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1. Introduction

Let x,,1=F(x, ..., x,) be the equation of a surface in R"**. We shall study

the mean values
1

I} h

Here h=>0, i=1,...,n, x=(, x,.)€ER**? and pcR". Assuming F(0)=0, we

ask whether m, f—f a.e. as h;—~0 when f¢IL?, p>1. This was proved for F(x")=

[T x%, 0;>0, in Carlsson, Sjogren, and Stromberg [1]. Convergence of this type

follows from the L? boundedness of the corresponding maximal function operator
Mef= Sup my|fl,

<h;=<d
where §=0. Stein and Wainger asked in [2, Problem 8, p. 1289] for which F the

operator M is bounded on L?, as a natural extension of the known results for curves.
We shall give some answers to this question.

my, f(x) =

J | (¥ =¥, Xps1—F())dy.

Theorem 1. Let FEC®*® in a neighborhood of O€R", for some &>0. If
OF(0)/dx2#0, i=1, ..., n, then there exists a & making My bounded on L?(R"*"),
p=1

Under stronger assumptions on the Hessian of F at 0, the regularity hypothesis
can be weakened.

Theorem 2. Let FEC? in a neighborhood of 0¢R™, n=2. Assume that the matrix
(02F(0)/0x;0x;); jc 4 is monsingular for any nonempty proper subset A of {1, ..., n}.
Then My is bounded on LP(R"*Y), p>1, for some 6=0.

* Supported in part by Naturvetenskapliga forskningsradet.
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Notice that the condition in Theorem 2 is satisfied if the Hessian of FeC?
is positive or negative definite. Also if n=2, the assumption about the Hessian in
these two theorems are the same. In general, the assumption of Theorem 1,
0*F(0)/0x?0, cannot be weakened. In fact with prescribed values of 9*F(0)/0x;0x;
such that some @*F(0)/dx2=0, we can find a smooth F for which M} is unbounded
on L?. For this surface m, f will not converge a.e. even for feL™.

On the other hand, if F is a second-degree polynomial, no hypothesis on the
Hessian is needed.

Theorem 3. Let F be a polynomial of degree at most 2. Then My is bounded on
LP(R"Y), p=1, even with 6=+ oo,

For n=2, this was proved in [1].

By and large, our proof of Theorem 1 follows that of Theorem 1 in [1]. In Sec-
tion 2, the proof is reduced to three lemmas which are proved in Sections 3 and 4.
The main part of our proof is contained in the third of these lemmas, whose ana-
logue in [1]is trivial. Section 5 briefly describes the modifications needed for Theorem
2. The proof of Theorem 3 is also in Section 5, as well as the counterexample men-
tioned above.

In this paper, C denotes various positive constants, and a~f means C~ 1=
a/f=C.

2. Structure of the proof of Theorem 1

We use induction in the dimension. The case n=1 is well-known [2]. This case
also follows directly from our proof. From now on, we assume the theorem to be
true for n—1, although this assumption will be used only in the proof of Lemma 3
below.

We need only treat the case F(0)=0. Considering the transformation
(', Xy 40 ~(x’, Xy11—x" - grad F(0)), we see that it can also be assumed that
grad F(0)=0. We next show that we may assume 0*F(0)/0x;0x;#=0 for all i and j,
by making a change of variables which depends on the relative sizes of the h;. Let
max h;=h,. For any fixed #, the transformation
@1 X=Xt 2

x=x;, i=1..,n 1i%q,
is admissible, see the proof of Theorem 2 in [1]. Since 9*F(0)/0x370, it can be
seen that small nonzero values of  will give 92F(0)/0x;0x;#0, as required. Choos-
ing o suitably, we shall always work in a small neighborhood of the origin where

0*F 0*F(0)
0x;0x; 0%;0x;

2.2) “0, 1=i, j=n.
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The mean value m, f can be replaced by that over the rectangle {3 h;<y;<bh,
i=1,...,n}, and we can take h;=2"7% for large integers j;. In the sequel, we shall
write j=(jy, ...,/,)EN" and k=minj;, and k will always be large. Let 0=¢¢C;’(R)
be 1 in [—;—, 1] and have support in 0, [. (In this proof, we could actually use the
rectangles {0<y;<h;} and hence take Yy€C; with ¥=1 in [0, 1], but this is not
convenient in the proof of Theorem 2.) Define a measure y; by

23) [odu; = [o@ FO)II; ¥;,0)dy,

where g, (1)=2"g(2"f) for any function g in R. It is enough to estimate the maximal
function operator
M, f = sup |u;xf],

the supremum taken over those j with all j; sufficiently large.
As in [1], we shall compare the u; to measures v; whose maximal function is
easier to control. Take 0=¢¢Cy(R) with [ ¢ dt=1. Define

24 Vi = .uj_:uj*(®:~l=1(50'—¢ji)®50)9

d, being the Dirac measure at 0 in R.
We use anisotropic dilations of the Bessel kernel G* to improve and worsen
our operators. With z¢C and

G (§) = (1+|g)~Wm=,  EeR™H,
we let
Gi(x) = 220+ GZ (2N x,, ..., 2nx,, 2% x, . ).

The reason for the factor 2% in the last variable is that 2-% is in general the order
of magnitude of [F| in supp u;. Notice that the u; and v; are no longer dilations of
fixed measures as in [1]. Now set 5=G%* u; and similarly for v;. We shall study the
maximal function operator

M;_.f= sup [(uz—v) *f1,

where f is assumed to be in the Schwartz class S, and its analogues M and M.
The following two lemmas give L? estimates for M 5 _y- They are similar to the
corresponding lemmas in [1], and their proofs are given in the next section.

Lemma 1. There exists a 6=>0 such that for —o<Rez<0

”le—vfﬂzé C”f”zo fES‘

Lemma 2. For 0<Rez<1 and each p=1

M- fl, =C@N S, fES,

where the constant C(2) increases at most polynomially in Im z for fixed Re z.
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Interpolating as in, e.g., [1], we conclude that the operator M}_, is bounded on
I? for p>1. Defining M, like M,, we see that Theorem 1 follows from the next
lemma.

Lemma 3. The operator M, is bounded on L? for p=>1.

In [1], the measures v; were found to be dilations of a Cy* function, and so M,
was easy to control. In our case however, the density of v; may be unbounded near
the surface when some derivative of F vanishes at points in supp ;. This is the
main difficulty in the proof of Lemma 3, given in Section 4.

3. Estimates for M, _,

Proof of Lemma 1. As in the proof of Lemma 1 in [1], it is enough to show that

3.1 2= =C
Clearly,
(3.2 Q=@ =C270g), i=1,..,n

We shall use van der Corput’s lemma, see [2, Lemma 2.3], to estimate f[1,(£)
for large €. One has

(3.3) ﬁj(f) — fe~21ci(2)'¢§,+F(.v)§n+1)H: ‘l’j,(yi) dy.

Take g€{l,...,n} such that i,=k. In the region we are interested in, 92F/dy; is
bounded away from zero. By van der Corput’s lemma, the integral in y, of the
exponential in (3.3) over any interval near the origin is at most C|¢,,;|~"2 Integrating
by parts in y,, we conclude that

12;(©)] = CR™*|&, )~

The first derivative with respect to y; of the parenthesis in (3.3) is &+ F/(¥) &, 11-
Notice that |F;(y)]=C27* here. Hence, if

G4 &l = C271¢,44l,

van der Corput’s lemma gives
;1 = CQRHED
Now f£; is bounded and these estimates imply
18Ol = C(1+ 27 270 [&]+27%]80a) 712

for all &, since the last term dominates 27/t [¢,| when (3.4) is false. The same estimate
then follows for 9;.
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Combining this with (3.2), we get
10, —9;()] = Cmin ((1+ 37 275 & +27%{&,1a) 7Y%, 2771 &y), ..o, 279 1E).

Arguing now as in [1], last part of the proof of Lemma 1, we obtain (3.1) and thus
Lemma 1.

Proof of Lemma 2. We have
IGz(x)l = C(Z) 2m€Z2_lmIRez+m(n+1)X|x[<22—m’

see [1], proof of Lemma 2. Let

2TiHAAmnt ) §f x| =270 i=1,...,n, and |[x, . =2"%"™
1@ =1 .
0 otherwise.
We estimate M and M separately. For f=0,
(3.5) g *f| = C(2) Smez 2 MBu# 27 % f
Let

M"f = sup p;* AT *f.
J

When m=0, the support of u;* A} is contained in the box {lx;|=C2- 3™,
i=1,...,n, |X,41|=C2"%-™}, and the density of ;% A% is seen to be bounded by
a constant divided by the volume of this box. Hence, .#™f is bounded by a constant
times the strong maximal function M, f, and thus .#™ is bounded on L? uniformly
for m=0.

Now let m=0. We use (2.3) with the change of variables y,=2~Jts;, getting

(3.6) By AT *f(x) = f IT 7 (sy) ds 2Zdvt 2kt
SO =275 =0, %01 = F(2795) — 0,41 dv.

I me—Ji=m, i=1,..,n

[On 42 [=272F-7
Here s=(sy, ..., 5,) and 2~is=(2"%1sy, ..., 27Ins,), and we write v=(vy, ..., Vyp) =
(v, v, )ER" 1. When taking the supremum in the j;, we shall start by fixing the
non-negative integers /;=j;—k, and vary k. Let A={i:;<m}. Denote by =,
the projection R*—~R" obtained by replacing the i:th coordinate by O for i4 A.
With F,=Fon,, we have

FQIs) = F,2~75)+0Q2~%-m)

for s;esupp Y. Therefore, we can replace F by F, in (3.6), provided we integrate
in v,.4 over a longer interval |v,.,|=C2%-™
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We now recall a one-dimensional lemma from [1]. If w=(w,) is a decreasing
sequence of positive numbers and t=(t,) a sequence of real numbers, let

o _ 1 po. _
(3.7 Mo g() = syp 5. - S let—n—9ds.

Lemma 4 in [1] says that if for each k the inequalities |1|>w,, /=k hold for at
most m=1 values of /, then M " is bounded on L?(R), p=1, with norm at most a
constant times m"/?, In particular, this is satisfied when |7, ,,|=w, for all k.

We shall estimate the modified integral in (3.6) and start by integrating in v,4:

22k+mfl [5C2_2k_mf(x'—2‘fs—-v’, Xps1— F4Q2778) =0, 40) Ay sa
Ups1l=

= CM™ 1 f(x' =2 s—0', Xy 1)

Here M"+'is M applied to the n+1:st variable, with w,=C2-%*~™ and 7,=
F,2 % ks, ..., 27%s,). Now fix p=>1. One finds |ty qp,scl=C2- %"~ C=q,
for some C. Thus M+ is bounded on L?(R"*?) with norm at most Cm*/?.
Integrating then in »;, i=1, ..., n, we can apply similar maximal operators M’
defined as M®* acting in the i:th variable, with w,=2"*"%"" and t,=2"%"ks,.
The norm of M* on LP(R™*Y) is bounded by Cm"/".
Summing up, we obtain

pi* A () = C [ M. M f(x) [T} ¥ (sy) ds;.

The right-hand side here defines an operator with norm at most Cm"*9/7 on LP(R"+).

Having thus varied k, we shall also let the /; vary, first in such a way that 4 is
fixed. Observe that M2, ..., M™ are independent of the /;. Moreover, M"** depends
only on those /; for which i€ 4. Such an /; can take only m different values, and the
number of possible A is finite. Replacing the supremum in these remaining variables
by a sum, we see that the operator .#™ for m=0 is bounded on L?(R**?), with norm
at most Cm"m@+V/P=CmC,

From (3.5) and our estimates for .#™, it follows that

Isup L1511, = C@) Zmez27IMRELmfll, = C@) | f],-

To conclude the proof, we need a similar estimate for v;. Because of (2.4), v
is a sum of convolutions in certain variables of y; with normalized dilations ¢;
of @€Cy(R). These convolutions can be estimated by means of one-dimensional
maximal operators. Hence [vixf|=CM(u5*f), where M is a sum of products of
maximal operators in the coordinate directions. Since M is bounded on L?, so is
Mv’j and Lemma 2 is proved.
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4. Proof of Lemma 3.

Expanding the tensor product in (2.4), we see that the measure v; is a sum of
convolutions in one or more variables of u; with one-dimensional functions @5
i=1,...,n. Let v} be the convolution in the r:th variable of u; with ¢ j,» The terms
in the above sum are either of type v} or convolutions in certain variables of some
v; with functions ¢; . These last convolutions can be estimated by means of one-
dimensional operators acting on v, cf. the last lines of Section 3. Therefore, it is
enough to estimate the maximal function associated with the measures (v}); for each r.
To simplify notations, we take r=1.

We have

v}*f(x) = 20:i+Zii

X [ [ 1= y1— 1, Xa= P2y «eos Xo= Vs Xars = FO)) 2110 JT5 ¥ (2r3)) du dy.

In this integral we want to make the change of variables (u, y,)—~(s, ) given by
s=u+py, t=F(, Vg, ..., ¥,). It is therefore necessary to study the zero set of the
Jacobian d(s, H)/d(u, y;)=F,(¥). Because of (2.2), F}, is of constant sign near 0,
say F;;=0. Hence, the implicit function theorem shows that the function y,—~
F{(y1, ..., v, has a unique zero y;=¢=£&(y,, ..., ¥,) for (1, ..., y,) in a neighbor-
hood of 0. Further, £€C* and

Fi Fi(0)

4.1 (=l T 4 =2, ..,n.
( ) 6 F11 Fll(o)

Later we shall need the function T'=T7(y,, ..., y)=F(, ¥a, ..., y,). Notice that
(42) |T:|=1Fz,(és y2’ vees y,,)l = Cmax IyiL l = 29 ceey P

The indicated change of variables can be carried out in each of the domains
{ri<¢}and {y,>¢}. It follows that we can estimate v}#f(x) by at most two integ-
rals of type

(43) 20+ 2y ff(x]_“'S, Xo= Yoy vees Xy Vn> xn+1_t)

1
«@(2h "Y1y —r—dsdtdy, ... dy,.
¢( u)ﬂl l//( yl) |F1(J’)| s Ya Y

Here |s|=C 271, because the same is true for u and y,. Since y, is independent of
s and ¢ is bounded, we can estimate the integral in s in terms of the standard maximal
function operator M, taken in the first variable. Thus the expression (4.3) is at most

a constant times
224 fle(xla Xo=V2s o> Xn— V> Xys1—1)

" oy L _
']]1 '10(2 yn)mdtdhdyn*—l(x)-
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We consider first the case when F;(y) stays away from 0. Let I’(x) be that part
of I(x) obtained by restricting the integration in (y,, ..., »,) to those points for which
&¢[—C 275, C274). Here Cis chosen so large that supp ¥ c[—CJ2, C/2]. Because
of (2.2), Fy is not far from linear and, therefore, essentially constant as we integrate
dt in 1’(x). By the mean value theorem, the variable ¢ in 1’(x) stays within the interval

It—'F(Oﬁ Va5 eees yn) l =(C2™h IFlll'
Now we can estimate the integral in ¢ by means of a one-dimensional maximal func-

tion:
I'(x) = C2%3hx

Xf0§yi§C2_ji Mn+1M1f(x1’ X —Yas cois Xp—Vys xn+1—F(0> Yas ooy yn))dyzdyn'

The supremum in j;, ..., j, of this expression is dominated by a lower dimensional
maximal function of the type of Theorem 1. This is controlled by our induction
assumption, and thus

(4.4 Isup ')l = C[fl,, »=>1.

Consider next I"(x)=I(x)—1’(x). The function y,—~F(y,,...,y,) now has a
minimum T at €€[—C2~4, C2771]. Hence, t—T~(y,—&)? so that 0=¢—T=C2"2h
in I”(x). Moreover |F(»)]~Vt— 7, and thus

re=czif

0st~T=C2— 21
l1g|=cs—Js

n . 1
115 ‘//(2"yi)—tT_Tdtdy2 ...dy,

M, f (%1, Xa— Yas oves Xy— Vys Xgi1— 1)

52;‘::1 szx+m/2+2faf

Cca—2i1— M=t -T=c2—2h
|gj=c2—1

I @iy dtdy,...dy, = S, Ju().
Fixing m, we estimate J,,. Write l,=j,—k as before. Consider those i for which

l;=m+2l;. From now on, we assume that this happens precisely when 2=i=d
for some d with 1=d=n. This is no restriction. In particular,

_m.H_le(xla X3 Vas -3 X~ Yns Xn+1— t)

4.5 O=L=m+2,, i=d+1,..,n

Define
é* = é*(y2’ AR ] yn) = &(09 sy 09 yd+la cosy yn)

T* = T*()’g, eaey yn) = T(O, very 0, Ya+1s cees y”).

and
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Then (4.1-2) imply
[e*—¢| = C27*—m—2h = C2—)
and
lT*_Tl = C2—2k—m-211 —_ C2-—2j1—m’
when 2%y,€supp ¥, i=2, ..., n. Extending the domain of integration in the defini-
tion of J,,, we get for some C

Ju(X) = Czj""mlz"'zj‘f M, f (X1, X~ Y2,s cos Xn— Vs Xns1— D)

lt—-T* =c2—20—m
[&*|=c2— 1

I @Rhy)dtdy,...dy,.

Now ys, ..., ¥, appear only in the argument of M, £, and one can apply the stan-
dard maxinal function operators in these variables. Hence,

(4.6) T, (x) = C2¥r+mi2+Zd, s

.Lt_T*I§C2_2jl_m My... MyM, f(Xys o5 Xgs Xar1—Var1s s Xn— V> Xyr1—10)
lex|=c2—Nx
° l]:+1 lﬁ(zhyi) dtdyses ... dyn'

We shall estimate sup; J,,(x) and its L? nor.n, for a fixed p>1. Notice that the
right-hand side of (4.6) is independent of j,, ..., j;, S0 that the supremum need only
be taken in jy, i1y o» Jy-

If d=n, we have T#=0 and

J,()=C2 "M, M,... M, f(x).

Hence,

“.7 ”jf}lf,, Tullp = C27" 2| f],.

The remaining case d<n is divided into two parts. In the first part, we can
replace the supremum by a sum. In the second part, T* is almost linear in ys, ..., ¥4,
which will allow us to apply the operator M“:* defined in (3.7).

Part 1: d<n and j,>(1+e)k, or equivalently I >e¢k. The right-hand side
of (4.6) is the convolution of M, ... M, f with a positive measure o;.

We shall estimate Jjo;|| and consider first the size of supp a;. Because of (4.1),
[0&*/0y,| ~1, where as before ¢ is chosen so that j,=k. Notice that now d<g=n.
For fixed y;, isg, theinequality |£*|=C27%r can thus hold only for y, in an interval
of length €2, 1t follows that

"o-j“ = Cz—mlz-l'jq“jl = C2“m/2—l1.

Clearly,
lsupo;% My... My, = (o)1 M. My f15
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where the supremum and the sum are taken over those jy, j;11, ---».J, Satisfying (4.5)
and I;>¢k. If we sum|o;| in /44, ..., 4, with /; and k fixed, we get at most
C(m+5L)"~¢2—™2-h Taking then the sum in /, and k, we see that

2 lojl = Cme 27
so that

(4.8) "535’1 Julp = CmC27™2| f] .

Part 2: d<n and j=(1+ek. We fix I, l;,4, ..., ], and vary k. The main
difficulty in estimating the right-hand side of (4.6) is now that &* and T* depend on
Vas1s ---» Vo- We shall therefore divide the range of these variables into small cubes
in which &* and T™ are essentially constant.

Using (4.1) and the fact that FeC?**%, we get

4.9) E* gy vvvs Vp) = 23+1 b, y;+O(2—ka+e),
if 27y csupp . Here b;=—F;;(0)/F;;(0)>0. The remainder in (4.9) is at most

]

C2~71 by the assumptions of Part 2, so that |£*|=C27/1 implies
(4.10) |35 by = c270

Consider the lattice of cubes in R"~¢ having side 2-¥~™~%1 and centers at those
points whose coordinates are integer multiples of 2=%~™~%h. In (4.6) we make the
integral larger by deleting the factor JJ(2~%) and extending the integration in
Vat1s ---» Yy to the union of those lattice cubes which intersect the set

{(yd+19 seey yn): Iyli = Cz_j' and l2:+1 biyil = C2—-jl}.

Letthesecubesbe QF, r=1, ..., N. Their centers can be written as 2~ %" =27 %, ,, ...
vy 27%"), and #" and N do not depend on k. Since g=d and j,—j,=}, a com-
parison of volumes shows that

(4.11) N = C27&isuhh g0t mly,
From (4.2) we see that if (Ygi1, ..., v)€Q;, then T*(y) differs from Ty=
T*Q2-*4") by at most C2~%1~™ Now (4.6) implies

Jm(x) . C2—m/2+23+1ji—(”—d)(k+m+211)Z’N L 22]'1-!‘”! dt'
= =

f]t—T;lgcz‘zfx“"’
: IQﬁblfQ; My... My f(X1, o5 Xa5 Xap1—YVas1s s Xn— Vs Xnr1— D AYyi1 .- APy
To estimate these integrals, we shall use operators of type (3.7). For i=d+1, ...

.., We let M7 be M®" acting in the i:th variable, with w,=2"%*"""%-1 and
n=2"%. Since [27%j|=C27% the norm of M in L’(R"*") is bounded by
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C(m+1)"?. Let similarly M} , be M“® acting in the n+1:s¢t variable, with w,=
=C27%-%-m and 1, =T7. The quantity 7} is the value of F at some point with
coordinates at most C2~*, so that |T}|=C2~*. Hence, the norm of M 4 18 less
than C(m+15L)"?.

We conclude that

J, (%) = C27 M+ Zhsadi— (= d)letm+20) 21:=1 rere - M5 My M, f(x).
For the norms, we have in view of (4.11)
[sup Jul, = C27™227 1 (m+1)C| £,
The supremum in /,, I, 4, ..., /, is now estimated by the corresponding sum. Because
of (4.5),
(4.12) I sup Tulp = CmC 27" 1] .

From (4.7, 8, 12) we conclude
Isup Jol, = CmC2-"2 1.

Summing in m, we get
lsup 1”0, = C[ f1,.-

Together with (4.4), this estimate ends the proof of Lemma 3.

5. C? surfaces, quadratic surfaces, and a counterexample

Proof of Theorem 2. We start with some linear algebra. Let @s<Ac{l, ..., n},
and take g€ A.

Lemma 4. Let F satisfy the assumptions of Theorem 2, and take &>0. Then
there exists a linear change of variables of type

(5.1) X=X+ 2jeaqyx;, €4,
x;{ = Xi» i,
such that |0?F(0)/0x[0x;—0;,l<e for i€A, j& A and such that the assumptions of

Theorem 2 remain valid if F is considered as a function of (xi, ..., X,,).

To prove this lemma, one can assume A={l, ..., ¢}. Using block matrix com-
putations and the fact that the matrix (2F(0)/0x;0x;)] =1 1s nonsingular, one finds
that there exists exactly one transformation of type (5.1) giving 9°F(0)/0x;0x;=0;,,
icd, j¢ A. Aslight perturbation produces the desired transformation.
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In the proof of Theorem 2, one can assume F(0)=0, grad F(0)=0, as in
Theorem 1. Let j;, i=1,...,n, be as before, with k=min j;=j,. Further, N will
be a large natural number determined later, We first change coordinates according
to Lemma 4 with A={i:j,=k+N}, and then make a change of variables of type
(2.1), with a suitably small #. It is therefore no restriction to assume that

O F(0) . .
—3;i(‘)_x,__6i" <e, i€d, ji4,
and
0*F(0) ..
0%, #0, all i,j,

'n addition to the conditions of Theorem 2. We then follow the pattern of the proof
of Theorem 1. The only part of that proof where FeC? is not sufficient is the estimate
for I”(x) is Section 4,

Consider first the case when 1¢ A. Assuming y,, ..., ¥, as in I(x), i.e. y;~27%,
we shall make sure that {£(ps, ..., ¥,)|>C2~% in I(x), so that I”7(x)=0. The mean
value theorem and (4.1) imply

wmé=~27_, Finy

for some #€R" with [g|=C27% In this sum, term number g is —F,(n)y,~ —27%
The terms with i€ A, izq are at most Ce2~*. Those terms with i¢ A are bounded
by C2-%¥, because |y;|=C2"*"¥ for these i. Since |Fji(n)|=C, it is then clear
that we can choose ¢ and N so that this implies [¢]~2"%>C2~*N=C2"4, as
desired. Notice that this choice depends only on 4 and g. Thus by finiteness there
exists one choice of ¢ and N which will do for all 4 and ¢.

Next we indicate how to estimate I”(x) when 1€ 4. When d=n, we proceed
as in Section 4. For d=n, we always use the argument of Part 2, Instead of (4.9),
we now get

6* =ZZ+1 biyi+0(2-k)' :

Since 2=/1=2"*¥  the remainder here is bounded by C2~/: if we stay near enough
to the origin. This implies (4.10), and we can argue as in Section 4 to complete the
proof.

Proof of Theorem 3. As in the proof of Theorem 1, we can assume that the terms
of order 0 and | in F vanish. We may further assume h,=h,=...=h,. There exists
an m such that F is independent of x,,.4, -.., X, but not independent of x,,.

If F,.#0, we make the change of variables

m
W m-—1
X =Xt 27 %

X =x;, i=m
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It is easy to see that for a.a.  this transforms Fto a quadratic form with nonvanishing

(x7)? terms for i=1,...,m. Now apply Theorem 1 with n=m to xj, ..., X}, Xo 4

and the strong maximal function in the remaining variables. The conclusion follows,

since we can have d=oo in the proof of Theorem 1 when F is a quadratic form.
Assume next F,,=0. Then F can be written

F= Xm Zf':l aixi+P1(x1, cees xm—l)s

where /[<m and 4,70, and P, is a quadratic form. The change of variables

’ 1
Xy =21 a; x;

. xi, = Xi, i# l,
gives

F = (xp+ 3i<m bix{)x{ + Py,

where P, is a quadratic form in x], 1=i<m, izl Now let
X = Xyt DlicmbiX{

x{ =x{, i#m,
so that
F = x),x{+P,.

As in the proof of Theorem 2 in [1], M will be a superposition of two maximal func-
tion operators for quadratic surfaces in R® and R™™%, Since Theorem 3 holds for
n=1 [2, Theorem D p. 1248] and n=2 [1, Theorem 2], an obvious induction argu--
ment ends the proof.

A counterexample. We shall construct an FeC* with prescribed values for
F[; not satisfying the hypothesis of Theorem 1. The corresponding My, is unbounded
on all L?, p<<o, and not even L™ can be differentiated along the surface x,,,=
F(x). We make the construction for n=2, since the general case is analogous.

From [2, Sect. III, 3] we know that there exists a C* curve t=¢(s) in the plane
which does not differentiate L™ functions in R2. Moreover, ¢ and all its derivatives
vanish at 0. We take

F(xy1, %) = ¢o(x;)+ax, x,+bx3.
For feC* one has
1 iy by
mfo dhfo dys f(x1= Y1, X2— Y2, X3— F(O1, ¥2))
5.2
1 4
e 'h:fo f(x1‘“y1s X25 x3—€0(y1)) dy,, hy—0.
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This gives an estimate for the maximal operator M, for the curve (s, 0, ¢(s)) in
terms of M. Since M, is unbounded on L?, so is M.

Take an L™ function g in the plane which cannot be differentiated along the
curve t=¢(s). If the function f(x;, x,, x3)=g(x;, x;) satisfies (5.2) for a.a. x,
then f cannot be differentiated along the surface, and we have the desired counter-
example. Let us thus verify (5.2) for a.a. x when f€ L. Because of bounded conver-
gence, it suffices to show that

1 pn,
(5.3) Efo f(xl—yh X3— Ve xs‘?’(.)"l)““)"l)’z_byg)d)’z

"’f(xl_J’h Xas x3"(P(J’1))’ hy—~0

for a.a. (x,y,)€R* For each y,, one can differentiate f a.e. along the curve y,—~
ay,y, +by:. Hence, (5.3) holds for all x outside a null set E,. Since the set {(v, y1):
x€E,} is measurable, (5.3) follows by Fubini’s theorem.
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