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1. Introduction

The main objective of this work is to establish sufficient conditions for the
local solvability of certain left invariant differential operators on a nilpotent Lie
group G. The operators to be considered are of the form

(1-1) L= Zz‘,k aijij'f'Zp,q‘Cp,q Xpinl

where {X} is a set of generators for the Lie algebra ® of G, (a;,) is a positive definite
quadratic form, and each C,, is a complex constant. If the C,, are all real, Hérman-
der’s criterion [16] implies that L is hypoelliptic and locally solvable. However, if
the C,, are imaginary both hypoellipticity and local solvability may fail as happens
for instance when G is the Heisenberg group. Nevertheless, we will show that for
many interesting classes of groups, all operators of the form (1.1) are locally solvable,
even when not hypoelliptic.

This investigation has its origin in the author’s attempt to understand the signifi-
cance of the criterion for solvability of the Lewy equation, as well as the associated
boundary Laplacian equation, given by Greiner, Kohn, and Stein [7]. (Similar
results had previously been obtained in a different context by Sato, Kawai, and
Kashiwara [30].) In [7], ® is the Heisenberg algebra, say of dimension three, and
L=X}+XZ+i[X,, X,]. Among other results it is proved that the equation Lu=f,
f smooth, has a local smooth solution u at X, if and only if the orthogonal projec-
tion of f onto the L? kernel of L is real analytic near x,. This result suggests a close
relationship between the existence of a nontrivial global L? kernel for Lf and the
local nonsolvability of L (see [2]).

Any unitary irreducible representation = of G acting on a Hilbert space #
determines a corresponding representation, again denoted n of ® on #; hence
(L) is also defined as an operator on #. For the Heisenberg group, the existence



146 Linda Preiss Rothschild

of a nontrivial L? kernel for L is equivalent to n(L) having a zero eigenvalue for
any infinite dimensional irreducible representation #. For many other classes of
nilpotent Lie algebras, such as the “free” ones of step two with more than two
generators the situation is different. For such it may happen that (L) has zero
eigenvalues for many values of 7, but not for all = in an open set of the parametrizing
space for the representations. Thus we are led to a more careful study of the eigen-
values of n(L) as 7 varies.

Our general approach to proving local solvability for operators of the form (1.1)
may be described roughly as follows. Given fcCy(G), decompose =n(f)=
f f(g)n(g)dg into its action on the eigenspaces of n(L). As 7 varies over most
representations the eigenvalues of n(L) are almost algebraic functions of the para-
metrization of the representations. If fis regarded as a distribution, one may hope
to divide each component of f in the above decomposition by the corresponding
cigenvalue of n( f), using the division of distributions of Hérmander [14] and Loja-
siewicz [21]. This process is accomplished by making estimates using the Plancherel
formula for G.

In [5] Folland and Stein proved, for operators L of the form (1.1) on the Heisen-
berg group, that the injectivity of = (L) for all non-trivial irreducible representations
= implies hypoellipticity and local solvability of L. Later Rockland [25] generalized
this result to left invariant differential operators on the Heisenberg group homo-
geneous under automorphic dilations. His methods involve use of the explicit
Plancherel formula. Rockland conjectured that for a general graded nilpotent Lie
group G and a homogeneous left invariant L on G, injectivity of (L) for all non-
trivial irreducible representations implies that L is hypoelliptic. This conjecture was
recently proved by Helffer and Nourrigat [10].

The idea of relating the injectivity of transformed differential operators to the
hypoellipticity of the operators goes back to GruSin [8]. In this work a notion of
homogeneity is defined for a class of partial differential operators with polynomial
coefficients which are elliptic away from a submanifold. A partial Fourier trans-
form is taken in certain variables (see § 3) and the original operator is proved to
be hypoelliptic if and only if all the resulting transformed operators are injective
on L2,

In discussing local solvability on Lie groups, one should note that there are
very beautiful, general results for operators which are both left and right invariant,
i.e., those which come from the center of the universal enveloping algebra. The first
such result was obtained by Rais [24], who proved that any bi-invariant differential
operator on a nilpotent group is locally solvable. The same result was then proved
for semi-simple groups by Helgason [12], and for solvable groups by Duflo—Rais [4]
and Rouviére {29]. Then Duflo [3] gave a general proof for any Lie group. One of
our main resuits (see § 13) depends on a very special case of Rais’ Theorem. An
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excellent survey of local solvability of bi-invariant differential operators and related
questions is given in Helgason [11].

This paper is the third revision of a manuscript first circulated in 1978 and
revised in 1979 and 1980. The first two versions contained several serious mathe-
matical errors. After the appearance of the earlier versions some of these results,
as well as related ones, were obtained more simply by Helffer [9], Lévy-Bruhl [18],
[19], [20] as well as the author and Tartakoff [28].

I wish to thank Peter Greiner and E. M. Stein for early discussions on local
solvability, and Lawrence Corwin for help with the second version, especially sec-
tion 5. Also, the idea for the counter-example in § 15 is due to Schmuel Fried-
land. Finally, I am indebted to the referee, who pointed out a large number of
minor mistakes, as well as a small number of major ones.

2. Notation and main results

In what follows & will always denote a two step nilpotent Lic algebra and G
its corresponding simply connected Lie group. We shall assume that & decomposes
as a vector space G=6,+6, with [6,, ;]=6,, and [®,, 6,]=[6,, ©,]=(0).
® carries a natural family of automorphic dilations given by

0 (X)) =35X, If XeB,
and

0,(T) = s*T if Te®,.
These dilations extend in a natural way to % (®), the universal enveloping algebra
of ®, which may be identified with the set of all left invariant differential opera-
tor on G.

A left invariant differential operator D on G is homogeneous of degree d if

8,(D)=s’D. By an appropriate choice of the basis {Xj, ..., X,} of ,, any operator
of the form (1.1) may be written

Q.0 L=27_,X}+2I_,CT,

where {T,, 1=g=p} is a basis of ®,. Then L is homogeneous of degree 2, and
the term >7_, C, T, may well affect the existence and regularity of solutions.
Necessary and sufficient conditions for the hypoellipticity for most operators of
the form (2.1) in terms of the C, were given in [27]. A differential operator D is
locally solvable at a point x, if there exist neighborhoods Vc U of x, such that
for every f smooth in U i.e. f€C=(U), there exists ucC=(V) such that Du=f
is valid in V. For operators of the form (2.1) it can be shown that hypoellipticity
implies local solvability (see [25]), but we shall prove here that L is locally solvable
in many cases even when hypoellipticity fails.
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The main results will be described in terms of classes of groups. ® is a free
algebra on n generators if dim ®;=n and dim ®, is as large as possible, i.c.
dim ®,=n(n—1). This means that the only linear relation among the commutators
is skew symmetry [X;, X,]=~—[X;, X;]. At the other extreme, ® is a Hei-
senberg algebra if dim ,=1 and for any non-zero linear functional 4 on &,,
det (A([X;, X.]))#O0.

Our main results on the local solvability of operators of the form (2.1) may be
summarised as follows.

(2.2) Theorem. Let ® =6, 4+, be a two step graded nilpotent Lie algebra and
L the second order left invariant differential operator on G defined by

L= 2;=1XJ2+ Z:=1C1Tq

with {X;}, {T,} basis of ®, and ®, respectively. Then L is locally solvable in the fol-
lowing cases.

(i) ® is free on n generators, n=2,

(i) For all linear functionals A on ®,, det A([X;, X;])=0; e.g. in particular if
dim G, is odd.

3. Outline of the proofs

To illustrate one of the main techniques without the machinery of group rep-
resentations, we first consider the following example. Suppose

2 32 a 32
— 2 iR _—
D=gatage+tibgtya

for some BER, D acting on R3. D is homogeneous in the sense of Grusin [8]. If
A, & are dual variables to ¢, x,, respectively, then the partial Fourier transform D
with respect to 7 and x, is
32
ox?

D" = —x2 A2 At

After the change of variables u,=|A[''2 x;, for A0, D" becomes

- d? 2)
. = —_ _A_ 2.
(3.1) D" = il [ —ut) i
d2
The operator W_ui has as eigenfunctions the Hermite functions 4, with
eigenvalues —(2u+1) a=0,1,2,.... Hence zero is an eigenvalue of D~ when

A=—1, ¢é=0 and a=0. By Grusin’s criterion D is not hypoelliptic near x,=0.
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Nevertheless, (3.1) may be used to prove that D is locally solvable. Indeed, to

solve
Du=f, feCy
locally, it would suffice to solve

m

(3.2) Du = ';;2{'"‘ 1 fi€Coss
m=0, since (%— Jfi=f has a local solution f1€Cy’.

m

To solve (3.2) we begin by expanding the partial Fourier transform of gt—"' A

in terms of eigenfunctions of D" :

(.3 (Zeh) = mmsi o imin 27 B

Now to solve (3.2), it suffices to divide each term in (3.3) by the eigenvalue
my (4, & of D on h, i.e.
my(4, &) =—1A|Q2a+1)—pir—¢&2
when 2ax-+1=|p|, A™/m,(2, £) is locally bounded, and so the division make sense
in the context of L2 For the finitely many o for which 2a+1=|B|, the division
may still be performed in the sense of distributions. Indeed,

(=AQu+1)—pA—E)(A(2a+1~BA—E2)
14 Qe+ 1)—pA—¢? )

Thus, division of the function (f, k) by m,(4, &) is equivalent to multiplication by
(4|2 +1)— pA— &2 and division by the numerator of m, (4, ), which is a polynomial,
¢,. The multiplication is possible because the power A may be made so large that
the singularity of |A] at A==0 is effectively killed. Finally, division of the resulting
distribution by the polynomial ¢, is possible by the results of Hérmander [14] and
Lojasiewicz [21]. Since the resulting distribution is tempered, the distribution may
be pulled back to ¢, x,, giving a solution of (3.2).

For the operator L of the form (2.1) we use the group Fourier transform rather
than the Euclidean one. We recall some basic facts about harmonic analysis on a
nilpotent group G. For every irreducible unitary representation 7z of G on a Hil-
bert space & and any f€C; there is an operator n(f) on s defined by

n(f) = [fle)n(g) dg,

where dg is the usual Euclidean measure on G (which agrees with the Haar measure).
The Plancherel theorem then states that there is a measure du(n) on the set of all
irreducible unitary representations of G such that

1£12= [ tr (e(Hr(f)*) du@).

My (2y é) =
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Here * denotes the adjoint and tr denotes the trace. (The operator =( f) is always
of trace class.)
Hence f€L2(G) may be identified with the distribution

Y~ [ tr (e@)* () du(w),
where ¥ is the complex conjugate of . Here # =L2(R%) for some d. Now con-
sider the operator n(L), where 7 is identified also with a representation of the Lie
algebra ®. The eigenfunctions of (L) on L2(R?) are the Hermite functions h,=
hal( ¥)---h, (ya) y:€R, with eigenvalues m,(n). Let P, be the orthogonal projec-
tion onto the subspace of L*(R?) spanned by %,.- One may then decompose n{ f) as

34 n(f) ~ Zan(f) P,

and attempt to divide each term by the function m,(n) as before. However, there
are considerably more technical problems in this case. For example, the parameter
space (£, 1) for D™ has a singularity only at A=0, ie. (3.4) is valid whenever
As20. The parametrizing space for the L? decomposition (3.4) has more complicated
singularities. Furthermore, the eigenvalues m,(r) involve not only absolute values
of the main parameters but also eigenvalues of matrices with entries in the main
parameter space. )
One ‘of the main methods of dealing with the singularities involved is to solve

the equation
Lo = Zf,

where Z is a left invariant differential operator which is itself locally solvable and
which has the property that n(Z) is a polynomial in the parameter space which
vanishes to a high power on the singularities. This is a generalization of an idea
used in [25] for the Heisenberg group.

4. Unitary representations of G

We shall calculate (L) for almost all representations # of G. To do this, we
follow the orbit method of Kirillov [17], for those representations needed for the
Plancherel! formuyla [22].

Let ®* be the linear dual of 6. The orbits of * are the sets of the form

{g-4; 8€G)
for /€®*. Here the coadjoint action g-£=Ad*gof is defined by gof(X)=
£(g7 ' X), where g~ '-X=Ad (g Y)X, Ad denoting the adjoint representation.
By the Kirillov theory, the set of all irreducible unitary representations of G is one-
one correspondence with the set of orbits in G*. We shall not discuss the general
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method of assigning a representation to an orbit in &*, but shall restrict the dis-
cussion to those representations occurring in the Plancherel formula.
If /€®*, the radical of £ is defined as

Rad/ = {¥;€6: ¢([Y;,Y]) = 0 for all Ye®).

If £=(¢, 2) with £€ G} and A€ B}, then Rad £ =Rad (0, 1) o 6,. By renumbering the
X;’s if necessary, we may assume that X;, X,, ..., X,, is a basis for the complement
of Rad/ on a Zariski open subset O ®*. Thus det (£([X;, X,]);<; rae0 if
(0, )€0@. We identify 4 with (0, 4) and put 2,=A(T), 1=g=p.

Now if S(A)=(A[X;, X;]), ¢ will be called regular if A€0 and S(2) has the
maximal number of distinct eigenvalues among {S(1"), A’€®;}. If 1 is regular
there is an orthogonal change of basis

(X, o, X} >~ {UL, UL VE, o VE WL, W0}
such that
A([U;}, ViD= 5ijja
where {1ig;};_,,. 4 is the set of non-zero eigenvalues of the matrix S(2),

¢;>0, and
UL, UR) = 2V}, Vi) = AW, Ukl = AW, Vi) = 0.

If &=(&, &, ooy Enmsa)y £;€R, define the linear functional /=(&, 1) by

(4.19) (T =ik,
(4.1i0) cWE) = ig,
(4.1iii) tUH =¢WH =0 allj, k.

It then follows from the general theory that a set of representations associated to
{(&, 1): A0} is sufficient for the Plancherel measure [22].

We now describe the. infinitesimal representation n, of & associated to the
linear functional ¢. n,(®) acting on the Hilbert space L*(RY) is in given as follows,

(4.2) R = o,
@2 VD =idy, 12j=d
(4.2ii) WD) = it

(4.2iv) n(T)=il, l=qg=p.

It will be useful to know 7, on G, also. A linear function ¢=(1, &) is called
regular if A is regular. Now let # regular be fixed and give G the coordinates (u, v, w, t)
determined by
4.3) U, o,w, t) »exp(@-U+v-V+w -W+t-T)
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where u-U= 3 u;Uj;, etc. Then

1/2

4.9 T, (W, u, v, £) h(y) = W HAIHEGTI ) (4 12y,
where ¢'%-u= 3 0}%u;, h¢ L*(R%).
Now let haj (»;) be the j™ Hermite function in the variable y;, and put
he = by (YD 1o () - Boy (V)
for any multi-index a=(oy, &y, ..., &), with each «; a non-negative integer.

(4.5) Proposition. If £=(&, 1), A0, then

" 0* .
46 7el) == SIB - 340 (g3 120G
J
The eigenfunctions for n,(L) are {hy=h, (y1)hy () ... 1, (o)} with eigenvalues
4.7 my(0) == i 38— 3% 0;Qu+D+i 3 CA,

Jor a=(0y, ay, ..., o).

Proof. Since the U}, V}, W} are obtained from the X; by an orthogonal change
of basis,
Zia Xi= S5 UV + S50

The proposition is then immediate from (4.2).

5. A cross-section of generic representations

Each £=(2, )€ G* determines an equivalence class of representations. We shall
make a choice of a representation from each class. Let V—1ry, V—1rs, ..., V—-———lrm,
be the distinct non-zero eigenvalues with positive imaginary part of S(A)=(A[X;, X,])
for A regular. Then m=2d, and r;==tg,, some k. A function of 1 will be called
rational-radical if it is obtained from the r; and the coordinate functions 4, by a
finite sequence of successive operations of forming rational functions and taking
square roots. A function of £=(4, &) is rational-radical if it is a polynomial in ¢
with coefficients which are rational-radical functions of A.

(5.1) Theorem. For each £=(A,&), ACQ there is a choice of an irreducible rep-
resentation n, of ® satisfying the following.
(i) For each X;, {—mn,(X,) is an operator with rational-radical coefficients.

2 —_—
(ii) n,(Z'Xf):-—Z‘f?-}-Zj:l Q; (%E—y?], where +Y —1 ¢; are the (not
J

necessarily distinct) non-zero eigenvalues of S(2).
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Proof. By Section 4, it suffices to find a basis X;(4), X; (1), ..., X, (1) such that
(5.2) Xi() = 2 ap(A) X,

where the aj, are rational-radical functions,

0 o 0 ¢ 0 o4
5 sagorzon-as(® LS 4’ 9o
(53) 205G, K@= diag ||, o0
where diag is the nXn matrix with the indicated 2X2 blocks down the main
diagonal, and

(5.4) SX() =3 X2

For suppose (5.2) and (5.3) are satisfied. Then we may define the representa-
tion 7, by taking
Ul =X5_.(0), j=12,..,d
Vi=X,00), j=1,2,..,4d,
and
WiE=X{,0e(1) k=1,2,...,n—2d,

and defining =, by (4.2i—iv).

We shall need some preliminaries before defining X ; (A). A family 3, of vector
spaces parametrized by A€®; will be called orthonormal rationai-radical if cach
space in 8, has a basis of orthonormal vectors Y;(1), Y,(4), ..., ¥, (1), where
Y, =2 b, (W)X, with b, (1) rational-radical.

(5.5) Lemma. Let 3, be a family of orthonormal rational-radical vector spaces
and ®; an orthonormal rational-radical subfamily preserved by linear operators S,
on the spaces in 8. Then the following subfamilies are again orthonormal rational-
radical:

1) @

(2) ker S,

(3) ker (S53+1p).

Proof. For (1), extend the given orthonormal rational-radical basis of @, to
one for all of 3,. Now the use of Cramer’s rule shows there is an orthonormal
rational-radical basis dual to the given one, from which one can extract a basis of
®;. Next, ker S,=(range S})*, where ¢ denotes transpose. An orthonormal
rational-radical basis for range S is obtained by applying S to the given basis.
Now the proof follows from that of (1). The argument for ker (S2+r2) is the
same.

The idea for the above lemma is essentially contained in a similar result by
Corwin—Greenleaf [1]. We may now complete the proof of Theorem 5.1 by defining
X;(2). Let S, be the transformation defined by S(1).
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By Lemma 5.5 choose an orthonormal rational-radical basis for ker S, and
ker (S;+rf) for all k. Since S(A) is skew symmetric, the spaces are all mutually
orthogonal. If dim ker (S3+r2)>2 for any k we shall choose a particular basis.
For this, let Y;(1)€ker (S3+r7) be an arbitrary element of the basis. Then let @}
be the subfamily spanned by Z,(A)=Y,(1) and Z,(1)=S,Y;(1)/r,. Note that
since S, is skew symmetric

S, Y, (A
(2. 2,0) = (6, 5,1, = (222
=—(Z:(2), Z,(2)).
Therefore (Z,(1), Z,(4))=0. Also,
1S: Y2 (DII? = (S3 Y1 (2), S3 (D) = (= SFY1(A), Y2 (D) = 7,

which shows that the set {Z,(4), Z,(4)} is orthonormal. Now S, preserves
ker (S2+r))nW?# and the above procedure may be repeated. With respect to the
resulting basis S, restricted to ker (S3+rf) has the matrix

g [(0 rk] (0 rk] (0 rk)
1ag -7, 0 \—r, O \—r, 0))°

Now the X;(1) may be taken to be the bases of ker (S;+rf) and ker S;. This
completes the proof of Theorem 5.1.

For fixed 1€0 it will be useful to define coordinates corresponding to the
X’ (A). The following is a consequence of the construction in the proof of Theo-
rem 5.1,

1)

(5.6) Proposition. Let (x,t) and (u,v,w,t) be coordinates for G defined by

(x,t)—exp(x-X+1-T)
and
u,v,w,t) >expu-U+v-V+w-W+t.T),

where x-X=2x;X;, etc, and A€Q is fixed with U=U* V=V* and W=Ww?*
defined by (5.4). Then

u
(5.7 x=RA)|v],
w
and
u
(5.8) v|=R1(A)x,
w

where R(X) and R™1(1) are matrices with rational-radical coefficients.
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A modification of Lemma 5.5 will be needed in § 13.

(5.9) Proposition. One of the W}, say W}, may be chosen so that
Wi =3 g Xil(Z q(DH)'2,

where q, (1) is rational in A.

Proof. Let S, be the linear transformation defined by S(4). Since S has poly-
nomial coefficients in 4, a basis of (S})+ may be chosen with rational coefficients.
(This basis will not be orthonormal, in general.)

6. The Plancherel measure of G

Let 0 ® be the set of all regular elements of & as defined.in § 4. Let Q(¢)
be the polynomial defined by Q(£)=det ([X;, Xili<; 1=20)- C()=Q(4) is a non-
vanishing Ad G*-invariant polynomial on 0.

(6.1) Proposition. The Plancherel measure on O/Ad* G, the set of all orbits
in O is given by
du(t) = r{A) dé dJ,

where r(1) is a rational-radical function, as defined in § 5.

Proof. We write du(f)=r(A, &)dédA and compute r(A, &) by a theorem of
Pukanszky [23, Proposition 3]. For this we identify W} with the dual of &} i.e.
Wi=dty, k=1,2,...,n—2d. Similarly, we identify T, with d,, and X, with dep,,
where {¢,} is a set of linear functionals dual to {X,},.;=,. Then by Pukanszky’s
Theorem, r(A, &) is determined by

QI AT A A X =1 ) [Tis? AWEATP_ AT, A [, X

By Theorem 5.1, we may write W{=X, ,,())=3"_, a124s(A)X,, where each
a, , is rational-radical. Hence r(4,&)=r(4) is also rational-radical.

(6.2) Corollary. There is a polynomial g(1) and an integer N, such that if N=N,
the measure

1+ +1AD-N gD du(¢)
is finite.
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7. Estimates for D% |z, (y) h,|*

We denote by || | the usual Hilbert space norm in L*(R?). We study here
the growth of Df|m,(Y)h,]? for / regular in terms of the Schwartz norms of ¢.
For this we write

ol v = sup (L+|xP412DV2 | DE, 0 (x, 1)
(J]: t)€G
for non-negative integers k, N and ¢€Cy(G). Our main result of this section is
the following, the present formulation of which was suggested by the referee.

(7.1) Proposition. For every multi-index B and positive integer N there is a rational
function qz(i) depending only on B, and integers k' and N’ such that for any
a=(0, %, ..., y) there exists C,=0 satisfying

(7.2) (1+1/] 3 = ClapWIIYilE, »
for all yeC7(G). Furthermore, C, may be chosen, depending on f and N so that
73) Sent Gy =oo.

The main part of the proof of Proposition 7.1 is the following.

(7.4) Lemma. For every multi-index B there is a finite set 9 of differential opera-
tors on G and rational-radical functions ry ;(A), D;€2D, such that for any «,

(7.5) Dh\me () hol12 = D i vg,: (D17 (D) h?
for all regular A and all Y€ C;(G).
Proof. By 4.4 we have for h€L*(R%)
T, h = ft#(x(u, v, w), t)e"(‘f'w““&yzyf"f)k(y+Q”Z~u) dudvdw dt.

(Note that dudvdw=dx, since {U, V, W} are obtained from the {X} by a unitary
transformation.) Now the proof of Lemma 7.4 is straightforward, but tedious.
By dominated convergence we may differentiate under the integrals and for dif-
ferentiation in 4, it suffices to study the effects of the following differentiations:

(1.6) 3:91_ R

(7.7) % g e — [gzk y,0M% 4 389;/2 " ) 102 iy
(7.8) 3(/91. Wy =3, [091/2 g (y+@1’2 u))
(7.9 s ) 1) = 325 (0, w) 5 e, ) ),
(7.10) ﬁﬂwm@%ﬁm
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The contribution of each term above may be absorbed in the right hand side
of (7.5) as follows. The contribution of (7.6) is absorbed in the coefficients of the

00'? . . . .
D/s. For (7.7), note that %— is rational-radical and v;=3 S, (A)X,, with
g
S (4) rational-radical, by (5.8). To deal with the factor y,, write
ykeigllclzyk”k = _1 ___3_ einlclzykbk)’

iQk 3vk
and use integration by parts to put the differentiation on ¥ (x(u, v, w), ). Then

use (5.7) and (5.8) again to write 8% in terms of the 8% The term on the right
k i

in (7.8) is handled similarly, using

oh 9
8_y{(y+e”2‘u) = @éliza—b,k(h(ywmm)),

integration by parts, and (5.7) and (5.8).
For (7.10) we may handle by (5.7) and (5.8) as before. For the term &, we use

0 .
[&, = (&S
i&, D, (")

and integration by parts, then (5.7) and (5.8).
Finally, differentiation in ¢ occurs only in

— (V) = iw eV
3£k ( ) k

and the factor w, is handled like u; or v,. This completes our sketch of the proof
of Lemma 7.4.

(7.11) Lemma. For any even integer N, there exists Cy, such that

L+ (@) )12 = Cy |1 (3 XM 0) by
Jor all @ Cy(G).

Proof. n,((ZX3)"1@)h,=n, (@) ZX;)Nsh,=1,(0)(— So,Qa;+1)— 3 &) ah,.
Since sup; ¢;=C|4|, the lemma follows.

2

(7.12) Lemma. There exists N, such that
[ (@) bl = Co(O)|[7e (5 X3)¥200) 1|
all pcCy(G), with
1
"D e+

where q, (1) is rational and independent of o.

(7.13) C () =
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Proof. As in the proof of Lemma 7.11,

. ﬂ[(l//) 2 N2
b = | s (S X

! A 2N,
= (]L-(lzij:-){))zv,/a H”/((ZX,-) ) by

with ¢;(A)=(]];=, ¢;)"*", which is a polynomial if N,/d is an even integer.
(7.14) Lemma. If N,=0 is sufficiently large, then
(7.15) 7 (@) holl = Cgliello,nss
with Cy, independent of a.
Proof. Tt is well known that
Iz (@) Bl = llol 16y 1 Bll c2emay -

The Lemma follows since [[A,[;.=1 and [¢[11, is bounded by the right hand
side of (7.15).

We may now prove proposition 7.1. By Lemma 7.4, given N, there exist Ny,
a rational-radical function r;, and a finite set & of differential operators with poly-
nomial coefficients such that

(7.16) (112N D2 (@) Bll* = [rg (DI (L +I£1Y ;| (Dip) ho?
Now let ¢;=D;¢p. By Lemma 7.11 the right hand side of (7.16) is bounded by
(7.17) ConIrs W] Sl ((Z X520 1P

= CCO) Irg M Zi|[me ((Z X3 @) b,

for some N,, with C,(¢) satisfying (7.13). Now apply Lemma 7.14 to obtain from
(7.16) and (7.17)

A+ DI m(9) holl* = CC, () g (D] olle, v
for some k and some N;, where ¢,(4) is chosen so that
|92 = max g () 75, i (D).
Now the proposition is proved provided that N, is chosen large enough that

1
T2, Go D)

2’4(
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8. Rapid decrease of £ —||n,(Zy) k|2

The main result of this section is the following easy consequence of Proposi-
tion 7.1.

Proposition 8.1. Let k and N be fixed. Then there exists a polynomial z(3) and
integer k', N’ such that

(8.1) sup {A+1£Y DIz me (W) A = Coll i, we»
z

(8.2) > C, < .

Proof. Choose g,(4) rational as in Proposition 7.1 depending on j, and put
gD =25 =k 95(A*+1. Then g(A)=p,(4)/p:(1), p1, p. polynomials of degrees s,
and s,, respectively. Put z(A)=p,(A)**. Then (1+|/PYDE|z(D)m,(Y)h,|? is a
finite sum of terms of the form (1+[/[HY(pa (DYt Diiin, (W) A, |2 where |y|=
IB|—j. Now apply Proposition 7.1 to k, N,, where N,=N-+kS,/2+5,/2. Then

. 1+1Z|2)N2
R
1
(1+I/|2)N2 A. Yy h 2<C k/ ’ b P el
—p:(T)—pz( YD} 7 (Y) hol|*=C, |Wlly, y- for some k’, N” by Proposition 7.1,
Proposition 8.1 is proved.

Since

9. Solvability of Lo,=Zf,

Recall that if f€L%(G), f has the L? decomposition
fo~2ete

where a runs over all multi-indices a=(a, o, ..., &), ¢;=0, and f, is uniquely
determined by the condition

7, (f) = n, ()P,

for every regular /. Here P, is the orthogonal projection onto the subspace of L?(R%)

spanned by the Hermite function h,=h,,(y,)...h,,(ys). By Proposition 4.3, n,(L)h,=

my(£)h, whete m,(£)=— 2 &i— 23 0;u;+1)+i >, C,A,. We would like to prove:
that Le,=Zf, has a distribution solution ¢, for any f€Cg(G) for some non-zero
ZeU(#,) provided that m,(¢) does not vanish identically on an open set.

(9.1) Example. Suppose # is the three-dimensional Heisenberg algebra, and
L=X2+X}+i[X;, X5]. Then my=—|A]|~A vanishes for all A<0, and Lo,=Zf,
is not solvable for “most” f, if Z>=0. (See [7].)
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Recall that the regular set is the open subset of all (& A)=¢ for which
det A([X;, X;D), 1=/, k=2d, does not vanish and for which the number of distinct
eigenvalues is maximal. The regular set consists of a finite number of connected
components. We now prove the key theorem in solving Lo=f.

(9.2) Theorem. There exists ZcU(F,) such that the equation
9.3 Lo, = Zf,
has a global distribution solution o, whenever f€Cy(G), and
9.4 m,(£) does not vanish on any component
of the regular set.

Proof. Regard Zf, as a tempered distribution, and note that (Zf),=2f,. By
the Plancherel Theorem for G, if Y€ Cy(G),

Zf,(h) = [ tr(m ()7, (Z1) dp(2)
= f tr (ﬂ;(‘p)* ﬂ;(Zf) Pa) du(f)
= [ (me(Zf)hy e () o) du(?),

where (,) denotes the inner product in L2(R%. If z(A) is the polynomial satis-
fying
Z(/l) = nt(zt):

then

9.5) Zf () = f 2D (7 () hos e (P 1) du(?).
Now if o, satisfies (9.3), then

(9.6) o (L) = Lo, (¥) = Zf, ().

Hence g, is determined on the subspace {L*: Y€ Cg(G)} by
o, (LY) = [ 2O (s () yr e (B) 1) dpa(2).

To prove that g, extends to a distribution, by the Hahn—Banach Theorem it suffices
to prove the crucial estimate

) o, (L") = Cy, AL Wi n

for some constant C,  and some k, N=0.
We shall compare Zf, (L) with Z’f, (). First observe that

©9-8) (LYY h, = 7 (W), (L h, = T (W) mo(O) by
By (9.5) and (9.),
(9.9) Zf,) = [ 20 (me(f) b, n(@B) h,) dp(e).
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Now suppose z=z,z,z5 With

(9.10) z;=m,(7), j=1,23
Applying Schwartz’ inequality to (9.9) we obtain
©.11) 1zl = { [ I (f) B2 du@}”
A [ 12D 2O (2D I, ) bl dp} .
The first factor on the right hand side is just | £/, where ||| denotes the L2 norm

in G. In order to estimate the second factor we need the following.

(9.12) Lemma. For any N’, there exist N, k and polynomials z;(%) and z3(A)
such that

sup (1+12D" 120 (2) 25 (D) e (V)
= C, sup {(L+1D™ | DE(Im, (£) 20(A) 25 (D) mp () B[} 2.

B|=k

The proof of this lemma, which requires some estimates of Hormander and
Lojasiewicz, will be given in § 10. Assuming Lemma 9.12, we now complete the
proof of Theorem 9.2. Write Z=Z,7,Z,, with Z; defined by (9.10). Choose
a polynomial z; (1) as in Proposition 8.1. Next choose N’ and z,(4) so that

9.13) S A+ 12@Pdp() <<=,
which is possible by Proposition 5.6. Then for any choice of z3(1), by (9.13),
(9.14) lo (L")} = C2 psup {(1+ 1Y 121 () 2a\ D 7, (Y2
S A+ |z (D dpOP?
= Cpsup {1+ 4V | 20 (D) 2a(D) m (W) B 712
Finally, choose z;(1) to satisfy Lemma 9.12. Then (9.14) gives

9.15) o (LW = € C sup {(1+1£1DY | D} 2D m, (£) 25 () 7, (W) 2|2

‘ = G Cosup {1 +|4D™ N|DE |2, (D 7, (Z5F Lo b |}
since
m, () 25D, (W) by = 7 (Z5" L) by

(Here z;=m,(Z;).) Now apply Proposition 8.1 to the right hand side of (9.15).
Then the proof of theorem 9.5 is complete, modulo Lemma 9.12.
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10. Application of the estimates of Hormander—Lojasiewicz

In order to apply the estimates of Hérmander [14] and Lojasiewicz [21] involving
the division of distributions by polynomials for the proof of Lemma 9.12 we must
replace m,(£) by a polynomial. This is accomplished by the following.

(10.1) Lemma. Suppose m,(¢) does not vanish identically on any component €;
of the regular set. Then there is a non-zero polynomial ql(£) such that

my(¢) = gl(0)/si(t) on €;,

where si is a function with the following property: for each k, there is a polynomial
z,(1) and an integer N”=0 such that

(10.2) li]llspk |DE(zsWsi @) = CA+I£)Y
for all ¢£. B

Proof. Let ir,(2), iry(4), ..., ir,(A) be the distinct eigenvalues of the matrix
S(1) on %’. By the implicit function theorem it is not hard to show that the r, (1)
are analytic functions on /. Then there are constants C, () such that

(10.3) my(¢) = — 371 &= Sr_ InW @ +i 27 Colq-
Now let P(m) be the set of all permutations on {1,2,...,m}. If 7€P(m), then
T=(Ty, Tgy ---» T) With 1=7;=m, and we put

mi(l) = — 37238 — i e D G +i 371 Cody

Then each m, is an analytic function on %;, and one may assume the C,(x) have

been chosen so that
M () = mP(£) on %;

for some 17,. (For this one must take the coefficient in (10.3) to be zero for one of
each pair of conjugate roots.) Now let K be the cardinality of Pi={tc P(m): m.({)
does not vanish identically on %,}, ie. K;=|Pj|. Define a symmetric polynomial
g} in the roots of S(4) by

(10.4) qi= 2\pi=k, Ilccpimi(@).
PicP(m)
Hence g/(¢) is actually a polynomial in £. Furthermore,
qo]; = Uzepg mg(£) on (gja

since all the other terms must vanish on %;, by definition of K’. Furthermore, ¢’
does not vanish identically on %; since each m; is analytic and not identically zero
if t€Pi. Furthermore, since, by assumption, mZ does not vanish identically on %;,
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T0€ Pj, and
m(£) = i) [[ <cpi Mmi(£).

T¥ 1
If z,(A) is a sufficiently high power of a polynomial vanishing off the regular set,
it is clear that
si = [[cpimi(¢)
TFT
satisfies (10.2) for some C, N”. ’

We now apply Lemma 10.1 and the estimates of [14] and [21] to prove the fol-
lowing.

(10.5) Lemma. There are polynomials z (1) and z;(A), vanishing off the regular
set, and positive integers k, N’, for any given N, such that if y(£)€CF,

sup (+IED™ |z (M @) = C, sup (A+I2D)™ | DS (m3(0) 2 1(D)]

J
181=k

Jfor any component €;.

Proof. For any j, put

1) L€%;
1) = ,
0 24%;.

Then one may choose z2(1), vanishing of order at least k off the regular set, so that
z()x;(O)ECE. If gJ(¢) is the polynomial of Lemma 10.1, then by [14, formula
(4.3)], applied to the polynomial (gi(£)z,(2))?,

(10.6) sup (1+1£)™ [22(2) 1, (4)|
= C; sup (L+14)™ | DEDY(4d () (2D 23D 1; (D)
18)=k

for some N” >0, where z, is the polynomial of Lemma 10.1. Now

(10.7) (GO ZED) 2N x;(€) = m(£) (s§(0) 2O (D ;)
since g(£)=m,({)s}(¢) on ¥%;, and both sides vanish off ;. Hence the lemma
follows by 10.2, with z"=qJ(£)z,(%)z5(1).

We may now complete the proof of Lemma 9.12. First choose any polynomial
zg(4) as in Proposition 8.1 so that [z4(4) 7, () A,}?* has k continuous derivatives in 7,
and put

20 = lze(D 7 () 2.

sup (1+ 14D (| 25(A) 26 (D) m () B *

= C, sup (1+[/)™ | D8 (Ilm, (2) 25(2) 26 (W) 7 () PP
|8|=k

By Lemma 10.5,

from which Lemma 9.12 follows for zz;=z;zs by taking square roots.
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11. Polar coordinates in so (1), the set of all skew symmetric matrices

In order to prove our main result, the case where ® is the free Lie algebra of
step 2, we introduce a change of coordinates in so(n), n=2d, which may be identified
with 65 by

167 < (ALX;, Xi])€so(n),
which is 11 and onto since & is free. It will be convenient to note that so () has
a natural inner product, given by

(11.1) (4, B) = tr (AB™),

where tr denotes trace. Now for any 1,€®; there is a matrix

11.2) A(g) = diag [[_OQI %1)’ (_092 Qoz]’”"(—ogd Qod]]

which is conjugate to 4, via a unitary matrix. Let U be the subalgebra of so(n)
consisting of all matrices of the form (11.2) and 9t the orthogonal complement of
1 in so(n) under the pairing (11.1). Then

(11.3) dim N = dimso(n) —dim ¥ = n(n—1)/2—n/2 = n*2—n.

Choose a basis {I;} of N. If w’cN there is a mapping of a neighborhood of w°
into SO(n), the connected group corresponding to so(n), given by

o~ K(w) = ]];.':/f'"Expwjljs

if w=2 w,F. The tangent space to the image may be identified with R. Now
define @: UXN—+s0(n) by

? (0, w) = K(w) 4(0) K(w)™".

(11.4) Theorem. @ is alocal isomorphism in a neighborhood of (w°, ¢%) if P (0%, ©°)
is regular. More precisely, detd® is a symmetric polynomial in the g; which vanishes
only if the eigenvalues of A(@%) are not all distinct. Hence

(11.5) det dd = q(1),

where q(1) is polynomial which does not vanish on the regular set.

Proof. Since the g; are the roots of the characteristic polynomial of S(4),
the last statement of the theorem will follow from the rest. The theorem will be
proved by calculating det d9.

We follow a similar calculation by Helgason [11, Chapter VII, Proposition 3.1].
Let M be the connected component of the centralizer of U in SO(n) i.e. the set
of matrices y for which yAy—1=A4 for all A€U. Let #(y): SOn)/M-SOm)/M
be defined by

t()(xM) = yxM.
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For any y€SO(n), Yeso(n), let Ady-Y=yYy~'. Now since the map K: R—
SO(#n) is a local isomorphism of a neighborhood of 0 in 9t onto an open neighborhood
in SO(n)/M, it suffices to consider @ as the mapping

@: SOM)/M XA — so(n)

given by @(yM, A)—»yAy~1. (Since M centralizes A4 this is well defined.)
Now suppose (voM, A(g0))€ SO ()M XU with A,=A(g,) regular. If B runs
through 9t and A4 runs through I,

(dt(y)) B, 4)
runs through the tangent space of SO(m)/M XU at (y,M, A,). By definition,

(YoM, Ay+s4) = Ad y,(4y+sA4), sER.
Hence
APy, 4p) (d2(yo) B, A) = Ad yo([B, 4ol +4).

Using the given basis for 3t we may calculate det Ad y,([B, 4,] +4)=det ([B, 4,]+4)
explicitly. First, since [R, 4] and W+t is a direct sum, det dP is the product
of the determinant of the mappings, dt(yo)N—~IN given by dt(y,)B—~[B, 4,] and
U—~U given by the identity. The determinant of the second mapping is one, while
the determinant of the first is an easy calculation. This completes the proof of Theo-
rem (11.4).

12. Distribution solutions of Lo =Zf on free groups

By Theorem 9.2, for a given multi-index «, there is a global distribution o, with
Lo, = Zf,

provided that m, is not identically zero on any open set. In specific cases, where
more information is known about the functions m,(¢), we shall be able to solve the
equation Lo=Zf.

(12.1) Theorem. Let ® be free on n generators, Xy, Xs, ... ,X,, with n even, n=>=2
and put L= X341 Zi2; y=n @ulX;, Xi] where the ay are real constants. Then
there exists Zc¢U(®,) such that

(12.2) Lo =Zf
has a global distribution solution for any f€C7(G).

Remark. The restriction n=2 cannot be removed, since the theorem is false
if ® is the Heisenberg algebra. The conditions 7 even and a;, real are not essential,
but are merely reductions to the crucial case. (See Theorems (13.1) and (13.8)).
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The proof of Theorem 12.1 will be given in two parts. First we show that (9.4)
is satisfied for all multi-indices «.

(12.3) Lemma. If ® is free on n>2 generators, m,({) does not vanish on any
component of the regular set.

Progf. Let £,=(0, 4,) where 4, is the linear functional determined by
Ao([X1, Xo]) = 41 # 0
Ao([ X1, Xo]) = 4, % 0
io([Xz’ X:) =0

and A,([X;, X,D=0 if j or k is greater than 3. Now if % is any component of the
regular set, then there is a point of the form 4, in its closure, where 4;, and A, are
so chosen that

m,(£o) = 2oy +1) VAi+ 25 —2a154; —2ay344 5 0.

(12.4) Corollary. For every multi-index o, the estimates of Lemma 9.12 hold for
some polynomials z3(1) and z3(2).

We now come to the main part of the proof of Theorem 12.1. In order
to prove the existence of a solution o for (12.2), it suffices to prove that Lemma 9.12
holds with C,, z;(4) and z;(1) all independent of «. We divide the multi-indices o
into two groups. Let

oy = {a: sup Qoy+1) = n 3 i lol}s
=i=n

and let o7, be the complement of &7,. Since o/ is a finite set, Lemma 9.12 is true
with C,, N and k all independent of «. By applying Proposition 7.1 as in Sections
10 and 11 and summing over « (which is possible by (7.3)) it suffices to prove

(12.5) Proposition. There exist polynomials z(A) and z'(%) and an integer N’
such that

(12.6) sup [22(A) 2 (D] = C sup (1 +|£1)V Di(mi (D) (z" ()2 (D),

1Bl=2
Sor all xeC?(so (n)), the space of twice differentiable functions, and all multi-indices
acL,.

(Cf. Lemma 10.5.) Note that in the case of a free algebra, there is no £-component
if £ is regular and hence £=A.

The proof is roughly based on the fact that if a€.2f,, then m, is locally a linear
function in one of its variables. Then we shall show that it is possible to divide
by the square of this function. For this, we shall follow the arguments in Schwartz
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[31, Chapitre IV, § 5]. Complications arise in this case because of our need to change
variables to obtain a linear function.
The division will be based on the following elementary estimate.

(12.7) Lemma. Let 6=0 be given. Then there exists a constant C;>0 such
that for all functions g€ C*(R) and any real constants a and b with |a|=4,

dk
(12.8) sup|g(®)| = C;sup W(at+b)2g(t)

Proof. An elementary argument using Taylor’s formula for x2A(x) shows that

k
TZ_J (x2h(x))

(12.9) sup |h(y)| = sup
YER k=2

all he C%(R).
Now (12.8) follows from (12.9) by (using the change of variables y=ar+b.
We may now prove Proposition 12.5. Suppose ac.f, is fixed. Then 2o;+1>
n 21 lay) for some i, and we may as well assume i=1. Let @ be the polar coor-
dinates introduced in § 11. Then

(12.10) m,(®(e, w)) =~ 3 0;(2u;+ 1)+ 3 tw) ox

for some real-valued functions 7,. Now fix , ¢,, 03, ..., 02 and let g, vary. Since

ma(¢(9’ o) =—0,[Qey + D =11 — 3 ;20 012 +1)—15],
(12.11) m,(® (g, ®)) = ag,+b,

where a=(Q2u,+1)+1; and b=—3., ¢;(20;+1—1,). Furthermore, since acss,,
le|=0=0, 6 constant. Hence we may apply (12.9) to the function &,(g,)=
h(Qla Q25 «++5 Qg5 Q))
Finally, suppose x€C*(so(n)). Then j=jyo®cC*QUXM). Let p(4) be the sym-
metric polynomial defined by
p() = [*_, 33,

Since p(4) is a symmetric polynomial in A which vanishes at any ¢;=0, p (1) vanishes
to order at least 2 on the set where any ¢;=0. Now for ¢¢ c* (s0 (n)), let
FECHUXN) defined by G(o, w)=¢(P(0, ®)) and $,;: R—~C defined by

~ (t)"“ ¢(t$ Q29-~'a Qd: Cl)) ]f t%O
P =00 otherwise.
Clearly
(12.12) sup[,(1) = sup oA,
téER A€ so(n)
A=d(e, )

€9, 033 -, 04, @ fixed
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since any A can be written as A=®(g;, 03, ..., 04, ®) With ¢, =0. We shall show
that there exists an integer N” and a polynomial w(2) such that for all @€ C?(so(n)),

k
(1219 sl rei0lEC s AP D@ O)
teR =2

k=2 A=d(g,0)
025035 -.+» Qg , @ fixed

Now suppose (12.13) is proved. We shall obtain (12.6). For this, choose s even
and large enough so that p°g,, and p*g; g, are in C2(so(n)) for all k;, k, and satisfy
(12.14) sup (D4 (0° ()] = C,p, (14 [21DM

8l=k

for any polynomial ¢,(g) of degree less than or equal to two. Then let z(1)=
P'(AHw(l). By (12.8) applied to the function g(£)=(£27,)(?),

o dk .
(12.15) sup 1#50 =C, sup —d—lT(mE 22y, (1)
tcR

for all x€C?(so(m)). By (12.15) and (12.12) we have

k
(12.16) sup 22| = sup B0 = Cy sup |~ (m2z2 )5 (1)
A€so(n) teR k=2 dt
A=D(o,w) teR

03103, -0y,  fixed

Now put ¢=p*(A)m2(A) (%), and apply (12.13) to the right hand side of (12.16).
Then

(12.17) sup d — (P w2 m2i) (t)'< c’ |§r}lspz ](1+MIZ)N’D§(psm§x)(A){,

k§2 A= ¢(Q )
@303 ..+, 04, © fixed

Hence (12.6) will follow immediately from (12.16) & (12.17), since p*mZ2 € C%(so(n)).

We still must prove (12.13). By direct calculation, for #=0, in any local coor-
dinate system

(12.18) 2 o] = | 2ea| = 2 22 2 e
= 2 3/;: gil azfj% (ve)
+ 2l Gl )
By Theorem 11.4, there exists C; so that
% =c,
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all k, uniformly in A. Also, d®~1=(d®)~! is a polynomial in the coefficients of
d® divided by det d®. Hence one may choose w(l), divisible by a power of the
polynomial g(l)=det d® as well as by a power of p(l), so that ,})87 lw (—%}]
k 1

is bounded by a copstant plus a power of |A]. Then (12.13) follows from (12.18).
Now the proof of Proposition 12.5, and hence of Theorem 12.1, is complete.

13. Solvability of Lo =Zf on other nilpotent groups

In other situations in which one has good control over m, (¢), it may be possible
to prove solvability.

(13.1) Theorem. If dim & is odd, or, more generally, if det A([X;, X;])=0 for
all linear functions 4. on ®,, then there exists Z€Z(®), the center of U(®), such that

Lo =Zf
has a distribution solution ¢ for all feCy(G), where L=2}'=1 ij—!—i 5:1 a,T,.
The hypotheses of the theorem imply for all ¢ regular,
my(£) =— ZHZ1 8~ 3 lo| Qu+ 1)~ a,2,

with n—2d>0. We will proceed by proving an analogue of Lemma 13.7, with Z
determined by the following.

(13.2) Proposition. There exists Z€Z(®) the center of ®, and polynomials
p(A) and q(1), with q(A)=0, such that for all regular £=(4, &)

(13.3) e (Zy) = ig()" p(D) &

Proof. By Proposition 5.6, we may choose W} so that there are polynomials
p(A) and g(4) so that

(13.4) P = (o1 D X) (g (D),
where p, () is a polynomial for all k. Now put

Z, = 2 pk(—iT)Xk
T=(Ty, T;, .-., Tp). Then

i (Zy) = ZZ=1 n[(pk(_ iT)) T (X)) = Doy Pe(D) o (X).
Now by (13.4)
p(Ai&y = (Zi_y Pe(W) 7 (XD)/ g (D>

m(Zy) = ig(N)'2 p(A) &y

Hence
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which proves (13.3). Finally since 7(Z,) is a scalar operator for almost all irreducible
unitary representations 7 of G, it follows that Z,€Z(®). (Of course this could
also be proved directly by showing that m,([Z,, X;])=0 for all k&) This completes
the proof of Proposition 13.2. The analogue of Proposition 12.5 is the following.

(13.5) Lemma. Let Z, be as in Proposition 13.2. Then there exists an integer
N such that

sup |, (ZD1(A] = C sup (1+IEl+A)" %;(mm(f)ﬁx(f))f,
¢ 0=j=2 3

for all ycC=&

Proof. Write m,(£) as
ma(/) = _—é%—ka
where
k=k( )= ‘“Z?;zzd é%‘2j=1 lé.’j[ (2“1‘"'“1)_"2 aq)’q’

with &'=(&,, &;, ..., &,~04)- Consider first the case where &£>0. Then
[T ZY O] = @D P D E D] = CL A+ |-~k 1 (),

with C; independent of Z, if N is sufficiently large. Next suppose k<O and put
Y= V=k. Then
my(£) = =+ -

Suppose first that & =0. Then |&|=|—& —v|, so that
(13.6)  |m 2Dl =12 P D) &1 = A+ E—p*EE @)

Suppose now that one can prove that there exists C,>0, independent of p, such that

(137) uplg(0] = Cysup | o (— & +96(0)

for all geC2 WNow let g(O)=(1+ADV (=& —1)*EEx(¢)]. Then by (13.6 and (13.7),

(138)  suplme(ZDr)) = Cysup | (A +A (&= 920
gzt 01

&,=0

if &>0. This proves (13.5) for £,=0, modulo (13.7). The case & =0 is simi-
larly proved, since |&]=]|—&;+7y| in that case, with (13.7) replaced by

(13.7) sup [g(0)] = C, sup —g’é—«—érwﬂgw)l

for all geC? from which we may derive (13.8), but for £,=0. This will prove
(13.5).
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It remains to show (13.7) and (13.7"). (13.7) follows from (i2.8). The proof of
(13.7") is similar. This proves Lemma 13.4.

The remainder of the proof of Theorem 13.1 is exactly analogous to that of
Theorem 12.1.

Finally, for the case where L=3"_, X}+>7  C,T, with C, not pure imagi-
nary, we refer to the following result of P. Lévy-Bruhl [18, Théoréme 6.1].

(13.8) Theorem. If L=27_ X}+3"_  C,T,, where Re C,#0 for at least
one index q, then L and L* are both locally solvable.

Now Theorem 2.2 will follow from Theorems 12.1, 13.1 and 13.8 provided that
one can show that if there exists ZC 2 (®) such that Le=2Zf has a distribution
solution for all f€Cy(G), then L is locally solvable.

14. Existence of local smooth solutions

We prove here that the resuits of § 12 and § 13 imply local solvability. This
will complete the proof of Theorem 2.2. The methods of this section are completely
standard.

(14.1) Proposition. Suppose there exists Z¢Z(®), the center of U(®) such that
(14.2) Lo =2Zf

has a distribution solution o for-any fcCg. Then for any f,€Cy(G) and any open
UcC G with compact closure, there is a distribution o, satisfying

(14.3) Lo, =f, in U

Proof. Since Z is bi-invariant, it is locally solvable by Rais’ theorem [24]. More
precisely, given f,€Co(G) there exists f,€ C”(G) such that Zf,=f;. If f=of,,
where € Cy(G) and ¢ =1 in a neighborhood of U, then the solution ¢ of (14.2)
also satisfies (14.3).

The proof of Theorem 2.2 will be completed by a general result which is, no
doubt, known.

(14.4) Theorem. The following are equivalent for a left invariant differential
operator D on a Lie group G.
(1) There exist neighborhoods US>V of O in G such that

(14.5) Do=f inV

has a distribution solution o for every fEC=(U).
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(i) There exist neighborhoods U’ >V’ of 0 in G such that (14.5) has a smooth
solution for every feC=(U").
(iii) There exists a neighborhood V7 of O and a distribution t such that

Dt=§ inV’,
i.e. T is a local fundamental solution for D.

Proof. We follow the method of Rouviére [29], with some modifications. One
has the obvious implications (iii) implies (ii) implies (i} (by convolution with 1),
so it suffices to prove (i) implies (iii). First if (14.5) is solvable for all feCy (U)
and the closure of U is compact, then it is also solvable for all /' with &k continuous
derivatives in U, for some k. Indeed the solvability of (14.5) implies that the bilinear
form

(foy=[fodg

is separately continuous on C®(U)XC; (V). Here one takes the usual topology
for C=(U) and the least fine topology which makes the mapping v—~D®v contin-
vous from Cy(U) to C*(U). By the Banach—Steinhaus theorem since U has
compact closure,

(14.6) {f, vy = C sup |D*f| sup | D*(D*v)]
le]=k 1=k

for some k, k’. The inequality (14.6) then extends to all € C*(U) and by the Hahn—
Banach theorem there exists a distribution ¢ on U such that Do =f.

Next, by Sobolev’s lemma, there exists K=>0 such that L} (U)c C*(U), where
L? is the space all functions on U with all derivatives up to order K in L2(U). Now
if Ry, Ry, ..., R, isabasis for the right invariant vector field on G, then E=37_; R
is an elliptic operator which commutes with all left invariant differential operators
on G and hence with D. If J is sufficiently large E’ has a fundamental solution
fx€L%(U") for some neighborhood U” of 0, i.e.

Elfy =48 in U".

By the previous remarks, there is a distribution ¢ such that
Do =f; in ¥V’

for some neighborhood V”CU” of 0. Then

D(E’¢)=F'Do =6 inV’,

so 1=FE'c satisfies (iii).
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15. An example of an unsolvable L

In earlier versions of this paper we conjectured that the condition (9.4) is always
satisfied for all multi-indices « unless ® is the quotient of a direct sum of Heisen-
berg algebras by a subspace of ®,. (It is easy to check that for such ® there is an
‘unsolvable L of the form (2.1).) The conjecture is false, as is shown by the follow-
ing example, the idea for which was given me by Schmuel Friedland.

First, any 2 step Lie algebra 6=6,+6,6,=[6,, ®,] may be constructed
as follows. Let ¥ be a subspace of so(n). Then ® =G, has basis X;, X;, ..., X,
with the relations 3. ; a;[X;, X;]=0 for every skew symmetric matrix (a;)c¥V+,
where L is false with respect to the inner product A4-B=+ tr (4B). Then any
ScV defines a linear functional A,€®; by A([X;, X;])=s;;, which is well defined
by the definition of the linear relations in &,. Conversely, all of ®; is obtained
in this way.

(15.1) Proposition. Let &, be the 2-step Lie algebra constructed as above with
01 10

11 0 0 01
n=4 and V spanned by A= :*-6__ and B= YV 1 Then the

2 0
0 -2 0 0 —1 0
operator L=X2+XZ+XZ+X7—i[Xy, X;)—i[Xs, X] does not satisfy (9.4) for
a=(1, 1) and is hence unsolvable. However, ® is not the quotient of a product algebra
&' =6+ G, Heisenberg algebras by a subspace of ®y.

Proof. Let A=X; 44;,8- Then a direct calculation shows that the matrix
(A0X;, X;D)=2, A+, B has eigenvalues

tigy =(£3il,—V—-TiE-73)/2

(16.2) -
tigy =(£3idy +V—722—13)/2

in the open set where |lJ< V24,. Then in that set —(g,+0.,)=—34, and
—iAG[ Xy, Xol+i{Xs, X)) =85+ 53,=32. Hence (9.4) is not satisfied for a=(1, 1).
By [2, Theorem 5], L is unsolvable.

Now if & were the quotient of a direct sum of Hersenberg algebras, it would
have to be the quotient of a product of two three-dimensional Heisenberg algebras.
Since dim ®,=2, ® would itself be a direct sum of these algebras. In this case
the eigenvalues of the matrix (A[X;, X;]) would be linear functions in A; and 4,,
which they are not.
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16. Open problems

The local solvability results proved here are unfortunately incomplete even
for operators of the form (1.1) on two-step nilpotent Lie groups. In view of more
recent results ([18], [19], [20], [27]), it is likely that these can be solved by simpler
methods than those employed here. One reasonable conjecture is the following:

Conjecture: An operator of the form (1.1) is locally solvable on a two-step nil-
potent Lie group if and only if m ({) does not vanish identically on any component of
the regular set, for every multi-index o. (See Theorem 9.2.)

The necessity of the condition on the m,(¢) has recently been proved by L. Cor-
win and the author [2].

It would also be interesting to extend these results to more general operators,
more general groups, or even operators constructed from more arbitrary vector
fields.
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