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1. Introduction 

The main objective of this work is  to establish sufficient conditions for the 
local solvability of certain left invariant differential operators on a nilpotent Lie 
group G. The operators to be considered are of the form 

(1.1) L = Z j ,  k' j XjXk+ c . Exr 

where {Zj} is a set of generators for the Lie algebra 15 of G, (ajk) is a positive definite 
quadratic form, and each Cpq is a complex constant. I f  the Cpq are all real, H6rman- 
der's criterion [16] implies that L is hypoelliptic and locally solvable. However, if 
the Cpq are imaginary both hypoellipticity and local solvability may fail as happens 
for instance when G is the Heisenberg group. Nevertheless, we will show that for 
many interesting classes of groups, all operators of the form (1.1) are locally solvable, 
even when not hypoelliptic. 

This investigation has its origin in the author's attempt to understand the signifi- 
cance of the criterion for solvability of the Lewy equation, as well as the associated 
boundary Laplacian equation, given by Greiner, Kohn, and Stein [7]. (Similar 
results had previously been obtained in a different context by Sato, Kawai, and 
Kashiwara [30].) In [7], 15 is the Heisenberg algebra, say of dimension three, and 
L=X~+X~+i[X1, X~]. Among other results it is proved that the equation Lu=f, 
f smooth, has a local smooth solution u at x o if and only if the orthogonal projec- 
tion o f f  onto the L ~ kernel of L is real analytic near x0. This result suggests a close 
relationship between the existence of a nontrivial global L e kernel for U and the 
local nonsolvability of  L (see [2J). 

Any unitary irreducible representation n of G acting on a Hilbert space Yg 
determines a corresponding representation, again denoted r~ of 15 on 3r hence 
n(L) is also defined as an operator on o~. For the Heisenberg group, the existence 
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of a nontrivial L 2 kernel for L is equivalent to ~ (L) having a zero eigenvalue for 
any infinite dimensional irreducible representation n. For  many other classes of 
nilpotent Lie algebras, such as the "free" ones of step two with more than two 
generators the situation is different. For  such it may happen that n(L) has zero 
eigenvalues for many values of n, but  not  for all n in an open set of the parametrizing 
space for the representations. Thus we are led to a more careful study of  the eigen- 
values of  n(L) as n varies. 

Our general approach to proving local solvability for operators of the form (1.1) 
may be described roughly as follows. Given fECo(G ), decompose n(f)-~ 
ff(g)n(g)dg into its action on the eigenspaces of n(L). As n varies over most 
representations the eigenvalues of n (L) are almost algebraic functions of the para- 
metrization of the representations. I f f  is regarded as a distribution, one may hope 
to divide each component o f f  in the above decomposition by the corresponding 
eigenvalue of n ( f ) ,  using the division of  distributions of H6rmander [14] and Loja- 
siewicz [21]. This process is accomplished by making estimates using the Plancherel 
formula for G. 

In [5] Folland and Stein proved, for operators L of  the form (1.1) on the Heisen- 
berg group, that the injectivity of n(L) for all non-trivial irreducible representations 
n implies hypoellipticity and local solvability of L. Later Rockland [25] generalized 
this result to left invariant differential operators on the Heisenberg group homo- 
geneous under automorphic dilations. His methods involve use of  the explicit 
Plancherel formula. Rockland conjectured that for a general graded nilpotent Lie 
group G and a homogeneous left invariant L on G, injectivity of n (L) for all non- 
trivial irreducible representations implies that L is hypoelliptic. This conjecture was 
recently proved by Helffer and Nourrigat [10]. 

The idea of relating the injectivity of transformed differential operators to the 
hypoellipticity of the operators goes back to Grugin [8]. In this work a notion of  
homogeneity iS defined for a class of partial differential operators with polynomial 
coefficients which are elliptic away from a submanifold. A partial Fourier trans- 
form is taken in certain variables (see w 3) and the original operator is proved to 
be hypoelliptic if and only if all the resulting transformed operators are injective 
on L ~. 

In discussing local solvability on Lie groups, one should note that there are 
very beautiful, general results for operators which are both left and right invariant, 
i.e., those which come from the center of  the universal enveloping algebra. The first 
such result was obtained by Rais [24], who proved that any bi-invariant differential 
operator on a nilpotent group is locally solvable. The same result was then proved 
for semi-simple groups by Helgason [12], and for solvable groups by Duflo--Rais [4] 
and Rouvi~re [29]. Then Duflo [3] gave a general proof  for any Lie group. One of  
our main results (see w 13) depends on a very special case of Rais' Theorem. An 
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excellent survey of local solvability of bi-invariant differential operators and related 
questions is given in Helgason [11]. 

This paper is the third revision of a manuscript first circulated in 1978 and 
revised in 1979 and 1980. The first two versions contained several serious mathe- 
matical errors. After the appearance of  the earlier versions some of  these results, 
as well as related ones, were obtained more simply by Helffer [9], Lrvy-Bruhl [18], 
[19], [20] as well as the author and Tartakoff [28]. 

! wish to thank Peter Greiner and E. M. Stein for early discussions on local 
solvability, and Lawrence Corwin for help with the second version, especially sec- 
tion 5. Also, the idea for the counter-example in w 15 is due to Schmuel Fried- 
land. Finally, I am indebted to the referee, who pointed out a large number of 
minor mistakes, as well as a small number of  major ones. 

2. Notation and main results 

In what follows (5 will always denote a two step nilpotent Lie algebra and G 
its corresponding simply connected Lie group. We shall assume that (5 decomposes 
as a vector space (5=(51+(52 with [(51,(51]=(5~, and [(51, (5~]=[(52, (52]=(0). 
(5 carries a natural family of  automorphic dilations given by 

3s(X ) = sX ,  if XC(51 
and 

6s(T) =-s2T if TE(52. 

These dilations extend in a natural way to og ((5), the universal enveloping algebra 
of (5, which may be identified with the set of all left invariant differential opera- 
tor on G. 

A left invariant differential operator D on G is homogeneous of  degree d if 
6~(D) =saD. By an appropriate choice of  the basis {/(1, ..., X,} of  (51, any operator 
of the form (1.1) may be written 

(2.1) L =  ~'" X?~_'9'p CqT~, 

where {Tq, l<-q<-p} is a basis of  (52. Then L is homogeneous of  degree 2, and 
the term ~'~=1 CqTq may well affect the existence and regularity of  solutions. 
Necessary and sufficient conditions for the hypoellipticity for most operators of  
the form (2.1) in terms of  the Cq were given in [27]. A differential operator D is 
locally solvable at a point xo if there exist neighborhoods V c  U of  x0 such that 
for  every f smooth in U i.e. fEC=(U), there exists uEC=(V) such that Du=f 
is valid in V. For  operators of the form (2.1) it can be shown tha t  hypoellipticity 
implies local solvability (see [25]), but we shall prove here that L is locally solvable 
in many cases even when hypoellipticity fails. 
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The main results will be described in terms of  classes of  groups. 15 is a free 
algebra on n generators if  dim ( f l = n  and dim (f2 is as large as possible, i.e. 
dim ~i2 = n ( n - 1 ) .  This means that the only linear relation among the commutators 
is skew symmetry [Xj, Xk]=--[Xk,Xj].  At the other extreme, (f is a Hei- 
senberg algebra if dim (52 = 1 and for any non-zero linear functional 2 on (f2, 

det (2 ([X i, Xk])) ~ O. 
Our main results on the local solvability of  operators of  the form (2.1) may be 

summarised as follows. 

(2.2) Theorem. Let (5 =~51+(f  2 be a two step graded nilpotent Lie algebra and 
L the second order left invariant differential operator on G defined by 

n 2 P T L = Zj=xx)+z =lc  

with {Xj}, {T~} basis of  (fix and (f2 respectively. Then L is locally solvable in the fol- 
lowing cases. 

(i) t5 is free on n generators, n>2 .  
(ii) For all linear functionals 2 on (f~, det 2([Xj, Xk])=0; e.g. in particular i f  

dim ~1 is odd. 

3. Out l i ne  o f  the proofs  

To illustrate one of the main techniques without the machinery of  group rep- 
resentations, we first consider the following example. Suppose 

02 02 , . .  0 02 

Ox~ 

for some tiER, D acting on R 3. D is homogeneous in the sense of  Grugin [8]. If  
2, ~ are dual variables to t, x2, respectively, then the partial Fourier transform D 
with respect to t and x,, is 

03 
D ^ = --x~22--f12--~ 2. 

After the change of variables uz=[2] 1/2 Xl, for 2 r  D ^ 

(3.1) 

becomes 

d 2 

d 2 
-5--~-u~ has as eigenfunctions the Hermite functions h~ The operator with 

eigenvalues - ( 2 ~ + 1 )  ~=0 ,  1,2 . . . . .  Hence zero is an eigenvalue of  D ̂  when 
2 = - - 1 ,  ~--0 and ~=0.  By Grugin's criterion D is not hypoelliptic near xx--0. 
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Nevertheless, (3.1) may be used to prove that D is locally solvable. Indeed, to 
solve 

Du = f ,  fEC~* 
locally, it would suffice to solve 

a~ 
(3.2) Du=-ffi-r A cs', 

am 
m>0 ,  since 0--~f~=f has a local solutionf~C~0. 

a-  
To solve (3.2) we begin by expanding the partial Fourier transform of  ~ fx 

in terms of eigenfunctions of D ̂  : 
^ [0.} 

(3.3) 0- -~f  1 = i"2mf2 "~ i " X " X , , ( f  ^, h~,)h~,. 

Now to solve (3.2), it suffices to divide each term in (3.3) by the eigenvalue 
m~0,, 4) of D ̂  on h~ i.e. 

(2, r = - I ZI(2= + 1 ) - / 7 2 -  

when 2 ~ + l > ] f l  1, 2re~m=(2, 4) is locally bounded, and so the division make sense 
in the context of L 2. For the finitely many ~ for which 2~+1=<}/~], the division 
may still be performed in the sense of distributions. Indeed, 

(--2 (2~ + 1) -/~2 - ~)  (,~ (2= + 1 - /~ ; t -  4 =) 
m~ (2, 4) = [A[ (2~ + 1)-/TA- ~ " 

Thus, division of the function (f ,  h~) by m:,(2, ~) is equivalent to multiplication by 
12 [(2~ + 1) - 172- {= and division by the numerator of mr (2, r which is a polynomial, 
q,. The multiplication is possible because the power 2" may be made so large that 
the singularity of ]2I at 2 = 0  is effectively killed. Finally, division of the resulting 
distribution by the polynomial q= is possible by the results of Hrrmander  [14] and 
Lojasiewicz [21]. Since the resulting distribution is tempered, the distribution may 
be pulled back to t, x~, giving a solution of 0.2). 

For the operator L of the form (2.1) we use the group Fourier transform rather 
than the Euclidean one. We recall some basic facts about harmonic analysis on a 
nilpotent group G. For every irreducible unitary representation rc of G on a Hil- 
bert space ~ and any f{  C o there is an operator lr ( f )  on ~r defined by 

re(f) = f f(g)zffg) dg, 

where dg is the usual Euclidean measure on G (which agrees with the Haar measure). 
The Plancherel theorem then states that there is a measure d#(=) on the set of all 
irreducible unitary representations of  G such that 

I{fll = f tr Ot(f)zc(f)*)dl~(ZO. 
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Here * denotes the adjoint and tr denotes the trace. (The operator n ( f )  is always 
of trace class.) 

Hence f~L2(G) may be identified with the distribution 

-~ f tr (n (UP)* n( f ) )  d/~(n), 

where Up is the complex conjugate of ~/,. Here J f = L 2 ( R  a) for some d. Now con- 
sider the operator n(L), where zc is identified also with a representation of the Lie 
algebra 15. The eigenfunctions of n(L) on L~(R a) are the Hermite functions h== 
h=l(yl)...h=d(ya) yiCR, with eigenvalues m=(n). Let P= be the orthogonal projec- 
tion onto the subspace of L2(R 2) spanned by h=. One may then decompose n ( f )  as 

(3.4) n( f )  ~ .a~,~ rc(f)P= 

and attempt to divide each term by the function m~(n) as before. However, there 
are considerably more technical problems in this case. For example, the parameter 
space (4, 2) for D ^ has a singularity only at 2 = 0 ,  i.e. (3.4)is valid whenever 
2~0.  The parametrizing space for the L = decomposition (3.4) has more complicated 
singularities. Furthermore, the eigenvalues m~(n) involve not only absolute values 
of the main parameters but also eigenvalues of matrices with entries in the main 
parameter space. 

One 'of the main methods of dealing with the singularities involved is to solve 
the equation 

La = Zf, 

where Z is a left invariant differential operator which is itself locally solvable and 
which has the property that n(Z)  is a polynomial in the parameter space which 
vanishes to a high power on the singularities. This is a generalization of an idea 
used in [25] for the Heisenberg group. 

4. Unitary representations of G 

We shall calculate n(L) for almost all representations n of G. To do this, we 
follow the orbit method of Kirillov [17], for those representations needed for the 
Plancherel formula [22]. 

Let 15" be the linear dual of (5. The orbits of 15" are the sets of the form 

g<a} 
for rE15*. Here the coadjoint action g .E~-Ad*goC is defined by gof (X)= 
f ( g - l . X ) ,  where g - l . X = A d  (g-1)X, Ad denoting the adjoint representation. 
By the Kirillov theory, the set of all irreducible unitary representations of G is one- 
one correspondence with the set of orbits in 15". We shall not discuss the general 
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method of assigning a representation to an orbit in 6i*, but shall restrict the dis- 
cussion to those representations occurring in the Plancherel formula. 

I f  EC(fi*, the radical of ~ is defined as 

Rad~  = {YaEffi: ~ ( [YI ,Y] )=0  for all YEffi}. 

If  v ~ = (4, 2) with 46 ffi~' and 26 ff~', then Rad f = Rad (0, ~.)D 6i2. By renumbering the 
XSs if necessary, we may assume that X1, X2, ..., X2d is a basis for the complement 
of R a d f  on a Zariski open subset d?=qi*. Thus det(E([Xj, Xk]))l~i,k<=2nr if 
(0, 2)EO- We identify ,1. with (0, 2) and put 2q=)~(Tq), l<=q<=p. 

Now if S(2)=(2[Xj, Ark]), ~ will be called regular if 2E(9 and S(2) has the 
maximal number of distinct eigenvalues among {S(2'), 2 '6(~}. If  2 is regular 
there is an orthogonal change of basis 

{xl . . . . .  x ,}  -~ {Vl ~ . . . .  , v~, v L . . . ,  vL w~ .... , w L ~ }  
such that 

~([u~, v~]) --- ~j~j, 

where {:kioj}i=l,2...a is the set of non-zero eigenvalues of the matrix S(2), 
Qj >0,  and 

~([u~, u~]) = ~([v~, v~]) = z ( [ w L  u~]) = z ( w L  v#]) = 0. 

If  4=(4a, 4'~, ..., r 4~ER, define the linear functional f = ( ~ ,  )0 by 

(4.1i) #(Tq) = i2q 

(4.1ii) f(W~) = i~  

(4.1iii) r = ~(V~) = 0 all j ,  k. 

It then follows from the general theory that a set of representations associated to 
{(~, )~): 2E0} is sufficient for the Plancherel measure [22]. 

We now describe the infinitesimal representation ne of  ~ associated to the 
linear functional ~. ne(~i) acting on the Hilbert space L2(R d) is in given as follows, 

(4.2i) 

(4.2ii) zct(V)) = -~Ji~l/2*'JJ, 1 <= j <-_ d 

(4.2iii) 7ze(W~) = i#k , 

(4.2iv) z~c(Tq) = i2~, 1 ~ q ~ p. 

It will be useful to know roe on G, also. A linear function ~=(2,  4) is called 
regular if)~ is regular. Now let g regular be fixed and give G the coordinates (u, v, w, t) 
determined by 

(4.3) (u, v, w, t) ~ exp (u. U + v .  V+w . W + t ,  T) 
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where u. U = . ~  uj Uj, etc. Then 

(4.4) zce (w, u, v, t) h (y) : ei(~'w+~'t+ze~/~yj ~s) h (y + ~1/2. u), 

where ~l[2 . u = Z ~ / S u j ,  hE L2(Rd). 

Now let h~j (y j) be the jth Herrnite function in the variable y j, and put 

h~ = h~(y~)h~,(y2).., h,d(y~) 

for any multi-index ~=(~1, ~ . . . . .  ~d), with each ~i a non-negative integer. 

(4.5) Proposition. I f  E=(r 2), 2r then 

-- n--2d 2 d 0 2 " P 
(4.6) ~t(L) - - -Zk= l  ~ k ~ Z j = l Q j  ~ i - - Y J  + t  Z t = l C t , ~ t .  

J 

The eigenfunctions for  rce (L) are {h~ = h~x (Yl) h~2 (Y2)... h~ d (Yd)} with eigenvalues 

(4.7) m~(f) ,-2d ~ d 1 i : - - Z k = l  ~ k - - Z j = l O j ( 2 ~ j  "~- )-~ Z Ct)~t 

for  ~ = (~1, ~2 . . . .  , o~a). 

Proof. Since the U),  V), W~ are obtained from the X, by an orthogonal change 
of  basis, 

~, ,=IX~ = ~d t U ~ _ t . v ~ _  .9,-~dW~," .~.,tj=lk j ~ r j  ] ~ - a k = l  

The proposition is then immediate from (4.2). 

5. A cross-section of generic representations 

Each Y=(2, ~)6ffi* determines an equivalence class of  representations. We shall 
make a choice of  a representation from each class. Let t/-S~rl, (--L-~r~ . . . .  , tf-----lrm, 
be the distinct non-zero eigenvalues with positive imaginary part of  S (2 )=  (,~ [Xj, Xk]) 
for 2 regular. Then m=2d,  and rj=+__Ok, some k. A function of  2 will be called 
rational-radical if it is obtained from the rj and the coordinate functions 2k by a 
finite sequence of  successive operations of forming rational functions and taking 
square roots. A function of  f=-(2, ~) is rational-radical if it is a polynomial in 
with coefficients which are rational-radical functions of  2. 

(5.1) Theorem. For each Y=(2, ~), ).EO there is a choice o f  an irreducible rep- 
resentation ~ o f  (~ satisfying the following. 

O) For each ](j, E--,ne(Xj) is an operator with rational-radical coefficients. 

(/i) 7re(ZX])= 3',r2+ S 'd - y j  , - - ~ J  ~i=1 Oj 2 where q-I / f Oy are the (not 

necessarily distinct) non-zero eigenvalues o f  S(2). 
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Proof. By Section 4, it suffices to find a basis X~(~.), Xs . . . .  , Xs such that 

(5.2) X;(2) = ~ aya(2)Xk, 

where the ajk are rational-radical functions, 

{[o o][O ;q {o o} (5.3) 2([X~(2),Xs = diag -Q1 ' - 0 2  . . . . .  - 0 k  0 ' " ' 

where diag is the nXn  matrix with the indicated 2X2  blocks down the main 
diagonal, and 

(5.4) Z x;(;O 2 = 22 x]. 

For suppose (5.2) and (5.3) are satisfied. Then we may define the representa- 
tion Tee by taking 

Uj~ = X~i_1(2), j ~- 1, 2 . . . .  , d  

V? = Xis j : l , 2  . . . . .  d, 
and 

Wd" = X/+2d(2) k = 1, 2 . . . .  , n - 2 d ,  

and defining ~c/by (4.2J--iv). 
We shall need some preliminaries before defining Xj(2). A family ~a of  vector 

spaces parametrized by 2EN~ will be called orthonormal rational-radical if  each 
space in It k has a basis of orthonormal vectors Y1(2), Y2(2), ..., Y,(2), where 
Yk = ~ .  ba~ (2)x,  with bk,(2) rational-radical. 

(5.8) Lemma. Let I} x be a family of  orthonormal rational-radical vector spaces 
and t~  an orthonormal rational-radical subfamily preserved by linear operators S,  
on the spaces in It k. Then the following suofamiBes are again orthonormal rational- 
radical: 

(1) 
(2) ker Sx 
(3) ker (S~ + r~). 

Proof. For  (1), extend the given orthonormal rational-radical basis of ~a to 
one for all of  l~z. Now the use of Cramer's rule shows there is an orthonormal 
rational-radical basis dual to the given one, from which one can extract a basis of 
t@. Next, ker Sa=(range S ~•  zJ , where t denotes transpose. An orthonormal 
rational-radical basis for range S~ is obtained by applying S~. to the given basis. 
Now the proof  follows from that of  (l). The argument for ker (S~+r~) is the 
same. 

The idea for the above lemma is essentially contained in a similar result by 
Corwin--Greenleaf  [1]. We may now complete the proof  of  Theorem 5.1 by defining 
X~.(2). Let S~ be the transformation defined by S(,t). 
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By Lemma 5.5 choose an orthonormal rational-radical basis for ker Sa and 
ker 2 2 (Sx+rk) for all k. Since S(2) is skew symmetric, the spaces are all mutually 
orthogonal. I f  d imker  2 2 (Sx+ rk)>2 for any k we shall choose a particular basis. 
For this, let Yl(2)Eker 2 2 (Sz+rk) be an arbitrary element of  the basis. Then let t ~  
be the subfamily spanned by Z1 (2) = Y1 (2) and Z2 (2) = S~ Y1 (2)/r k. Note that 
since S~ is skew symmetric 

(Z, (2), Z2 (2)) = (Y1 (2), S~ ]11 (2)Irk) = --{  Sz Y1 (2) ,  Y1 (2)} 
rk 

---(z1(2), 
Therefore (Z~(2),Z~(2))=0. Also, 

IIS~Yx(2)llm = (S,t Yl(2), S;,(,~)) = (-S~YI(,~), Yl(2)) = r~, 

which shows that the set {Za(L),Z2(L)} is orthonormal. Now Sa preserves 
ker 2 2 (S~+rk)c~W ~ and the above procedure may be repeated. With respect to the 
resulting basis S~ restricted to ker ~ (S~+rk) has the matrix 

d i a g [ ( ? r  k ~ ) '  (--0r k O k) . . . .  ' (--O k O))" 

Now the X~(2) may be taken to be the bases of  ker (S~+r~k) and ker S~. This 
completes the proof  of  Theorem 5.1. 

For fixed 2EtP it will be useful to define coordinates corresponding to the 
X '  (2). The following is a consequence of  the construction in the proof  of  Theo- 
rem 5.1. 

and 

(5.6) Proposition. Let (x, t) and (u, v, w, t) be coordinates for G defined by 

(x, t) ~ exp (x.  X +  t.  T) 

where x .  X= ~ xjXj ,  
defined by (5.4). Then 

(u, v, w, t) --~ exp (u. U+v.  V+w . W + t .  T), 

etc, and 2E0 &fixed with U=U ~, V = V  ~ and W = W  ~ 

( 5 . 7 )  x = R ( 2 )  , 

and 

(5.8) = R-1 (2) x, 

where R(2) and R-I()~) are matrices with rational-radical coefficients. 
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A modification of  Lemma 5.5 will be needed in w 13. 

(5.9) Proposition. One of  the W{, say W~, may be chosen so that 

W1 z = ~ qk(~)Xk/(~qk(~)2)  1~2, 

where qk (~) is rational in 2. 

Proof. Let Sz be the linear transformation defined by S(2). Since S~ has poly- 
nomial coefficients in 2, a basis of  (S~) • may be chosen with rational coefficients. 
(This basis will not be orthonormal, in general.) 

6. The Plancherel measure of G 

Let ~ be the set of all regular elements of (5 as defined in w 4. Let Q(f) 
be the polynomial defned by Q ( f ) = d e t  (r Xk]l~_j,k~_2n). Q(~')=Q(2) is a non- 
vanishing Ad G*-invariant polynomial on ~. 

(6.1) Proposition. The Plancherel measure on O/Ad* G, the set of  all orbits 
in ~ is given by 

d~(~) = r(~) d~ d2, 

where r(2) is a rational-radical function, as defined in w 5. 

Proof. We write d#(d)=r(2,  ~)d~d2 and compute r(2, ~) by a theorem of 
Pukanszky [23, Proposition 3]. For this we identify Wk z with the dual of ~ i.e. 
W~-d~ k, k = l ,  2, ..., n--2d. Similarly, we identify Tp with d2p, and X, with &p,, 
where {gk} is a set of linear functionals dual to {Xk}l~k~n. Then by Pukanszky's 
Theorem, r(2, ~) is determined by 

Q 0 " ) I / 2 / / a = I A P  T q A I I j = I A X  j n  = r(2, ;~ 17 "-24 W f ^  rrp T~al7  2d X "~Jllk=l /~ k l l q = 1  A 11j~1 j" 

By Theorem 5.1, we may write Wek=Xk+2d(2)=~:=lak+2d.,(X)X,, where each 
aq., is rational-radical. Hence r(2, {)=r(it) is also rational-radical. 

(6.2) Corollary. There is a polynomial q(2) and an integer No such that i f  N>=No 
the measure 

(1 + Ill + 121) -N  q(2)d#(E) 
is finite. 
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7. Estimates for D e II~(~)h~l? 

We denote by I[ [1 the usual Hilbert space norm in L2(Rd). We study here 
the growth of D~]]ne(~)h~lI 2 for ~ regular in terms of the Schwartz norms of ~'. 
For this we write 

II~Ollk, N = sup (1 +lxl2+lt~l)N/21D~,,~o(x, t)  I 
I/~l_-<k 

(x,t)EG 

for non-negative integers k, N and ~o~Co(G ). Our main result of this section is 
the following, the present formulation of which was suggested by the referee. 

(7.1) Proposition. For every multi-index fl andpositive integer N there is a rational 
function q~(2) depending only on fl, and integers k" and N" such that for any 
~--(~1, ~2 . . . .  , ~a) there exists C~>0 satisfying 

(7.2) (1 +l~?)~nloffl[~Zr ] <-_ C=lq,(A)[ ]lr 

for all OECo(G ). Furthermore, C~ may be chosen, depending on fl and N so that 

(7.3) Z~CN ~ C~ < ~ .  

The main part of the proof of Proposition 7.1 is the following. 

(7.4) Lemma. For every multi-index fl there is a finite set ~ of  differential opera- 
tors on G and rational-radical functions r~,i(2), DiE~, such that for any c~, 

(7.5) D~ II ~t (@) h~[[ 2 = N ~' i  rt~,i (2)11 ~t (a~ 0) h=ll 2 

for all regular 2 and all ~ECo(G).  

Proof. By 4.4 we have for hELZ(R d) 

h = f ., w), t) ei(r ~) h (y +  1/2 U) du dv dw dt. 

(Note that dudvdw=dx,  since {U, V, W} are obtained from the {X} by a unitary 
transformation.) Now the proof of Lemma 7.4 is straightforward, but tedious. 
By dominated convergence we may differentiate under the integrals and for dif- 
ferentiation in 2, it suffices to study the effects of the following differentiations: 

O 
_ _  e l a .  t (7.6) O2j = t~e'Z't' 

1/2 
(7.7) - -  e i e ~ + / m y k v k  = i t 02+ O2j +k.rk) ~. 

( 1/2 ) 
(7.8) = Z fOSu ~ 

k OAj Oyg 

(7.9) 

(7.1 O) 

0 
02j 

8 

O2s 
8 ~ 8x+ 8~ (x(u, 

--02 ~,(x(u, v, w), t) = 2 5 - ~ j  (u, v, w) 

a eigkw k ,. Owk 

v, w), t). 
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The contribution of each term above may be absorbed in the right hand side 
of (7.5) as follows. The contribution of (7.6) is absorbed in the coefficients of the 

Di's. For (7.7), note that ~ is rational-radical and Vj=~Sjk (2 )Xk ,  with 

Sjk(2) rational-radical, by (5.8). To deal with the factor Yk, write 

ykelO~/2y~vk__ 1 0 (eiO~/%,~v~), 
iQk OVk 

and use integration by parts to put the differentiation on O(x(u, v, w), t). Then 
0 0 

use (5.7) and (5.8) again to write ~kVk in terms of the ff~x~" The term on the rigfit 

in (7.8) is handled similarly, using 

OYk O'+~/2"U) = ~O;~/z (h(Y+O~/2"u))' 

integration by parts, and (5.7) and (5.8). 
For (7.10) we may handle by (5.7) and (5.8) as before. For the term ~k, we use 

0 (eir 

and integration by parts, then (5.7) and (5.8). 
Finally, differentiation in ~ occurs only in 

0 
O~k (eir = iw k eir 

and the factor w k is handled like uk or v k. This completes our sketch of the proof 
of Lemma 7.4. 

(7.11) Lemma. For any even integer N~ there exists CN1 such that 

+ Itl2) NI'  h ll 2 % x )N1 h [p 
for all q)fCo(G ). 

Proof. 7re ((ZXy)N~ qo)h= = rce (q)) zct(~Xy)N1 h= = 7c e ((p) ( -  Z~oj (2~j + 1) - Z r �9 
Since supj ~oj= > C121, the lemma follows. 

(7.12) Lemrna. There exists N~ such that 

llze(~o)h=II-<- C=(O[[~e((Z X~)Nz(p)h,[1 
all (PCCo(G), with 

1 
(7.13) c~ (0  <-- ql (~) Hj (2~j + 1 ),,~/d, 

where q~(2) is rational and independent of  g. 
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Proof. As in the proof  of  Lemma 7.11, 

eA2  +I)_ZCD , , i ,  

[q, (2)[ i{x,(( Z X~)N~t~)h~ll 
- 

with ql (2) = ( / / j  =l O j) N'21a, which is a polynomial if NJd is an even integer. 

(7.14) Lemma. I f  Ns_~0 is suj~ciently large, then 

(7.15) II~t(~)h~ll <- CN~II~IIo, N~, 

with CN, independent of ~. 

Proof. It is well known that 

tlzct(q~) h[I <- l[~01[L~c6)[IhllL,~a~). 

The Lemma follows since [lh~l[z~= 1 and 1lgllz~G) is bounded by the right hand 
side of (7.15). 

We may now prove proposition 7.1. By Lemma 7.4, given N, there exist N1, 
a rational-radical function r a, and a finite set ~ of differential operators with poly- 
nomial coefficients such that 

(7.16) (l +l:12)NIIDffz,(~o)h~[I 2 <- Ira(2)l(l +VI2)N~ Z ,  Ilzre(O,~p)h~ll 2 

Now let q~=D~q~. By Lemma7.11 the right hand side of  (7.16) is bounded by 

(7.17) Cu, Irp (2)1 Z ,  }}he ((_~ X))N'qgi)h=H2 

<= CC,(:) [r,(2)[ Z i  llzce ( ( Z  Xy)N, ~p,) h,]l~, 

for some N2, with C~(~) satisfying (7.13). Now apply Lemma 7A4 to obtain from 
(7.16) and (7.17) 

( I  4-t: lz) Iv IID~ ne(q ~) h~ll 2 <= cc~o. )  Iq2Q.)l tl ~Plik, N~ 

for some k and some N3, where q~(2) is chosen so that 

Iq2(2)1 ~ max Iq~(~) r#,i(~)l. 

Now the proposition is proved provided that N~ is chosen large enough that 

1 
"2 +I))N, (ll)=~t ~j 
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8. Rapid decrease of : ~ l[Trt(Z~b) h~ll ~ 

The main result of this section is the following easy consequence of Proposi- 
tion 7.1. 

Proposition 8.1. Let k and N be fixed. Then there exists a polynomial z(2) and 
integer k', N" such that 

(8.1) sup {(1 + [:12)ND](llz(,O~cOp)h~l[2)} ~/2 ~= C, Ilq/llB, w, 
~_k 

(8.2) Z C~ < o~. 

Proof. Choose q#(2) rational as in Proposition 7.1 depending on fl, and put 
q(J.)= Yl~l_~k q#(~)=+l. Then q(2)=p~(~.)/p2(2), Pl, P2 polynomials of degrees s, 
and s=, respectively. Put z(~)=p2(2) ~+1. Then (I+I:[=)ND~[Iz(~.)=A~)h=[I 2 is a 
finite sum of terms of the form (l+lvPl2)N(p2(J.))k+l-iD~llz~g(ql)hell 2, where lTl= 
]fll-j. Now apply Proposition7.1 to k, N2, where N2>=N+kS2/2+S1/2. Then 

.I(I + I:12)~ I02(~.)I k+~ -J[ ~ C (I [p,0-)l + l:12)N~ IP2(~)I- 

Since (l +I:[2)u~ p~(A) p2(A)D~ll~A4,)h=ll2<=C=ll~,llk, w for some U, N '  by Proposition 7.1, 

Proposition 8.1 is proved. 

9. Solvability of La,=Zf ,  

Recall that if fEL2(G), f has the L ~ decomposition 

f,,~ ~ f ~  

where a runs over all multi-indices c~=(~1, ct2 . . . .  , an), ~i_->0, and f~ is uniquely 
determined by the condition 

~e (L) = nt ( f )  P, 

for every regular g. Here P, is the orthogonal projection onto the suhspace of L z (R d) 
spanned by the Hermite function h, = h~l (ya)... h,, (Ya). By Proposition 4.3, ~e (L) h, = 
rn~(f)h, where m~(:)= - -~k  ~ - - ~ j  Qj(2~j+ 1) + i  ~q  Cq2q. We would like to prove' 
that L~,-~Zf~ has a distribution solution ~ for any fEC~(G) for some non-zero 
ZE~//(J2) provided that m,(:)  does not vanish identically on an open set. 

(9.1) Example. Suppose ~ is the three-dimensional Heisenberg algebra, and 
L=X~+X~+i[X1,X2]. Then m 0 = - [ 2 1 - 2  vanishes for all 2<0 ,  and L~o=Zfo 
is not solvable for " m o s t ' f ,  if Z ~ 0 .  (See [7].) 
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Recall that the regular set is the open subset of  all (~,)O=d for which 
det 2([Xj, Xk]), l_-<j, k<=2d, does not vanish and for which the number of distinct 
eigenvalues is maximal. The regular set consists of a finite number of connected 
components. We now prove the key theorem in solving L a = f  

(9.2) Theorem. There exists ZEqI(J2) such that the equation 

(9.3) La~ ~- Zf~ 

has a global distribution solution a~ whenever f6  Co(G), and 

(9.4) m~([) does not vanish on any component 

of  the regular set. 

Proof Regard Zf~ as a tempered distribution, and note that (Zf)~=Zf~. By 
the Plancherel Theorem for G, if ~bECo(G), 

Zf,  (~) = f tr (re e (if)* rce (Zf,)) dt~ (g) 

=- f tr (~ (~;)* ~ (Zf) P,) d# (f) 
= f (~ (Zf)h~, rre (~) h~) d# (E), 

( , )  denotes the inner product in L2(Rd). I f  z0.) is the polynomial satis- where 
fying 

z()O = ~(z~) ,  
then 

(9.5) Z s  (tp) = f z (2) (Tr e ( f )  h~, ~e (~) h~) dy (E). 

Now if a~ satisfies (9.3), then 

(9.6) a~(L~O) = La~(~) = Zf~(O). 

Hence a~ is determined on the subspace {L*~9: t~C~(G)} by 

~(v~)  = f z (2 ) (~ ( f )  h~, .~(~)h~) d~(O. 

To prove that a~ extends to a distribution, by the Hahn--Banach Theorem it suffices 
to prove the crucial estimate 

(9.7) ]a~(U~/,)[ ~ C~,z]{Lt~I[,.N 

for some constant C~, s and some k, N ~ 0 .  
We shall eompare Zf~(L~)  with Z'f~(~). First observe that 

(9.8) ~t (U 4/) h~ = ~e (4/) ~, (L) h, = nr (~) m, (#) h,. 

By (9.5) and (9,8), 

(9 9) zL(~) = f z(Z)(=,if) ha, rt (~) h,) d# ([). 
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Now suppose z=zlz~z3 with 

(9.10) zj = rce(Zj) , j = 1, 2, 3. 

Applying Schwartz' inequality to (9.9) we obtain 

(911) IzA( ,)t <- { f  fine(f) h~,ll ~ d#(to)} 1/2 

{ f  izl(2)l  iz (2)l  iz3(2)l  o 

The first factor on the right hand side is just 11 f=ll, where II [I denotes the L 2 norm 
in G. In order to estimate the second factor we need the following. 

(9.12) Lemma. For any N' ,  there exist N, k and polynomials z3(2 ) and z~(2) 
such that 

sup (1 + I~'1) N' ILzl (2) z3(2) 7r+ (0) h=il 

<= C, sup {(1 + g )2N [Dip (I rn, (t ~ zl (2) z; (2) n+ (~) h~ I IZ)]}l/~. 
I#[~_k 

The proof of this lemma, which requires some estimates of H6rmander and 
Lojasiewicz, will be given in w 10. Assuming Lemma 9.12, we now complete the 
proof of  Theorem 9.2. Write Z = Z a Z 2 Z z ,  with Zj  defined by (9.10). Choose 
a polynomial z1(2 ) as in Proposition 8.1. Next choose N" and z2(2 ) so that 

(9.13) f (1 + lel~) N' Iz~(2)l ~ d~ (,~) < ~o, 

which is possible by Proposition 5.6. Then for any choice of z3(2), by (9.13), 

(9.14) Icr= ( t '  ~)1 <-- C~;j, sup {(1 -t-Itole) N" Ilza (2)zz~2) n+ (~')h=lJ 2 

�9 f ( 1  + lele)-N' Iz~ (2)le d# (t)} ~/2 

<-- C~f sup {(1 + I~1~) ~' Ilz~ (2) z~(2) ~b(O) h~l]2} ~/2. 

Finally, choose z3(2) to satisfy Lemma 9.12. Then (9.14) gives 

(9.15) [~(L~,)[ _--< C~','y C~ sup {(1 +lE}~)NIDtJellzl(2)rn~,(f)z~(2)rce(r 

=< C~;'I C ~ sup {(1 + l/l) 2N NID~e ll z, (2) re+ (Zg ~ U O) h, ll 2I}1/~' 
since 

m: (to) :~ (2) ~ (~) h, = .+ (z~ ~z/~,) h~. 

(Here z~---ze(Z~).) Now apply Proposition 8.1 to the right hand side of  (9.15). 
Then the proof of theorem 9.5 is complete, modulo Lemma 9.12. 



162 Linda Preiss Rothschild 

10. Application of the estimates of H~rmander--Lo]asiewicz 

In order to apply the estimates of  H6rmander [14] and Lojasiewicz [21] involving 
the division of distributions by polynomials for the proof  of Lemma 9.12 we must 
replace m~(g) by a polynomial. This is accomplished by the following. 

(10.1) Lemma. Suppose m~(g) does not vanish identically on any component ~j 
of the regular set. Then there is a non-zero polynomial q~(f) such that 

= q (O/s (O on %, 

where s~ is a function with the following property: for each k, there is a polynomial 
z~(2) and an integer N">O such that 

(10.2) sup [h](z4(2)s~(d))l <- C(1 + Idl) N" 
[pl~_k 

for all d. 

Proof. Let /ri0.), ir2(2) . . . .  , irm(2) be the distinct eigenvalues of the matrix 
S(2) on ~J. By the implicit function theorem it is not hard to show that the rk(,~. ) 
are analytic functions on ~J. Then there are constants CR (ct) such that 

(10.3) m~(d) = ~,,-2a42 -~m - ~ j = l  J--~k=llrk(2)[ Ck(~)+i ~=xC~2q" 

N o w  let P(m) be the set of all permutations on {1, 2 . . . .  , m}. If  zCP(m), then 
z=(za,z2,  ...,Zm) with l=<zi=<m, and we put 

= m 

- -  ~ - ~ j = l  J ,~.dk=X = 

Then each m~ is an analytic function on ~'j, and one may assume the Ck(cO have 
been chosen so that 

~,(r)  = m~ o(E) on % 

for some z0. (For this one must take the coefficient in (10.3) to be zero for one of  
each pair of  conjugate roots.) Now let Kj be the cardinality of  P~= {,~P(m): m~(d) 
does not vanish identically on cgj}, i.e. K j =  [Pg[. Define a symmetric polynomial 
q~ in the roots of  S(2) by 

(10.4) q~ = Z I p  J [ = K )  lI.tEpim~(~). 
P,3cP(rn) 

Hence q~(f) is actually a polynomial in d. Furthermore, 

qJs = / -Zevg m~(d) on c~j, 

since all the other terms must vanish on c~j, by definition of  K j. Furthermore, q~ 
does not vanish identically on c~j since each m~ is analytic and not identically zero 
if .rEPJo. Furthermore, since, by assumption, m~ ~ does not vanish identically on c~j, 
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roEPo j, and 
m~(O J " 

~ ~ ~0 

If  z4(2) is a sufficiently high power of a polynomial vanishing off the regular set, 
it is clear that 

s~ = / L  c P~ m~ (~) 
�9 ~: 1:0 

satisfies (10.2) for some C, N". 
We now apply Lemma 10.1 and the estimates of  [14] and [21] to prove the fol- 

lowing. 

(10.5) Lemma. There are polynomials z5(2 ) and z~(2), vanishing off the regular 
set, and positive integers k, N' , for any given N, such that if X(f)EC k, 

sup (1 +/I)~NIzs(2)Z(E)I =< C, sup (1 +//)2N' ID~(m~(E)zg(2)z(g))I 
g E ~ 3 d (z ~'j  

[ f l iCk 

for any component cgj. 

Proof. For any j, put 

zs(t) = {z~) E~% 

Then one may choose z~(2), vanishing of order at least k off thc regular set, so that 
z~(2)Xj(d)EC k. If q=J(~) is the polynomial of Lemma 10.1, then by [14, formula 
(4.3)], applied to the polynomial (qS(f)z4(2))2, 

(10.6) sup (1 + [El) 2N [z~ (2) Zj (d)l 

<= C" sup (1 +/[)2N"ID ~D~ ((q~ (g))2 (z, (2)) ~ zg (2) Z# (2)) I 

for some N " > 0 ,  where z 4 is the polynomial of  Lemma 10.1. Now 

(10.7) (q~(Q)2z](2)z](2)gj(Y) = m ~ ( E ) 2 ( s J ~ ( v t ) z 4 ( f ) ) 2 z ] ( 2 ) Z j ( f l )  

since q~(g)=m,(E)s~(g) on ~j ,  and both sides vanish off ~j .  Hence the lemma 
follows by 10.2, with ' J z =q,(f)z4(2)zs(2). 

We may now complete the proof  of  Lemma 9.12. First choose any polynomial 
z6 (2) as in Proposition 8.1 so that I[ze (2)rot (~)h~[[2 has k continuous derivatives in d, 
and put 

z ( O  -- Ilz~(2) ~ (~) h~ll2. 
By Lemma 10.5, 

sup (1 + / l )  2N IIz5 00 z6(2)roe (~,) h~ll 2 

_-< C~ sup (1 + / I )  2N' IDa (}lm~(E)z~(2)z~(2)zre(~,)h,]12)I 
IBl-~k 

from which Lemma 9.12 follows for z3=z'sz e by taking square roots. 
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11. Polar coordinates in s o  (n), the set of  all skew symmetric matrices 

In order to prove our main result, the case where (5 is the free Lie algebra of 
step 2, we introduce a change of  coordinates in so (n), n = 2d, which may be identified 
with I~i~ by 

~c (5~ ~ (i [xj, X~l)~ so(n), 

which is 1 - 1 and onto since (5 is free. It will be convenient to note that so (n) has 
a natural inner product, given by 

(1 1.1) (A, B) = tr (AB*), 

where tr denotes trace. Now for any 20~(5 ~ there is a matrix 

(1 1.2) A(O) = diag - 02 0 . . . . .  
I ' -- @a 

which is conjugate to 20 via a unitary matrix. Let 1I be the subalgebra of  so(n) 
consisting of all matrices of the form (11.2) and 91 the orthogonal complement of 
1~ in so(n) under the pairing (11.1). Then 

(11.3) dim91 = d i m s o ( n ) - d i m ~  = n ( n - 1 ) / 2 - n / 2  = n~/2-n.  

Choose a basis {Ij} of  91. I f  co~ 91 there is a mapping of  a neighborhood of co o 
into SO (n), the connected group corresponding to so(n), given by 

co ~ K(co) = rrn~/2-n EX ": ilj=i pcojPS 

if c o = ~ c o j I  j. The tangent space to the image may be identified with 91. Now 
define � 9  11X 91~ so (n) by 

(4, co) = K(@ A (4) K(co)-l. 

(11.4) Theorem. @ is a local isomorphism in a neighborhood of(co ~ 4 ~  @ (0 ~ coo) 
is regular. More precisely, det d@ is a symmetric polynomial in the 4j which vanishes 
only i f  the eigenvalues o f  A (4 ~ are not all distinct. Hence 

(11.5) d e t d ~  = q(2), 

where q(2) is polynomial which does not vanish on the regular set. 

Proof. Since the Qi are the roots of the characterisnc polynomial of S(~.), 
the last statement of the theorem will follow from the rest. The theorem will be 
proved by calculating det d~.  

We follow a similar calculation by Helgason [1 1, Chapter VII, Proposition 3.1]. 
Let M be the connected component of the centralizer of lI in SO (n) i.e. the set 
of  matrices y for which y A y - i = A  for all AE1L Let t (y):  S O ( n ) / M ~ S O ( n ) / M  
be defined by 

t ( y ) (xM)  = yxM.  
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For  any yCSO(n), Y6so(n), let A d y .  Y = y Y y - L  Now since the map K: Tt-~ 
SO (n) is a local isomorphism of  a neighborhood of 0 in Tt onto an open neighborhood 
in SO (n)/M, it suffices to consider 4~ as the mapping 

~: SO(n)/MXg~ ~ so(n) 

given by ~(yM,  A)~yAy  -1. (Since M centralizes .4 this is well defined.) 
Now suppose (yoM,.4(~o))CSO(n)/MXII with A0=.4(e0) regular. I f  B runs 

through Tt and A runs through lI, 

(dt(yo)B, A) 

runs through the tangent space of  SO(n)/MXll  at (yoM, Ao). By definition, 

�9 (yoM, Ao+sA) = Ady0(A0+sA), sER. 
Hence 

d~(yo~t, ao ) ( dt(yo) B , A) ~ Ad y0([B, Ao] + A). 

Using the given basis for !R we may calculate det Ad y0([B, .40] +A) = d e t  ([B, A0] +A) 
explicitly. First, since [!II, .40]c ~ and l I + g t  is a direct sum, det d ~  is the product 
of  the determinant of the mappings, d t ( y o ) ! R ~  given by dt(yo)B-~[B, .40] and 
l I ~ l I  given by the identity. The determinant of the second mapping is one, while 
the determinant of  the first is an easy calculation. This completes the proof  of  Theo- 
rem (11.4). 

12. Distribution solutions of  La = Z f  on free groups 

By Theorem 9.2, for a given multi-index ct, there is a global distribution tr~ with 

La~ = Zf~ 

provided that m~ is not identically zero on any open set. In specific cases, where 
more information is known about the functions m~([), we shall be able to solve the 

equation La= Zf. 

(12.1) Theorem. Let ffi be free on n generators, X1, )(2 . . . .  ,Xn, with n even, n > 2  
and put L=~X~.  +i ~l~_Zk~_najk[Xj, Xk] where the ajk are real constants. Then 
there exists Z~ U(ffi2) such that 

(12.2) L~ = Z f  

has a global distribution solution for any fC Co(G). 

Remark. The restriction n > 2  cannot be removed, since the theorem is false 
if ~ is the Heisenberg algebra. The conditions n even and ajk real are not essential, 
but  are merely reductions to the crucial case. (See Theorems (13.1) and (13.8)). 
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The proof  of  Theorem 12.1 will be given in two parts. First we show that (9.4) 
is satisfied for all multi-indices ~. 

(12.3) Lemma. I f  ffi is free on n > 2  generators, m,(f) does not vanish on any 
component of the regular set. 

Proof. Let G = ( 0 ,  '~0) where 2 o is the linear functional determined by 

~o([Xl, x.]) = ,h ~ o 

,z0([xl, x~]) = ~. ~ 0 

~0([x., x3]) = 0 

and Xo([Xj, XJ)=0 ifj or k is greater than 3. Now if c6 is any component of the 
regular set, then there is a point of the form 2o in its closure, where 21, and 22 are 
so chosen that 

m~(do) = (2~1+ 1) I / 2T~-2a l s~ l - -2a132~  # 0. 

(12.4) Corollary. For every multi-index ~, the estimates of  Lemma 9.12 hold for 
some polynomials z3(2) and z'8(~ ). 

We now come to the main part of  the proof  of Theorem 12.1. In order 
to prove the existence of  a solution ~ for (12.2), it suffices to prove that Lemma 9.12 
holds with C=, z3(2) and z'3(1 ) all independent of c~. We divide the multi-indices 
into two groups. Let 

~r {cr sup (20q+l) -<_ nZ.i, klO~jk[}, 

and let d~, be the complement of  all .  Since d l  is a finite set, Lemma 9.12 is true 
with C~, N and k all independent of  ~. By applying Proposition 7.1 as in Sections 
10 and 11 and summing over ~ (which is possible by (7.3)) it suffices to prove 

(12.5) Proposition. There exist polynomials z(~) and z'(2) and an integer N" 
such that 

(12.6) sup Iz2(;t)Z(2)} <= C sup (l+ldl~)~'D~(m~(A)(z'(A))~Z(2)), 

for all Z~ C2( so (n)), the space of  twice differentiable functions, and all multi-indices 
~ ~ .  

(Cf. Lemma 10.5.) Note that in the case of  a free algebra, there is no ~-component 
if d is regular and hence d=2 .  

The proof  is roughly based on the fact that if cr162 then m~ is locally a linear 
function in one of  its variables. Then we shall show that it is possible to divide 
by the square of this function. For  this, we shall follow the arguments in Schwartz 



Local solvability of second order differential operators on nilpotent Lie groups 167 

[31, Chapitre IV, w 5]. Complications arise in this case because of our need to change 
variables to obtain a linear function. 

The division will be based on the following elementary estimate. 

(12.7) Lemma. Let 6 > 0  be given. Then there exists a constant Co>0 such 
that for all functions gECk(R) and any real constants a and b with ]a]~3, 

(12.8) sup lg(t)l <= C~sup { dT# (at +b)~g(t)l 
t E R  k~_2 1 [ 

t E R  

Proof. An elementary argument using Taylor's formula for xZh(x) shows that 

(12.9) sup Ih(y)l <- sup x2h(x 
yER k~_g 

all hE C2(R). 
Now (12.8) follows from (12.9) by (using the change of variables y=at+b. 
We may now prove Proposition 12.5. Suppose ~E~r is fixed. Then 2 ~ i + 1 >  

n~j,k  ]aj~l for some i, and we may as well assume i=1.  Let �9 be the polar coor- 
dinates introduced in w 11. Then 

(12.10) rn~ (~b (0, co)) = -- • 0j (2~j + 1) + Z zk (co) Q~ 

for some real-valued functions %. Now fix co, 02, 0a . . . . .  On and let ~1 vary. Since 

rn,(~ (~, co)) = - 01[(2~1 + 1)--xal-- Z j~2  0j [(2~j + 1)--'rjl, 

(12.11) m=(~(0, co)) = aol+b, 

where a=(2=1+1)+~ 1 and b=-~j~20~(2~j+l -z j ) .  Furthermore, since = C ~ ,  
1,1=~3>0, 6 constant. Hence we may apply (12.9) to  the function h i ( 0 0 =  
h ( 0 1 ,  ~2, . . . ,  0d, 0)). 

Finally, suppose )c~Ck(so(n)). Then )~=Xoq~CCk(lI• Le tp (2 )be  the sym- 
metric polynomial defined by 

a 2~ P(~) =//j=l 0j(). 

Since p 00 is a symmetric polynomial in 2 which vanishes at any 0j =0,  p(2) vanishes 
to order at least 2 on the set where any Qj=0. Now for ~o~C~(so(n)), let 
~EC~(II• defined by q3(O, ~o)=q~(~(0 , ~o)) and ~1: R-~C defined by 

~ ( t ,  e2 . . . . .  Ca, a0 if t=>0 
~l(t) = [0 otherwise. 

Clearly 

(12.12) sup [~l(t)[ = sup [~o(2)[, 
t ~ R Z E so(n) 

Og, 03,..., Qd, o~ fixed 
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since any 2 can be written as 2---O(~i, ~ . . . .  ,0d, CO) with ~1=~0. We shall show 
that there exists an integer N" and a polynomial w(2) such that for all (pEC2(so(n)), 

(12.13) sup d--~-k k [ (w~o); (t) <= c" sup (1+ 1~191 ~' ID~(~o)(~))l 
t E R  t t t  /1_~2 
k~_2 2 = r  

Q2, Qa, ' " ,  0d,  to fixed 

Now suppose (12.13) is proved. We shall obtain (12.6). For this, choose s even 
and large enough so that psQk 1 and psOklQk~ are in C~(so(n)) for all kl,  ks and satisfy 

(12.14) sup ID{(fql(Q)){ <= Cq~(1 +I).[2)N1 

for any polynomial qj(r of degree less than or equal to two. Then let z (2 )=  
pS (2) co (A). By (12.8) applied to the function g( t )=(~) ( t ) ,  

(12.15) sup [ 5 ~ ( t ) l  =< C~ sup (m~z~z)2(t 
t E R  k~_2 

t E R  

for all zEC2(so(n)). By (12.15) and (12.12) we have 

(12.16) sup [z~z(2)I "----- sup 12~.1(t)[ <= C~ sup (m~z2z)2(t) 
,Zfz so(n) tER k~_2 - ' ~  

2 = r  t E R  
02, 03, ""~ 0d, tO fixed 

Now put (p=p'(2)m2(2)Z(2), and apply (12.13) to the right hand side of  (12.16). 
Then 

(12.17) sup fw2()Orn~2)~(t) <= C' sup 1(l+1212)~'D~(fm~z)(2)l, 
t E R  [fl[~_'~ 
k ~  2 ~ = r  to) 

02, Q3, . . . ,  0d,  to fixed 

Hence (12.6) will follow immediately from (12.16) & (12.17), since p~m~ EC2(so(n)). 
We still must prove (12.13). By direct calculation, for t>0 ,  in any local coor- 

dinate system 

(12.18) --~(w~o);  = wq~ = Z o ~  o,~ (w~0)(x) 

~= Z~,~ -yf(~ ~ ~ (w~) 

+ x~ 102~ 0 w 02~ 

By Theorem 11.4, there exists (71 so that 

02~ 
!-~-~o~ ! ~= c l ,  
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all k, uniformly in 2. Also, d~-~=(d~0) -~ is a polynomial in the coefficients of 
d~  divided by det d~. Hence one may choose w(2), divisible by a power of  the 

I o 
poIynomial q (2)=de t  d~  as well as by a power of  p(~) ,  so that ~ [ tao )) I 
is bounded by a con.stant plus a power of  I2I. Then (12.13) follows from (12.18). 

Now the proof  of Proposition 12.5, and hence of  Theorem 12.1, is complete. 

13. Solvability of L a  = Z f  on other nilpotent groups 

In other situations in which one has good control over m~(f), it may be possible 
to prove solvability. 

(13.1) Theorem. I f  dim ffi is odd, or, more generally, if det 2([Xj, Xk])=0 for 
all linear functions ,~ on ~2, then there exists ZE ~(ff)), the center of ~l((5), such that 

La = Z f  

has a distribution solution a for all fECo(G), where L=~ '~ .=1X~+iZ~=I  aqTq. 
The hypotheses of the theorem imply for all f regular, 

m~(~)  = ~ . - 2 ~ 2  - - - ~ k = 1 % k - - Z  [0j[ ( 2 ~ j + l ) - - ~ ,  aq2q 

with n - 2 d > 0 .  We will proceed by proving an analogue of Lemma 13.7, with Z 
determined by the following. 

(13.2) Proposition. There exists ZE~(ffJ) the center of O, and polynomials 
p(2) and q(2), with q(2)_->O, such that for all regular f = ( 2 ,  ~) 

(13.3) 1r~(Z 0 = iq(2)l/2p(2) ~ .  

Proof. By Proposition 5.6, we may choose W~ so that there are polynomials 
p(2) and q(2) so that 

(13.4) p (2) Wk = ( ~ = 1  Pk (2) XR)/( q (2)) 1/~, 

where PR (2) iS a polynomial for all k. Now put 

Zt = .~ Pk(-- iT) Xg 
T=( / ' I ,  T2, ..., T,). Then 

7el(Z1) = Zk=lTZt,(pk( - iT))~ze(Xk) = Z k = i  pk(/~) 7Zg'(X'k). 

Now by (13.4) 
p(2) ir = (Z~=I pk(2) ne(Xk))/q(2) ~/2. 

Hence 
nt (Z~) = iq (2) ~/2 p (2) r 
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which proves (13.3). Finally since ~r (Z0 is a scalar operator for almost all irreducible 
unitary representations zc of G, it lbllows that Z lq~(N) .  (Of course this could 
also be proved directly by showing that zte([Zx, X~])=0 for all k.) This completes 
the proof of Proposition 13.2. The analogue of Proposition 12.5 is the following. 

(13.5) Lemma. Let Z1 be as in Proposition 13.2. Then there exists an integer 
N such that 

supln~(Z~)z(g)l ~ C sup (I+[~[+IRI) N m~(Y)zZ(r , 
g O~j~2 

for all ~ C z. 

Proof. Write m~(~) as 

where 

with 

m,(e) = -r  k, 

k = k ( ~ , ~ ' , 2 ) =  5,.-2d 2 d 2 "~ 

{'=({~, r . . . .  , r Consider first the case where k>0.  Then 

lTre(Z~)z(:)l = Iq2(2)pa(2)~Z([)} ~ C1(1 +l).l)~]l-~-kl2z(r 
with C1 independent of E, if N is sufficiently large. Next suppose k < 0  and put 

Y = 1/-~-k. Then 
m~(e) = -(~l+~)(~l-7)-  

Suppose firstthat 41>0. Then 1~11=<1-~1-71, so that 

(13.6) [Trr(Z~)z([)[ = Iqe(2)p4(2)~X(g)[ ~ G(l+i2[)Nl(--~l--7)2~(g)J. 

Suppose now that one can prove that there exists C~>0, independent of 7, such that 

] 02 ~l+~)~g(~)) 
(13.7) sup [g(g)l ~-- C2 sup - ~  ( ( -  

for all gCC z. Now let g([)=(1 +I21)NI(--~--?)2~Z(~)[. Then by (13.6 and (13.7), 

(13.8) sup[Tc~(Z~)z(f)l<=C~sup I O~((I+]2I)N(--~a--T)2~(--~I+?)~Z(s 
~1_~0 ~ 0  

if r This proves (13.5) for ~1>0, modulo (13.7). The case r  is simi- 
larly proved, since ]~1I~ [ - ~ + ? [  in that case, with (13.7) replaced by 

(13.73 sup Ig(/)l <= c~ sup ( ( - ~ - ~ ) ~ g ( O )  

for all gEC 2, from which we may derive (13.8), but for r  This will prove 
(13.5). 
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It remains to show (13.7) and (13.7"). (13.7) follows from (t2.8). The proof of  
(13.7") is similar. This proves Lemma 13.4. 

The remainder of the proof of Theorem 13.1 is exactly analogous to that of 
Theorem 12.1. 

Finally, for the case where L = ~ . = I  X~+~'~= 1 CqTq with C~ not pure imagi- 
nary, we refer to the following result of P. Lrvy-Bruhl [18, Thror~me 6.1]. 

(13.8) Theorem. I f  Z=d~j:l)l"~qt-d~P=l CqZq, where Re Cq~O for at least 
one index q, then L and L* are both locally solvable. 

Now Theorem 2.2 will follow from Theorems 12.1, 13.1 and 13.8 provided that 
one can show that if there exists zc~e( (5)  such that L a = Z f  has a distribution 
solution for al l  fE Co (G), then L is locally solvable. 

14. Existence of local smooth solutions 

We prove here that the results of w 12 and w 13 imply local solvability. This 
will complete the proof of Theorem 2.2. The methods of this section are completely 
standard. 

(14.1) Proposition. Suppose there exists ZE ~Lr((5), the center of  ~ll(ff)) such that 

(14.2) La  = Z f  

has a distribution solution a for any f 6 C  o. Then for any f~ECo(G ) and any open 
U c  G with compact closure, there is a distribution al satisfying 

(14.3) Lal = f l  in U. 

Proof. Since Z is bi-invariant, it is locally solvable by Rais' theorem [24]. More 
precisely, given flECo(G) there exists f2~C=(G) such that Zfz=f l .  If  f=~0f~, 
where ~0ECo(G ) and (p -- 1 in a neighborhood of U, then the solution a of (14.2) 
also satisfies (14.3). 

The proof of Theorem 2.2 will be completed by a general result which is, no 
doubt, known. 

(14.4) Theorem. The following are equivalent for a left invariant differential 
operator D on a Lie group G. 

(i) There exist neighborhoods U p  V o f  O in G such that 

(14.5) Da = f in V 

has a distribution solution a for every fE C~(U). 
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(ii) There exist neighborhoods U" D V" of  O in G such that (14.5) has a smooth 
solution for every fE C=(U'). 

(iii) There exists a neighborhood V" of 0 and a distribution ,c such that 

Dz = 3 in V", 

i.e. z is a local fundamental solution for D. 

Proof. We follow the method of  Rouvi~re [29], with some modifications. One 
has the obvious implications (iii) implies (ii) implies (i) (by convolution with z), 
so it suffices to prove (i) implies (iii). First if (14.5) is solvable for all f E C o ( U  ) 
and the closure of  U is compact, then it is also solvable for all f with k continuous 
derivatives in U, for some k. Indeed the solvability of  (14.5) implies that the bilinear 
form 

(f,, v) = f fv dg 

is separately continuous on C~(U)•  Co (V). Here one takes the usual topology 
for C~(U) and the least fine topology which makes the mapping v ~ D ' v  contin- 
uous from C~(U) to C~(U). By the Banach---Steinhaus theorem since U has 
compact closure, 

(14.6) (f ,  v) <= C sup ID=I] sup tDr 

for  some k, k'. The inequality (14.6) then extends to all fECk(U) and by the H ah n - -  
Banach theorem there exists a distribution o- on U such that D~r =f.  

Next, by Sobolev's lemma, there exists K > 0  such that L~(U)cCk(U) ,  where 
L~ is the space all functions on U with all derivatives up to order K i n  L2(U). Now 
i f  R1, R2 . . . .  , R s is a basis for the right invariant vector field on G, then E = ~ = I  R~ 
is an elliptic operator which commutes with all left invariant differential operators 
on G and hence with D. I f  J is sufficiently large E J has a fundamental solution 
frEL~(U") for some neighborhood U" of  0, i.e. 

E J f r = 3  in U". 

By the previous remarks, there is a distribution ~ such that 

Da=ft~ in V" 

for some neighborhood V " c  U" of  O. Then 

D(EJ a) = ES Da = 5 in V", 

so z=ESa satisfies (iii). 
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15. An example of an unsolvable L 

In earlier versions of this paper we conjectured that the condition (9.4) is always 
satisfied for all multi-indices e unless 15 is the quotient of a direct sum of Heisen- 
berg algebras by a subspace of 152. (It is easy to check that for such 15 there is an 
'unsolvable L of the form (2.1).) The conjecture is false, as is shown by the follow- 
ing example, the idea for which was given me by Schmuel Friedland. 

First, any 2 step Lie algebra 15=151+152152=[151,152] may be constructed 
as follows. Let V be a subspace of so(n). Then 15=15v has basis X1, X2, ..., X, 
with the relations ~,'i<j aij[Xi, Xj] =0 for every skew symmetric matrix (a~j)C V • 
where Z is false with respect to the inner product A. B = ~  tr (AB). Then any 
SE V defines a linear functional 2~15~ by 2~([X~, Xj])=sij, which is well defined 
by the definition of the linear relations in 152. Conversely, all of 15~ is obtained 
in this way. 

(15.1) Proposition. Let 15v be the 2-step Lie algebra constructed as above with iOlloOl iol ol 
n=4  and V spanned by A=- --1 1 and B= 0 1 . Then the 

[ 0 1--2 0J ~ 0 --1 / 0 ) 
operator L=X~+Xg+X2a +X~-i[X1,X2]- i[X3,  X~] does not satisfy (9 .4)for  
e=(1,  1) and is hence unsolvable. However, 15 is not the quotient of  a product algebra 
15'=15;+151 Heisenberg algebras by a subspace of  (52" 

Proof. Let 2=2a, a+a~B. Then a direct calculation shows that the matrix 
(2([Xi, Xj])) =21A +2~B has eigenvalues 

-[- i ~ l  = ( ~ 3 i~ 1 - -  ] / - -  7212 - -  2~) /2  
(16.2) 

-t- iQ2 =( •  1/--72~-2~)/2 

in the open set where 122I< 1/221. Then in that set - ( ~ 1 + p ~ ) ~ - 3 2 ,  and 
-i2(i[X1, X2]+i[X3, Xj)=s12+s3~=321. Hence (9.4) is not satisfied for c~=(1, 1). 
By [2, Theorem 5], L is unsolvable. 

Now if 15 were the quotient of a direct sum of Hersenberg algebras, it would 
have to be the quotient of a product of two three-dimensional Heisenberg algebras. 
Since dim 152=2, 15 would itself be a direct sum of these algebras. In this case 
the eigenvalues of the matrix (2[Xi, Xj]) would be linear functions in 2~ and 2~, 
which they are not. 
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16. Open problems 

The  local  so lvabi l i ty  results  p roved  here are unfor tuna te ly  incomple te  even 

for  ope ra to r s  o f  the  fo rm (1.1) on two-s tep  n i lpo ten t  Lie groups.  In  view o f  more  

recent  results  ([18], [19], [20], [27]), i t  is l ikely tha t  these can be solved by  s impler  

me thods  than  those  employed  here. One reasonable  conjecture  is the  fo l lowing:  

Conjecture: An operator o f  the f o r m  (1.1) & locally solvable on a two-step nil- 

potent  Lie  group ~ and only i f  m~(~) does not vanish identically on any component o f  

the regular set, f o r  every multi-index or. (See T h e o r e m  9.2.) 

The  necessi ty o f  the cond i t ion  on the m~ (~) has  recent ly  been p roved  by  L. Cur-  

win a n d  the a u t h o r  [2]. 

I t  wou ld  also be interest ing to  extend these results  to more  genera l  opera to r s ,  

more  genera l  groups ,  o r  even opera to r s  cons t ruc ted  f rom more  a rb i t r a ry  vec tor  

fields. 
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