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1. Introduction 

Denote by S the space of all infinitely differentiable, rapidly decreasing func- 
tions on R" and by LV=LP(R"), l<-p <-~, the standard Lebesgue spaces. Then 
rnEL ~ is said to be an Mp-multiplier if 

[[ml{Mv = inf{C: I[F-X[mf^JIIv <- Cllf]lv, fES} 

is finite. Here ^ or F denotes the Fourier transformation and F -x its inverse. The 
purpose of this paper is to examine maximal functions of the type (At being a dila- 
tion matrix) 

(1.1) nmf(X ) = sup IF -1 [m (AII,~)f^(~)] (x)], fC S, 
t>-0 

from the point of view of the Fourier multiplier m. 
If  F-l[rn] is integrable and has an integrable decreasing radial majorant then 

it is well known (see e.g. Stein [18; p. 62] for isotropic dilations and for anisotropic 
ones see Madych [14]) that Mmfcan be dominated pointwise by the classical Hardy--  
Littlewood maximal function: 

(1.2) Mmf(X. ) ~-- CMf(x) a.e., Mf(x) = sup r-n f I f ( x -  y)l dy. 
r > O  lYl-~r 

(We use C as a constant, independent o f f  and x, which is not necessarily the same 
at each occurrence.) Moreover, for radial integrable F-~[m] there holds 

(1.3) IlMmfllp <-- C[lfllp 

provided n=>3 and p>n/(n-1) which is a consequence of Stein's [20] result on 
spherical means. For the case p = n = 2 ,  Aguilera [1] has given sufficient conditions 
on radial F-X[m] to satisfy (1.3). 
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In [15] Peetre discusses multipliers m (which generate maximal functions via 
(1.1) with At=tI, I being the identity matrix) and, in particular, special cases of 
the quasi-radial multipliers m(0(~)), m defined on (0, ~o), introduced below, for 
which he gives conditions (via interpolation spaces) only on m. Both aspects were 
used (and Peetre's criteria modified) in Dappa and Trebels [6] where for the quasi- 
radial case a subordination argument is used; the resulting condition can easily be 
refined via square functions by a method in Stein and Weiss [22; p. 278]. For radial 
multipliers, the same idea is described in a paper by Carbery [3] which reached us 
during the preparation of this paper. 

Here we want to specify conditions on the Fourier multiplier rn so that the 
operator M m is of weak or strong type (p,p); for p = 2  see e.g. Stein and Wainger 
[21 ; p. 1271]. To this end, we discuss in Section 2 the case of quasi-radial Fourier 
multipliers via subordination (see e.g. Stein [19; p. 46]) with respect to appropriate 
Riesz kernels and give in Section 3 the relevant square function estimate. 

A criterion of Zo [24] in Section 4 allows to weaken these conditions in the 
case weak (1, 1). In Section 5 we deal with not necessarily quasi-radial rn and give 
a weak type (1, 1) and a strong type (2, 2) estimate. We conclude with an example 
of a maximal function which maps 

(1.4) L~ = {fEL': (1 +[~l~)m f^6[Lq^}, ~ > O, 

normed by ]lfllL~=llF-l[(l+[~12)mf^]llp, boundedly into L p. 

2. The case of quasi-radial Fourier multipliers 

Let P be a real n)<n matrix with eigenvalues ey, Re ey > 0; set a =  mini =<j~_, Re c~j, 
A=maxa~_j~_, Re ej and v = t r P .  Following Stein and Wainger [21] associate to 
P the dilation matrix At=t P and, slightly generalizing their notion, introduce 
positive, A:homogeneous distance functions O(~), i.e., continuous functions Q on 
R" with 

(2.1) 0 ( 4 ) > 0  for ~ # 0 ,  o(A,~)=tO(i) for all t > 0 ,  ~CR". 

Then one can show (see Stein and Wainger [21], Dappa [5]) that for any 8>0 there 
are positive constants such that 

(2.2) c~l{[ 1/(a-O ~_ ~(~) <-- C=lr 1/(~+~), 

If  m(r) is defined on (0, ~o) we call its extension to 

I~l - "  0,  

I~l ~ co. 

Rg=R~x{0} via rn(o(~)) a 
quasi-radial function and denote its corresponding maximal operator by Mmo Q. 
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In order to state our first result we need the notion of the fractional derivative. Fol- 
lowing Gasper and Trebels [8], define for 0 < 6 < 1  and a locally integrable func- 
tion g on R, which vanishes identically on (-oo,  0), the fractional integrals (~o>0) 

tO, t ~ c o  

and fractional derivatives of order ~, ~=[7]+5 with [~] being the largest integer 
less than or equal T, by 

�9 d 1 - 6  g(6)(t) = h m - - ~ I ~  (g)(t), 0 < fi < I, 

g('> (t) = (dl~vl g(r-l~J)(t), •>0 ,  

whenever the right sides exist; g(~), yEN, denotes the classical derivative. In the 
following we assume that I~-Og is locally absolutely continuous for each ~o>0 
as well as gO),-.., g(~-l). (Note that a heuristic computation gives [g(~)]^= 
( -  1)trl(-ia)rg  ̂ , aER.) 

In the following theorem we discuss the maximal operator 

I, M.,o J ( x )  

Theorem 1. Let OE C["/~+I](R~) be a positive, A:homogeneous distance func- 
tion. Let m be a measurable function on (0, ~ )  which vanishes at infinity. 
a) I f  m satisfies 
(2.3) fo tz-1 [m(a)(t)[ at m B, 

: ~ At\t12 
(2.4) (f: It'm~"(O?-~] ~_a 

for 2 > n [ 1 - 2 -  +2" '11 1 then Mmo 0 i s o f s t r o n g t y p e ( p , p ) , l < p < ~ ,  i.e., (1.3) 

holds; also Mr,~ Q is o f  weak type (1,1). 

b) I f  m satisfies (2.3)for Z >(n --1) {-~ -- ~} + l, then M~oo i~ of strong type 

(p,p),  2~-p~-~o. 

Proof. b) In the case p_-oo the hypothesis implies moQE[L~] ̂  by Dappa [5] 
and, therefore, 

I F-I [,,(~ (o/Ofq (~)l 
~_ : f /F-lira o O](dty)l 1)f(" -Y)[[ ~ dy <<- c[IfH =, 
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uniformly in t>0,  thus the assertion for p = ~ .  The case p = 2  follows from 
part a), p=2 ,  since for v-2>112,  v > l ,  there holds (see Gasper and Trebels [8]) 

m(X)(t) = C fo  (s- t)~-a-lmt~ ds 

and therefore, by the integral Minkowski inequality, 

( I ?  [tam(a)(t)12 d~tt )ll= ~_ c f?  Im<'>(=)l(f:t=*-l(=-,)='-'*-=dt)'i=a= 

Analogously 

f o  tx-llm(Z)(t)idt <= c f ~  s'-llm('~(s)lds' v > ~, 

and hence the hypothesis for p = 2  in b) implies the hypothesis for p = 2  in a). 
Thus, in particular, for m,( t )=(1- t ) '+ -1 we obtain 

(2.5) [Ig~,oof[I p <= C~ [Ifllp 

for p=2 ,  R e / z - l > v > 0  and p = ~ ,  R e ~ - l > v > ( n - 1 ) / 2 ,  where C, is only of 
polynomial growth in }#1. An application of the interpolation theorem for analytic 
families of operators along the lines of Stein and Weiss [22; p. 280] gives that (2.5) 

[ - ~ - 1 }  <=<=co Now we have for f E S  (cf. Gasper holds for # > ( n - l )  +1, 2 = p =  . 

and Trebels [8] or Trebels [23]) 

(2.6) I F - l [  rn ( 4 (r ^] (x)[ 

= c JR. So O-a(r 'x'r d~ 

<= cf~> s.-~ lm'"'(s)l IF-'[m(e(r ds 

< c f S  I ( )1 d f(x) a . e .  = s ~-x m (u) s snm~,o e 

uniformly in t > 0  which, in combination with (2.5), gives the assertion. 
The proof of part a) relies heavily upon the following estimate for square func- 

tions with respect to Riesz kernels, thus underlining the basic nature of Littlewood-- 
Paley functions. Set for f (  S 

S~a(f; x) = F-1  [(1 -- o(r ^] (x) 
and 

g,.(f; x ) =  f f :  [St~(f; x ) - - s t - l ( f ;  X)[ 2 d-~t) z/2 (2.7) 
t ]  
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Theorem 2, Let 0ECt"f2+II(R~) and the operator gx be defined by (2.7). 
Then gz is of  weak type (1, 1) and strong type (p,p), l<p<~o,  provided that 

Z>n - + - - .  
2 

A proof of Theorem 2 in the case 0(~)=/~1 ~ can be found in Igari and Kura- 
tsubo [12]. An essential improvement in two dimensions for 0(~)=l~l is due to 
Carbery [3]: 

(2.8) f., Igz(f; x)pdx <= cf., [f(x)l'dx, 2 > 1/2. 

Suppose for the moment that Theorem 2 holds. Then, by (2.6), 

IF  -~ [ m ( e ( G t ) f ^ ] ( x ) l  

_ c ~ = . ~ - - + J r f "  x ) - s ~ + J ( f ;  x)l~ <- Zj=o f :  sX lm(~) (s ) l  - , ,  ,~, 

+ C  f o  s ~-' Im")(s)l Zs~§ ", x)J ds 

<= C IsZm(Z)(s)[2-~ - ~ = o  gz+j(/; x) 

+C f o s ~-1 ]rn(X)(s)l ds sup [s~+k(f; X)] a.e., 
t > 0  

since k can be chosen sufficiently large so that F-I[(1-0(~))~_ +*] is integrable. 
Thus, sup IS~+*(f;x)l is of strong type (0% oo) and the assertion follows by 

t > 0  

Theorem 3 and the interpolation theorem of Marcinkiewicz. 

Remarks. i) If one follows Carbery's [3] approach, starting with 

re(t) = f : 
t 

one is, analogously to the above, lead to 

( f?  S'~+IIITI(S)]('~"2ds~I/2 , M,~oof(x) <- Cg~(f; x) --~--)  -~--) 2 > (n+l)]2, 

for oEc[nI2+I](R~). 

ii) I f~Q={~:  a(O=l} is strictly convex, occts"/~+5](R~), and m satisfies 

only (2.3) for /~>(n--1) - ~ -  +1, then Mmo ~ is of weak type (1, 1) and of 
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type (p,p), 1<p~=2. To realize this observe 

]F -1 [m(o (4)/t)f ^1 (x)] <_- c f o  s ~-11m(*~(s)l ds sup [St a (f; x)[. 
t > 0  

The result now follows from the Remark to Theorem 3 since, by methods of 
Herz [10] (see also Ashurov [2]), the hypothesis QE cra"/2+sJ01g) allows to dominate 
F -1 [(1-~(4))~_] by a radial decreasing integrable function. For the same reason, 
M~o o is also of type (p,p) for p > l ,  p near 1, and of type (2,2) by Theorem lb; 
thus the interpolation for analytic families of operators again gives the assertion. 

Examples. 1) For mp(t)=tl-P-"/2J,/2+p_l(t ) it is not hard to check that 
m(pa)(t)=O(1) for t~0,  2>0  and O(t 1/2-Rep-"/2) for t ~ .  Hence, by Theorem 1, 
we have for all fE S 

< C I l f l l p ,  l < p < = 2 ,  Re fl > l - n + n / p  (2.9) liM~aoefl[ p = 

which for 0(4)=[41 is Theorem 14a of Stein and Wainger [21]. The case /~=1, 
~(~)= ]4[, corresponds to the classical Hardy--Littlewood maximal function; the 
restriction n>n/p shows that Theorem 1 gives only the "right" mapping proper- 
ties for p > l ,  i.e., our procedure is just not sharp enough to regain the crucial 
case p = l ,  0(~)=]~I for Mf. For a further discussion of the case ~o(~)=[~1 see 
Carbery [3]. 

2) The solution of the Schr6dinger initial value problem 

is given by 

ut = - iA  u, u ( x ,  O) = f ( x )  

a( t ) f  = F-a[e~tlcl'].f fES, 

and can be extended to all of L p only if p = 2  (see H6rmander [11]). Sj6strand [17] 
examines in particular the question when the fl'th Riesz means of G(t) 

j •  t 

7K f o ( t - s )a- la(s)  ds 

are bounded in L p. The associated Fourier multiplier is 

mp(t]4[ 2) = t-?- f o (t-s)t~-ae islr ds 

-(tl;)rrf~lr '* ds. 



On maximal functions generated by Fourier multipliers 247 

Thus, one is lead to examine the C=-function 

f l  p t  z .  \ p - i  is 
m~(O = -i v 3o  t ~ - s J  e c l s  

fi f~ (1-s)tJ-% is' ds = wo(t)+u~(t), 

where w~(t)=Ct-PeU~p(t), ~oCC=(R) vanishes for t~=l and equals 1 for t=>2, and 
u~ is a nice function in the sense that it satisfies (2.3) and (2.4) for all 2>0. An 

examination of wp shows that (2.3)and (2.4)are fulfilled for R e f l > n l - ~ - - ~ l + ~ - ,  

i.e., in this instance 

(2.10) []sup lF-l[rnp(tl~12)l.f(x)lilp <= C[]flI., 1 < p ~oo. 
t > 0  

Note that using (2.8) in Theorem lb, Theorem lb for p=2,  for p :o~  
wa(I~/2)C[LI(R")] ̂  when /3>1, and Stein's interpolation theorem for analytic 

families of operators yields that (2.10) is valid for / ~ > m a x { 2 ( 1 - 1 ) ,  1}  when 

n = 2  and 2=<p-<~. 
> I 1  II 

This has to be seen on the background that mp(l~12)CM, implies fl=n ]-ff-~] 
(see Sjtistrand [171). 

3) e -t and (1-e-t)/t trivially satisfy (2.3), (2.4) for all 1>0  and hence in 
particular for b >0  

"< C[]f]l 1 < p -< ~, I!sup IF-~[e-'Jelb]* f ( x ) l l l .  = p, = 
t > 0  

which for b= 1 coincides with the maximal function for the Poisson integral, and 

]]sup ]F--l[(tl~l)--b(e--qelb--1)]*f(x)]llp <= chill,, 1 < p -<_~, 
t > 0  

which may be useful to prove pointwise convergence theorems of Voronovskaja type 
for the generalized Weierstrass means (cf. G6rlich and Stark [9]). 

4) For mp(t)=(1-t)~+ one has m(p~)(t)=C(1-t)~+ -~, A</~+I. Hence Theo- 
rem 1 yields 

sup,>0 [F-~ [(1--O-~(t{)-~)~+ ] * f(x) I*, <= C['fH" 

'1 (7) for /?>n - ~ -  , l<p-<_2 and f l> (n -1 )  1 _  1 , 2_~p<-~. 

5) By a result of Kenig and Tomas [13] all the above results also hold on the 
n-dimensional torus if 1 <p<-~.  In particular, the transference of Example 4 for 
n=2  to the 2-dimensional torus improves and supplements results of Podkorytov 
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[16]. Podkorytov assumes f l= 1, p =  ~ and ~Q convex and obtains (1 -Q(0)P+ EM~., 
whereas here f i> l /2 ,  p=oo  and QCC~(R~) (which may be relaxed to the condi- 
tion that Q satisfies in L=(R 2) a Lipschitz condition of order 1 +e, e>0),  z~e not 
necessarily convex. 

3. P r o o f  o f  Theorem 2 

The case p = 2  follows easily by the Parseval formula and repeated changes 
of  the integration order: 

IIg~ (f)ll: = fR- If^ (01= f o  ( e--(t-~-J )~{1, ---/--1+ ~(~) ~Ro~-~ 7dt a~ 

--< Clf^ll~ = C'llfl.~, Re 2 > 1/2. 

Now proceeding as in Igari and Kuratsubo [12] one can use Stein's interpolation 
theorem for analytic families of  operators living on Hilbert-valued LV-spaces once 
it is shown that g~ is of weak type (1, 1) for Re 2>(n+1) /2 .  To this end itis suffi- 
cient (see Stein [18; p. 46]) to establish that  

(3.1) f,(=,=c (fy ]Kt(x-y)-K'(x)I~ At'l~2 t J  dx<= B' y(B, 

for a sufficiently large constant C; here B ,={x :  r(x)<=l}, Kt(x)-t- ~K(Atx)," A t 
is the adjoint of At, r(x) a positive, A;-homogeneous distance function and K =  
F -1 [ Q ( O ( 1 - ~  (0)~-]. We first show that, without loss of generality, we may assume 
0~ct"/~+I](R"). Observe that there is a kCN such that Q(Ok~ct"/2+U(R"); 
setting F~(t)=?/k--a(1--?/k)~+--X we obtain for ( n -  1 ) / 2 < # < R e  2 - 1  

(o(1- e(o)W = c f [  ds, 
where 

[R~'k l ̂ (0  = (1 -- Q (~)R/s)~+ ~ (Ok/S, 

fo  :+IIF~U§ ds = O(1 +lAI t~+2]) 

(see Trebels [23]). Since R~'kCL 1 for /~>(n-1) /2  (see Dappa [5]) it follows that 

(3.2) K(x)=CfosU+~FCa~'+l)(s)R~'~(x)ds a.e.. 

Thus we can estimate the left side of  (3.1) with the aid of  the integral Minkowski 
inequality by 

c:: s,.-,-. :..,+.,.>, 
(f[ .~)112 _<- c(1 + I,~I t ,+=] )  [Rf '*(x-y)-R~"k(x)[  = dx. 
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Thus (3.1) is satisfied if we can show the corresponding estimate for 

H• ---- H ----- F-l[e(~)(1-e(~))~_], ( n - l ) / 2  < # < R e L - 1 ,  

with ~cct"/z+la(R"). Now decompose 

(A )='"=x+L,==c(E ,(=)-=c . . . . . .  I x  = I1+I=. 

Concerning I~ observe that 

fA;yl f2 [(VH)(.,,t;x-sA;y)[ ds, [I-[~ ( x -  y ) -  H,(x) I <_ 

that 

IA'tyl <--[IA;I[y[ <= CllA;I, yEB,,  

and that the triangle inequality r (x +y) <- b (r (x) + r (y)) and r (x) => C for sufficiently 
large C, say C=2b, imply r (x - sy )>- I  for all s, 0~s<_-l. Hence, by the integral 
Minkowski inequality, 

,, = of: f.<=_.,,== (fi IA:I"[t'(VH)(A:(=-sY))I=~) ''=d= ds 
ll2 dx c2:=l f,(=~=,[f:_~ IA;II=tt'(VH)(A;x)[ 2 = CZJk .  <= 

Noting that (2.2) for r(x) instead of 0(4) gives IAfxl<-C(r(x)t)~ lxl=l ,  thus 
IA21 <-Ct "-~ for 0<t~_l,  that the semi-group property of A~ yields 

= A~-~/, ' 2 - k  21-k ,  IA~-kxl  < I 1 fa;xl ~- CI4x l ,  ~_ t ~_ 
and that by (2.2) Ix[<-C2 -k(a+O if r(x)=~2 -k, we obtain by the Schwarz inequality 
for fl>n/2 

112 
= 

�9 " .__= ' -=  b4=-=xl 2 141 It (VH)(A,x)I -i-dx) I f . . s  ' ,., -k. , = ,  , , d t  ~I= 

~- c2{" +"'- '='  {f=l:" (JR. I=;=I'I(VH)(=;x)I =*" du} 141"' T)dt "' 
112 

= C2=(a*')@-=/=)-=("-=) (JR- [x[2a NH(x)[2 dx) 

for every e>0. Hence .~& converges if n/2<fl<n/2+a/A provided that the 
last integral is finite. Analogously, 

1,'2 
/2 ~-- C ~=x 2-k("-O(a-"/~) UR- Ixl" [ g ( x ) l  = dx) 
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Since it is shown in Dappa [5] that for #>/~-1/2  there holds 

!ll. f~A.,+ll I. IPv/c.h = o(1), 
Theorem 2 is established. 

4. The case weak (1, 1) revisited 

Here we want to deduce an improvement of Theorem la based on the follow- 
ing version of a criterion due to Zo [24] (see also Stein and Wainger [21 ; p. 1277]). 

Theorem A. Let K, Kt(x)=tVK(A~x), be such that K^EL ~ and 

K*f(x) = sup Ig,* f(x)l, fES, 
t > o  

be of  strong type (p,p) for some p, l<p<-~ .  I f  

(4.1) f, sup [K, (x -y ) -gs (x ) l  dx <= B, r(y) <= t, 
(x)_~ 2bt s > o  

then K* is of  weak type (1, 1). 

For the proof of this theorem, one may employ the following version of the 

Deeomposition lemma. Let fES(R") and s>0  be arbitrary. Then f = g +  
~jclv bj, N o N ,  where 

(i) gES(R") and llgll~_ fsll flll; 
(ii) for each jEN there holds b~EC=(R"); 

Oii) suppb jc I j={x :  r(x-xi)<c~} for some xSR" and %>0; 
(iv) ~ieN lljl-<Cllflh and there exists an n0EN such that at most no of  the l f s  

S 

intersect; 
(v) f b~=0, S Ibjl<=CslZjI. 

The proof of this lemma consists in a simple combination of a partition of 
the unity as given e.g. in Stein [18; w 1.3] and the decomposition lemma in 
Madych [14]. 

Theorem 3. Let QE Ct"/~+I](R~) be a positive, At-homogeneous distance func- 
tion and M m o ~ of  strong type (p, p) for some p, 1 <p ~ ~,. I f  m defined on (0, ~) 
satisfies 

/ ~1,+z dt\l/~ 
(4.2) limlh, a-- llmll=+sup[f~k~z k I?mr <= B 

for 2>(n+1)/2, then Mmo o is of  weak type (1, 1) and the (weak) operator norm 
is bounded by I[mllz,, and the (p,p)-operator norm of  M,,oQ. 
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Remark. Again, i fZ~ is strictly convex and o~CtX+"+43(Rg), then 

2k+I  2 1 
]Im[[~+supf k t - Im(a)(t)ldt ~ B, 2 > (n+l)/2,  

k ~ Z  ~ 2 

and the LP-boundedness of M,,0 ~ is sufficient for the above assertion. 

Proof. Let Zh(s)=l, h=(hl ,hg) for h~=s=h2 and 0 for O_s=hl /2  and 
s>-2h9 be a positive C~-function. Then we have by Gasper and Trebels [8] for 
every t > 0 

K,~h(~)  = ( r n z h ) ( O ( ~ ) / t )  = c f~ s~-~(mzh)")(s)(l-e(e)/,s)~:' ds 

which is the Fourier transform of an L~-function, because R a _ I = F  -~ [(1-Q(r 
is integrable. Therefore, we may take the inverse to obtain by the Schwarz inequality 

IK,,h(X-- y)--  gt, h(X)l 

f fgj+l/t rI~\1/2 
ks zJl, tv z,/, [Ra-* ' t ' ( x -y ) -Ra-x , t~ (x ) l ' o  , 

< [ I m z G , , Z ,  ~ :  § 9ds? a = I R x - ~ s ( x - Y ) - R ; - x " ( x ) I  s J  

- e l l  U Z 6 ( y )  /~t 2, 2 j X ,  

uniformly in 0<h~, h~-l<l and t > 0  by Gasper and Trebels [8]. Thus the left 
side of (4.1) (with Kt replaced by Kt, a) can be estimated by Cllmll2,x times 

Zj  f .~_9~, ;Ax, y)dx = Zj  Hi. 

As in the proof of Theorem 2 it follows for 2Jt<-l, p>n/2  that 

H j - < C 2 0  jR~ ~'+* 
1/2 

t "1 2 j IS (VRg~_l)(Asx)] dx 

1/'9 

< C ( 2 h ) ~  . ( l + l A ; , x  l) -9" 2 j~ dx) 

f r r 9'*' , 9 aS ax},;9 �9 I,J R-s 9, (1 + IA:xl)="s ~ [VRa-dA,x)I s 

--< C(2J;) "-" (f .o 0 + lxl) =' Iv&-dx) l"  dx) "~. 

Here the last integral is finite if n / 2 < l a < 2 - 1 / 2  by Dappa [5]�9 For 2~t>l  note 
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that analogously 
' ' '  

H~ = ~ ,(x)>=t l a 2J dx 
1/2 

< c ( f .  14,xF .2, "ax) ~ 

(x)~_t 

( f f2 '+'  ~ , "t~,~"~,, IA:xl%'lR*-'(A" x)l~ex(~ 

C(2Yt)-("-"/~)("-O d R -  Ixi'u IRa-'(x)l~ dx)l/2 

where the last integral is again finite for n / 2 < p < 2 - 1 1 2  by Dappa [5]. Thus 

f ,  sup sup }Ks, h(X--y)--Ks, h(X)] dx (4.3) (x)_=2bt o<h,hfx<l s>o  

C(Z2J t=<I . , .  " I L Z 2  , t > l . .  ") ~ B 

uniformly in y, r(y)~_t. 
Now choose Zn(s)=G(s/h~)-G(2s/hl), where G(s )= l  for s<=l, 0 for s->_2 

a n d  GEC ~. With h2=t/6, h~=6/t it follows that 

(mXh " ) ( OL (r  = rrt (~ (~)/t) { G (6 Q ( r  G (2~o (~)/6) }. 
Clearly (mZh)(Q(~)/t) tends to m(Q(r in S" for 6 ~ 0 +  and therefore 

I F-' [m(o(r -- lim inf IF-! [(mZh) (Q (~)/t)]*f(x) I ~ 0  

=< lim inf sup IF -1 [(mzh)(O(r . f(x)[ = Mmzoef(x) 
~ 0  t>0 

uniformly in t>0,  i.e., 
(4.4) mmoof(x) ~ Mmzoef(x), fES.  

Furthermore, by Fatou's lemma, 

lim inf sup IF- '  [(mzh ) (O (~)/0] *f(x)}llp (4.5) }l,_o+ t>o 

<- lim inf ]lsup ]F-X[m(dr 
~ 0  t>O 

C ~-01im inf []F-'[(G(fQ(~))-G(20(~)/5)] , f l ip  <- C '  [I flip 

where the second inequality follows from the hypothesis and the third, since 
G(Q(~))E[L'] ̂ . Now relations (4.3) and (4.5) imply that MmxoQ is of weak type (1, 1) 
and therefore, by (4,4), also M~ o Q is of weak type (1, 1). 

There is the open question if already a condition of type (4.2) yields that M m o Q 
is of type (2, 2). We note that an m on (0, oo), satisfying (4.2) for certain parameters 
2, yields rno~EMp; thus there is the question in how far conditions of type (4.2) 
(if necessary with increased 2) also guarantee that M mo Q is of type (p, p). 
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5. The case of arbitrary Foarier multipliers 

Let us recall the definition of the maximal function associated to mEL=(R"): 

Mmf(X) = sup ]F-l[m(A,~)f~(~)](x)l, f~S ,  
t > 0  

with A t the previously introduced dilation matrix. Let 0~ C=(Rg) be the associated 
distance function as described in Stein and Wainger [21; p. 1255] (denote by r(x) 
the adjoint positive, A~-homogeneous C=(R~)-distance function). We first deal with 
the boundedness of M m on L 2 (R"). 

Theorem 4. Let mCL ~ (R") satisfy 

(5.1) sup lm(A,~)_~(A,~)]2 __dt =< B2 < oo 
e(~)=x t 

for some r and, for 1 / 2 < 2 < 1 ,  

(5.2) sup ~k~Z fzu+' f2k§ 2k(1+2•) lm(A,~)-m(Ass ds dt ~ B s. 
~)=~ a 2~-~ a 2~-~ I t -s[  ~+2~ s t 

Then there holds 
I I M j h  ~ cB! l fh ,  f ~ s .  

Remark. Condition (5.1) corresponds to (3.15) in Stein and Wain~er [21]. Suffi- 
cient for (5.2) is mCCI(R~) with 

(5.3) IVm(~)] = O(0(~) - ' ) ,  141 -~ 0 

(5.4) IVm(~)l o(~(~)-~'), 1 ~ 1 - ~  

where a ' < a = m i n  Re aj and A ' > A = m a x R e a j .  To realize this we note that 

(5.5) IIA,-AA --< [[AA [IA,/~-11[ <- C~s~176176 

for 0=<6-<_1, 0<s ,  t-<_l and ~> 0  arbitrarily small. Then, for negative k, we can 
estimate the double integral in (5.2) by 

2k(1+zZ) f~k+2 fZk§ f2 J2~-, a=~-= lt-sl-Z-~a[(A'-A')r [(Vm)(A'r162162 t 

~_ C2k(z+2x_~+2,_za_~._~,,)f~+~ fzk+~ [ s -  tl -z-2x+2n dsdt 
- -  j 2k-2 d 21r 

by (5.5) and (5.3) since, on account of Q(u~)<-C for 0 - u < - I  and 0 (~ )= l ,  the 
triangle inequality gives 

O(AA + u ( A A - A A ) )  <- b(O(AA)+b(Q(A,u~)+~(A~u~))) = O(s) 

(note that s and t are comparable). For 6 > 2  the last double integral behaves like 
0 (2  ~tz+~-~a)) so that the summation in (5.2) over negative k converges if a - e -  
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a ' > 0  which holds by hypothesis because e>0  may be chosen arbitrarily small. 
Analogously one uses (5.4) and I[At-A=[l~=c~sa+'-*[t-s] to prove that the 
summation in (5.2) over positive k also converges when A'>A. 

Proof of Theorem 4. Clearly m(A=~) is measurable in (s, r and therefore, by 
the Fubini Theorem, (5.2) is well defined. Consider 

F(x, t) = F-* [m (At. ) f  ^] (x), 

which is a C=-function on {(x,t): x~R", t>0}, and xCC=(R) with X(t)=l  on 
[3/4, 3/2] and supp ~ c [1/2, 2]. Then 

(S-_ S" i (x 
-. [t-sl*+2a 

-is finite for each x~R" when 1 /2<2< 1. Hence 

(5.7) sup F(x, t);~ <= CIR(X), 
t>0 

as can be seen by the following argument of E. M. Stein: Denote by 

g(~, x) = f=_. F(x, 2kt)Z(t)ei'tdt 

the Fourier transform of F(x, 2kt)x(t) with respect to t; then 

IF(x, 2kt)z(t)l = C (ft.t=,+fl.l_~,) (e i ' ' -  1) g(z, x) dz 

<-Cltl(ft.f=,lr dr) ( f l . l~ dz)a/2 
2 112 +c(f1.1= = I,I==Ig(.,x)i d 0 (f,,,,~= I'~'I-I2d') 1/2 

_<_ cjr ( f ' _  11,I =g(,, x)[ = d , )  I/I 

~= c (f" f"  [ t - - s [ - 1 - 2 2 1 F ( x  , 2kt)z(t)--F(x, 2 ks)l' ds dt) =12 

where the last inequality follows by observing that supp Xc [1/2, 2] and by a char- 
acterization in Stein [18; p. 139]. Thus (5.7) is established. The idea to use Fourier 
methods with respect to the parameter space is roughly sketched in Cowling [4]. 
Furthermore, 

sup IF(x, t)[ <- (Zk~Z sup IF(x, t)z(2-kt)12) 1/2, 
t h u s  t>o  t>0  

limp IF(.,  t)[[12 =< c I I ( Z - z  
t>O 

so that there only remains to estimate the right side by CBl f i2 .  Splitting up the 
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integration domain in (5.6) into a strip (in which ]t-s]<=l holds) and the comple- 
ment leads, after an elementary calculation, to 

I~(x) <= C [jz~_, IF(x, t)I 2 

+c(f2.-, f:.-, Y(:+'*) I t - s l ' +  '~ t 
and, therefore, 

( f :  at"~' 
2k+~ 2k+~ 1[2 

(Y~k~zl&(x)l=)l:=<=C IF(x,t)l TJ +c(2k . 
= J:(x)+&(x). 

By the Parseval formula we obtain 

I}Slll~ = f a  Im(A':)l= If^(:)l=d: = CB=llf]l: 

and analogously }IJzl]z<-CB]]fl]2. Finally, if 

dt 
sup f ~  lm(A.g)l = 

Q({)=I t 

is not finite, one can work with rh({)=m({)-~o({). 

Next we want to discuss the analogue of Theorem 3. To this end we need 

Lemma 1. Let (poEC=(R) be a nonnegative funetion with supp ~poc[1/2, 2] and 
~k~z ~~ =1 for t>0 ;  set ~b^(~)=q~o(Q(~)) and let mEL=(R ") satisfy 

B~+O(m) ----- sup }IF[(1 + lxl2)("+a)l'F-l[m.,k](x)]ll: < oo 
*>0 

for some 5>0, where m,,k({)=m(A,=k{)(O^({). Then, for r(y)~_t, 

(5.8) 
Z,,~z f,.{,,)_.=b, 2"sup lF-:[m..,, r y))- F-a[m.., r (d2kx) l dx <= CB[+'(m). 

Proof. F-:[m,.k] is well-defined as a C*%function and 

]F-l[ms, k ~^](A~k(x- y))- F-l[m.,~ ~^](A;~x)l 

L > ( '  ' I <= . A2~(x-y)-z)-c~(A=kx-z)  IF-l[m,,d(z)ldz 

"+' ) f . l ~ ( '  ' ")1( <- B: (m , A2~(x-y ) - z ) - (o (A~kx-  l +lz[2)-("+J)/2 dz, 

where we used 

[0 + I ~lb (" +~)'~F-' [m (&~,.)  ~ ^10)[ -<- BF~(m) �9 
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Since (pE S we have 

]~b (A~k (x--y)  -- z) -- q~ (A2kx -- z) I 

]A~,y) du. 
, 

+ r( & , x -  z -u&,y)  ) vac]. 

Observe that r(y)<=t, hence [A'~Iy]~_C and, therefore, as in the proof  of  Theo- 
rem 2 

�9 ' ' y l  c (  ) ]A,ky] ~ ]IAt~,I]IAllt <- t2 k " - ' .  

Thus, after an interchange of integration, 

J = f,c~>~,,, 2" ,>osup ]F-1[m,,k] (A '2k(x -y ) ) -F-a[m, , t ] (A~kx)]  dx  

<-_ CB~+a(m)(2kt)~ f~ f R . f R. ( l  +r(A'~kX--Z -- UA'zk YX~''-a2k~ d x ( l  +lzl)  

<= CB~+~(m) (2kt) " - '  

which implies the convergence of  the ~=~t_~x-part of  the sum in (5.8). So it remains 
to consider the case 2 k t > 1. 

f . .  I~ (a; '`( .-  y ) -  ~)- ~ ( a ; : -  ~)1(1 + i~1) -.-~ dz 

= �9 ~ ' - " - a r A '  x )  kbl*( l+ l ' l ) - " -a (A~ ' ` (x-Y))+lqS)*(  1 +  ., , 2,, 

�9 - - t l - - ~  _-< C(1 + I A ; ' ` ( x - y ) [ ) - " - '  + C(1 + [A='`xl) , 

since q~ E S implies ]~b] �9 (1 + I" [)- " -  n (x) <- C(1 + I x[)- "-a. Hence 

d ~ CB~+a(m) ,, r " I + ' A '  x A . . . .  "-a2k~ - -  kJr(x)~_2bt ~, [ 2k -- 2kY]) dx  

+f,(*~-~=~, (I + IA~,xl)-"-'2'`" dx) 

= cBT+n(m) (f.c~+ A...,_..+... Ixl-"-' ax +f.<=>_~..+... lxl-"-' dx). 

Now r(x)>=2k+~bt>1 implies by (2 .2) tha t  ]xl>=C(2t)"-% and the triangle 
inequality and r(y)<=t show 

~(x) > 1 ; (A; = -~- r ( x + A  k y ) - r  '`y) ~ 2'`+lt--2kt = 2kt 

SO that 

y ~ ca,+atm'~ I" Ix] -" -~  dx  <= C'B~+a(m)(2kt) -a(a-*). 
z ~, ; J ) x l ~ c ( ~ , O . _  ~ 

Thus the ~'=~t>z-part of the sum in (5.8) also converges and the Lemma is established. 
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Theorem 5. Let m~L ~176 satisfy B~+~(m)<oo for some 3>0;  let M m be of  
strong type (p,p) for some p, l<p<oo.  Then M s is of weak type (1, 1) and strong 
type (q, q), l <q~_p. 

Proof. In S' we have 

/q(x) = Zk z 

= Z ,z 2 kvF 

Now Lemma 1 shows Ks~L~o~(R~) and, furthermore, that condition (4.1) is satisfied 
by Ks. Hence Theorem A gives that M~ is of weak type (1, I) and the interpola- 
tion theorem of Marcinkiewicz gives the rest of the assertion. 

As an application, consider the hyperbolic Riesz means as introduced by E1 
Kohen [7] who proved 

(5.9) mz(~) = ( 1 - ~ + C M p ( R ~ ) ,  2 > 2 1 _ 1 _ ,  1 < p <oo. 
p 2 

That (5.9) is true may be seen quite easily: IImAM =O(1) for Re 2~0  and the 
Marcinkiewicz multiplier theorem (see e.g. Stein [18; p. 109]) shows lima[IMp= 
O([21 ~) for Re 2>1 and 1 <p<~o; thus, by the interpolation theorem for analytic 
families of operators, (5.9) follows. In order to apply Theorem 5, choose 
At=diag(:/4, :/~), 3=1;  then it is not hard to check that B~(m~)<~o for 2>2. 
But we cannot prove that M ~  is of strong type (p, p) for some p > l .  (It is 
perhaps interesting to note that using only appropriate square functions one 
can show 

[[ sup [F-a[mx(t~/4.)f^](x)ll[ 2 <= Clog gN[l f l l z ,  fES,  
1]M~t~N 

for ,~>0). However, setting 

Fx(x, t) = F-~[mx(:a. )f^](x), f~S ,  
one obtains 

(5.10) II sup IFa(x, t)ll]~ <-- CIIfIIL~, ~ > 1/2, /~ > 0. 
O<t~l  

To see this, observe that 

xd  F (x, t) = - f l  ds F~'(x' s)ds+ Fa(x, 1) 

and, therefore, 

sup IFx(x, t)l Fx(x, s) ds+lFx(x, 1)1 
O<tN1 

_ ~ NF~.(x,s) dsJ +lFx(x, 1)l=Ii(x)+I,,(x).  
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Taking L~-norms leads to 

IIl~lh -<- C l l f h  <- cIIWIIL~, ,~,/~ > o, 

IIlllh <-- G , ~ I f  (4)1' ' s l - e ( 1  --at~1t~.)+ u a  d 

c.(L,l: fs dsa ) 
<- C~[ll~l~f^l[~ <- C'[lfl[ ,~,  B = 28, ~ > 1/2. 

On the other hand, if  we consider instead of F-l[m~(?/~.)] the smoother kernel 
F-l[m~(?/~.)G~I, G;(~)=(1  + [~1~) -#/~, then the proofs of Theorem 5 and Lemma 1 
show that it is sufficient to establish for the same ~0 ̂  as in Lemma 1 the bounded- 
ness o f  

(5.11) IJ , ~ = ~ u p  lq- ~ (m~((s2k)~/'~)G;(2k/4~)) 

<:= =o =1 SU s2 k 114 
d~, ~ i ]  II1 

where the latter inequality follows by Leibniz' formula since 

esssup (l+12k/4~[~) ----O(1), 0 --<--3, i = 1 , 2 .  

The norms in (5.11) are bounded for 2 > 2  so that, on account of  the previous 
L~-estimate, Theorem A yields 

[{xCRZ: M,. a # g(x) > s}l <- C# I]gI]l, gCS; 
' s -  

here  

Mma,#g(x)=  sup [F-t[ma(ta'4.)G~g^](x)]. 
O<t~l  

Now the Marczinkiewicz interpolation theorem gives 

[[ sup [F-J[(1-t~2)~].f(x)[.!p <- c#IlfHLg 
0<t~l  

for 1<p<-2,  f l>0,  2 > 2 ,  when we use the interpretation f=G#.g .  
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