

is exact in L2[-R, R]. 

Pro@ We must show that  A # is minimal and complete. 

To show completeness, let gEPW2R(R)  be such tha t  g(A)=0 for all AGAUw. 
Define h by 

t m 
h(t) ... d g ( t )  

Since gEPW2R(R) ,  g can be extended to an entire function of exponential type 2R 
on C. Clearly h can also be extended to an entire function of the same exponential 

type. Moreover, hEL2(R)  since h has the same decay at infinity as g. Thus, 
hEPW2R(R) ,  h vanishes on A, and h ( J ) (0 ) -0  for j = 0 ,  ... , m - 1 .  By Theorem 3.1 
of [16] (cf. Corollary 3.1), h - 0 ,  whence g-=0. 
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To show minimality, we construct explicitly the sequence biorthogonal to A#. 
Define for wj Ew the functions f ~  cPW2R(R) by 

f i  sin(2~rrkt) 
27rrkt t--wk k 1 

(t) = I I  
Odj --Cd k sin( 27rr kcJj ) key II 

k=l  27r?~kWJ 

and for each AeA define ga by (9) and f~cPW2R(R)  by 

m--1 

(13) f~(t)  gA(t)- E ga(wl)f~(t). 
l--O 

Then 
(a) /~ (A)=0  for AeA, and f~(wk)=hy,k for czkCw, and 

(b) f~#(A')=~A,A, for A,A'EA, and fff(wj)=O for wjEw. 
Let F~ = f ~ ,  F F =  fa #, and define the collection )c# by 

(14) f #  # .~ 1 # ={F~j}j o U{F; }~CA. 

Then jr-# is biorthogonal to A #, and A # is exact. [] 

Finally, we require the following lemma. 

L e m m a  4.2. Let jr be given by (11) and iP # by (14). If ~ #  is complete in 
L2[-R,R] then so is 9% 

Pro@ Let GEL2[-I~,R] be given such that (G,F} 0 for all F E S .  We will 
show that (G,F #} 0 for all F # C ~  # which implies G 0 by the assmnption of 
completeness of ~c#. 

Let gEPW2R(R) be such that ~ G. By the Parseval identity, (g, f0,j}=0 
where fo,j is given by (8), and (g, fa}=0 where fa is given by (10). It will suffice 
to show that (g, f~)--O for wjEw and that (g, f~#>:O for AcA. 

Since (g, f0,j}-0, we have by (8) that (g, gj}--O where gj is given by (7). There- 
fore, for any polynomial P(t) of degree not greater than m - 1 ,  g is orthogonal to 
functions of the form 

P(t) ~ I  sin(27crkt) 
27crkt 

k--1 

Siuce f ~  has precisely this form, <g, f ~ ) = 0  for ~ e ~ .  Since g is orthogonal to 
fo,j and also to fa, it follows from (10) that g is orthogonal to ga where ga is given 
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by (9). Since g is also orthogonal to f ~  for wj Ew, it follows from (13) that  g is 

orthogonal to f ~  for AcA. This completes the proof. [] 

We can now prove Theorem 4.1. 

Proof of Theorem 4.1. Since, by Lemma 4.1, A # is an exact system of com- 
plex exponentials, Theorem 4.2 implies that  5 c# is complete in L2[-R,R]. By 
Lemma 4.2, 5 c is also complete in L 2[-R, R], which completes the proof. [] 

5. U n i q u e n e s s  f r o m  a v e r a g e s  o n  t w o  i n t e r v a l s  

In this section, we prove a one-dimensional version of the three squares theorem. 
The proof contains the fundamental ideas of the proof of the higher-dimensional 
result (Theorem 6.1). Define Gj EL2[-R, R] by ~ j -G j  where gj is given by (7), and 
define G~ E L ~ I -R,  R] by t)~ = G~, where g~ is given by (9). Now define G C L 2 I -R,  R] 
by 

Ia-1- m 1U{GA}.X6A. (15) ~ = L  ~JJ 0 

Since each FC~ c can be written as a linear combination of elements of G, and since 
5 is complete in L 2 I -R,  R], so is G. 

T h e o r e m  5.1. Let 0<rx<r2 ,  let R=rl+r2 and let A be given by (5). Then 
rl/r2 ~ Q if and only if the only f c L 2 [-R, R] satisfying 

(a) f , p 1 ( / ) - - 0  forxC[ r2,r2], and 
(b) f*p2(x )=0  for x C [ - r l , r l ]  

is f -O .  

Pro@ Suppose that  rl /r2~Q and that  fEL2[ R, R] satisfies (a) and (b). We 
will show that  (f, G} =0 for all GE~,  where ~ is given by (15) with m=2.  Since Go 
is a constant multiple of ~1 :r (b) implies that,  

? // (f, Go} = c / (x)(~l*#2)(x)  dx = e f(z)  #l(t)p2(x-t)  dt dx 
R R o o  

c #l(t)  f(x)#2(t x) dxd t=e  (f*#2)(t)dt=O. 
cx~ R ~ r ! 

Since G1 is a constant multiple of (d/dt)(pz*p2)(t)--p2(t+rl)-p2(t-rx), (b) im- 
plies that  

(f, G1} = c f (x)(#2( t+rl) -p2( t -r l ) ) (x)  dx 
R 

=e((f*p2)(-rl)-(Z*#2)(rl))  O. 
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If A=n/2rjEA then G~ is a constant multiple of (e-2~iAt#j)*#k(t), where 
kc{1, 2} and k~j .  Therefore, by (a) and (b), 

/ ,  R 

(/, G~} = ~ / /(x)(e-2"~%,i,~)(~) dx 
J -  R 

= c f(x) e-2=i~t#j (t)#k ( x -  t) dt dx 
R oc 

= c e-2~iat#j(t) f (x )pk( t -x )  dx dt 
cc R 

= C  /~iJ e-~rint/r3 ( f  * f tk ) ( t )  dt  =O.  

Since 6 is complete in L2[-R,  R] we conclude that  f-=0. 
For the converse, suppose that  rl/r2 ~ Q. Then there exist n, m G Z such that  

n/2rl=m/2r2. Let A=n/2rl=m/2r2, and let f(t)=sin(27cM)X[_n,n](t). Since f 
has period 2rl and 2r2 on I -R,  R] (that is, if Q, 12 E [-R, R] with 11-12 =2r l  or 2r2, 
then f(t~)=f(t2)), and since the integral of f on any interval of length 2r~ or 2r2 
is zero, (f*#j)(x)=O for xC[--rk,rk], j , k = l , 2 ,  j r  However, f ~ 0 .  [] 

Alternative proofs of Theorems 5.1 and 6.1 are presented in the note by K. Seip 
following this article [14]. 

6. Nonperiodic sampling in higher dimensions 

Since tensor products of complete sets are complete, the following is an imme- 
diate consequence of Corollary 3.1. 

C o r o l l a r y  6.1. Let 0<r l  <...<rm be given such that r j /rk~Q for j r  Let 
R "~ A* = ~ j = l  rj and let be defined by (6). Define A*dCL2[-R,R] d by 

A~ = {e(x)= f l  d(x~): x = (Xa,...,x~), d ~A*}. 
j i 

Then A* d is complete in L2[-R, R]d. 

In fact, A M is exact since its biorthogonal sequence is the collection ~-d defined 
by 

d 

(16) Jzd={F(x)=I-IFJ(xj):X=(Xl , . . . ,Xd)  , FJcJr} ,  
j 1 

where f is defined by (11). Also, it follows from Theorem 4.1 that  5d is complete 
in L2[-R, R] d. 
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R m T h e o r e m  6.1. Let O<rl<...<r,~, let r e = d + 1 ,  and let ~ j  lrj. 
the following are equivalent: 

(a) The collection { ~ a } ~  satisfies rj/r~r j#k .  
(b) If f � 9  R] d satisfies 

(f*fj)(x)=O, xE[ R+rj,R-rj]g,  j 1,...,m, 

Then 

then f -O.  

P~oof (a) ~ (b) Define the conection C~CL~[-R, R] ~ by 

d 

Cd={~(X):H~J(xj):X:(Xl,...,Xd), ~JEc}, 
j = l  

where C is defined by (15). It  follows from the definition of Se and Ca that  any 
element of 5a  can be written as a linear combination of elements of Cd. Therefore, 
since brd is complete in L2[-R, R] d, SO is Ca. 

Suppose that  the set {rj }~]L 1 satisfies rj Irk ~ Q if j 7 ~ k, and that  f �9 L 2 [ -  R, R]d 
satisfies (17). We will show that  f is orthogonal to every element of Ca. To this 
end, fix G�9  Then there exists k 0 � 9  such that  G has the form G =  
H*#ko where suppHC[-R+rko,R-rko] d. To see why this is true, note that  for 
each l=1,  ... ,d, GZ�9 and that,  by (15), G z can be writ ten either as Gj for some 
j = 0  .... , m - l ,  or as G~ for some AEA. Now, Gj has the form 

dJ 
cs(t) = ~j a T ( ~  ,... , ~ ) ,  

for some constant cj, and if ;~=n/2rk then Ga has the form 

CA(t ) C~(e 2~ri)~t~tk)~<(ftlg<...g<~k_l~k~tk§ ). 
Therefore, G�9  has the form 

(is) c (x)  -- l ~  cj, (x~) l-[ o~, (x,), 
l~tr zep 

where FC_ {1, ..., d}. Since re=d+ 1, IFI < d<m so there exists k0 �9 {1, ..., m} such 
that  Al#n/2rko for all lEF and n � 9  Also, for each l we have tha t  j z < m .  
Hence each te rm in the product (18) is either of the form 

d 7 7 ( ~ 1 , . . . , ~ < _ 1 , ~ o §  - (H~, 
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or of the form 

G~(~) = ( ~ ( S ~ * . . . * ~ k _ ~ , ( e - ~ ' ~ ) , ~ k §  
(z.,<,,k0)(t). 

Note that supp Hi, and supp H~ are both contained in [-R§ R-rko]. Let 

t~P tCr 

Then supp HC [--R+rko, R-rko] d and G=H*Pko as required. 
~y (17), 

- -  i :(x) [ nm).ko(x- ) J i -  P~,R7 d J[ R+rko,H--r~o] d 

: f R+rko,Ft_rko]d ~r(Y) ~R,R]d f(x)[zko(y-x) dxdy 

=- f d H(Y)(f*#ko)(y) dy = O. 
J [ R-l-~+'ko ,/~--rko ] 

Since ~a is complete in L2[-R,R] d, f=~O. 

(a) ~ (b) Suppose that  rjo/rko c Q  for some jo~ko. Assume without loss of 
generality that, 3"o = 1 and ko = 2. Then there exist n, k E Z \ {0} such that, X~n/2r~ = 
k/2r2. Let R1 = r l + r 2  and le~ 

,h (~) = s i~ (2~ l )~ i -R~ ,R~ l~  (z)" 
Let R 2 = R - R 1  and let 

d 

Finally, let J=.f  ~ * J2 ~ L 2 [- R, t7] d. 
Let j = l  or 2. Given x ~ [ - R ,  tT] d, write x = ( x l , J )  where x lE [  R,R] and 

XI ~C--R, R] d-~. Then 

(f~ */~J)(~) = <f-R~ ,R~I~ A (y)~j (x-~) dy 

is~ /{__ ~'X ~ ~ d 

=0 
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since the integral of sin(2rrAt) over any interval of length 2rl or 2r2 is zero. If 
j ~ 1, 2, then 

= (Y) J -y) dy 

= s m / - - J X [  ~ ,- (x~-yt)dyl X[-~j,~jl(xl-yl)dyl 
Ru \ r l + l  / - j '  j R2 

= 0  

since for j = l + l ,  the integral of sin(Tct/rz+l) over any interval of length 2rj is zero. 

Thus, f .#j=fl*f2*#j=f2.f l .#j=O for j = l , . . . , r n ,  but  f ~ 0 .  [] 

7. F u r t h e r  r e m a r k s  on  c o m p l e t e n e s s  o f  A* 

The purpose of this section is to examine the completeness radius and the 
frame radius of the set A given by (5). The completeness radius of a set S CC is 
the supremum of all numbers r > 0  such that  {e2~i~t}~cs is complete in L2[-r, r] 
(see [5], [11], and [13]). The frame radius of a set S C C  is the supremum of all 
numbers r > 0  such that  {e2~riAt}~ES is a frame for L2[- r ,  r] (see [9]). Assume that  
the numbers 0 < r l < . . . < r , ~  satisfy rj/rk~Q when jr  and that  R = ~ j  1 rj. The 
set A is defined by (5), the set A* by (6). 

We will prove the following theorem. 

T h e o r e m  7.1. (a) If r < R  then {e2~ia'~}aE/, is a frame for L2[-r,r]. 
(b) If r>R then A* is incomplete in L2[ r, r]. In this case, since {e2~i~}xeAc_ 

A*, it follows that  {e2~iax}aca is also incomplete in L 2[- r ,  r]. 

Corollary 3.1 addresses in part  the question of what happens when r=R. The 
answer is that  {e2~Xx}acA is incomplete in L2[-R,R]. With the addition of a 
finite number of functions, namely {1, 27cix,..., (2~rix)m-1}, the resulting collection 
is complete and in fact exact in L2[-R,R] (Corollary 3.2). However, it is not a 
frame for L2[-R, R] (Remark 3.1). 

In order to prove Theorem 7.1, we will need the following definition. 

Definition 7.1. Given a set S C R  and t>0 ,  define 

n + (t, S) = sup # ( S N  [x, x+t)) and n - ( t ,  S) = i n f  # ( S N  [x, x+t)). 
xEP~ 

The upper uniform density of S is defined by 

D+ (S) = lim +  sup (St s) ) 
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and the lower uniform density of S is defined by 

D (S )=l imin f (  n (t,S) 
t-+~ \ t /" 

It is easy to see that  D+(A)=D-(A)=2R. We can now prove Theorem 7.1. 

Proof. (a) Suppose that  r<R. In order to prove that {e2wiAx}AGA is a frame 
for L2[-r , r ] ,  we use the following result ([4]; [13, Theorem 2.1]; [9, Theorem 3]): 
If S C R  is such that (i) S is uniformly discrete, that is, inG,vcs Ix-yl=6>O, and 
(ii) D (S)>2r ,  then {e2Wiat}acs is a frame for L2[-r,r]. Note that  the set 1 is 
not uniformly discrete, that  is, there are pairs of points in A that  are arbitrarily 
close together. The idea of the proof is to show that  A contains a uniformly discrete 
subset with density arbitrarily close to 2R. 

Given c~, flE{r/}~_ 1 with c~<fl and e>0,  define 

N~,~(e)= ~ : n C Z \ { 0 }  and dist n 1 Z , ~  < . 

Note that  n/2fl~N~,~(e) if and only if dist(an/f l ,  Z)<c~c which holds if and only 
if (c~n/fl} ~[0, a c l U [ 1 - a e  , 1 ) = K  (here (x)=x Ix] where Ix] is the greatest integer 
less than or equal to x). 

Since c~/fl is irrational, we know by Weyl's equidistribution theorem ([10, p. 8]) 
that  

i with Ill:t>_1, let r a=min{n :n /2 f lCI}  and M=max{n:n/2f lEI} .  
M - m +  l <_2flt+ l and 

#(X~,~(c)nO " 
=T n 

n ~7~ 

< sup __ n . 
- M - m + 1  \ lcz  n t 

Letting t ~ o c  forces M - m + l ~ e c  so that  

l imsup(sup #(N~'@~)Nl) ) < 2fl2ctc 4c~fle. 
t~oo \1II t 

/ N + l  . ,  

lim 
- -  sup XK n = IKI = 2oze. 

N ~  N 16Zn  1+1 

We wish to estimate the upper uniform density of N~,~(c). Given an interval 
Then 2fit<_ 
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Therefore, D + (No,z (~)) _< 4a/3r 
Let N(s) =[-Jj<k N,.j,~ (s). Then 

D+(N(c)) <~ ~ D+(N~j,'~k (c)) < 4s ~ rjrk. 
j<]~ j<k 

Choose s>0  so small that 2r+D+(N(c))<2R. Then for each xC R  and t>0, 

# ( (A\X(s ) )  n [x, x+t)) = 4r [x, x+r))- (%(N(s)N Ix, x + 0 )  

_> #(AN[x, x+r))- sup #(N(e)N[a, a+t)). 
a c R  

Therefore, 

inf #((A\N(e))N[x,x+t)) >i~ff#(AN[x, x+r))-sup (r 
ccGR " x E R  

and 

l iminf(n-(t 'A\N(c)))>liminf( n (_t 'A))_l imsup(n+(t 'N(C))  ) 

so that 

D (A\N(e ) )>  D - ( A ) - D + ( N ( s ) ) =  2R-D+(N(s))> 2r. 

Thus A\N(s)  satisfies (ii). Also, if A, A'EA\N(e) and ACA' then ]A-A'] 1 _> ffs, and 
A\N(e)  satisfies (i). Therefore, {e2~iXt}),eA\N(e) is a frame for L2[--r,r]. Hence, 
the larger set {e2~iat}acA has a lower frame bound. To see that it also has an upper 
frame bound, note that A is the union of a finite number of lattices each of which 
has an upper frame bound. It follows that {e2~ixt}aea also has an upper frame 
bound. 

(b) Suppose that r>R. Let e=r-R. By Proposition 3.1(a), we know that the 
function f0 . . . .  l=g,~ 1EPW2R(R) defined by (8) satisfies f0 . . . .  I(A) 0 for AEA, 
and (dk/dtk)fo,m_l(O)=O for k=0, ... , m - 2 .  Let F0,,~ 1-----fo,,~ 1 and define G(t)= 
Fo,,~ l(t+s)-Fo,,~-l(t-c). Then GEL2[-r,r] and d(7)=2if0,,~ l(7) sin(27ceT). 
Therefore G vanishes on t and (dk/dtk)G(O)=O for k = 0 , . . . , m - 1 .  Hence G is 
orthogonal to every element of A* but clearly G~0. Therefore, {e2~iXt}Xeh is 
incomplete in L 2[-r,r].  [] 
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