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1. Introduction

Let M(T) denote the class of complex Borel measures on the circle T=R/Z
and M,(T) the subclass {,u: lim,_, ﬂ(n)=0}. It was recently proved [5, 6] that
M, (T) is characterized by its class of common null sets. To make this more precise,
we use the following notation. For any subclass ¥c M(T), we let

%' = {ECT: E is a Borel set and Yu€¥ |u|(E) = 0}

be the class of common null sets of 4. Likewise, if & is a class of Borel subsets of T,

we write
&L = {pe M(T): YEC&|u|(E) = 0}

for the class of measures annihilating &. Then by definition, the class of sets of
uniqueness in the wide sense, Uy, is equal to M,(T)* and [6] shows that U;-=M,(T).
That is, Mo(T)*+=M,(T).

Now notice that we can write M, (T) in another way. Let PM be the pseudo-
measure topology on M(T): ||ullpyy=sup,cz |2(n)]. If 2 denotes the trigonometric
polynomials and A Lebesgue measure on T, then My(T) is the PM-closure of 2.A.

If M denotes the usual norm topology on M (T); then the M-closure of 2.¢,
for any oeM(T), is L' (o)={f.0: [|f|d|o|<e}. It is clear that L(o)‘=
{E: |o|(E)=0}, whence the Radon—Nikodym theorem is equivalent to the asser-
tion Ll(o)*t=L'(s). This leads us to ask if the analogous theorem holds for
PM. In other words, if LFM (o) denotes the PM-closure of 2.g, is L™ (g)*+=
L™ (g)?

Consider now Wiener’s theorem [3, p. 42], which says that for all uc M(T),
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exists and equals

@ VW = (2, cx l({rh

In particular, V(u)=0 if and only if u is a continuous measure: peM_(T). Let us
introduce the “Wiener norm”

1 1/2
Iulwy = Isvl;lf(’) (Z—N-f—-l— 2|n[§N m(n)lz] .

Then V(u)=0 if and only if u belongs to the WN-closure of .4, which we denote
L%N(2). In other words, L"¥(1)=M_(T), from which it immediately follows that
LYN¥(J)LL=L"%(2). Again, we ask if this holds with 1 replaced by any ocM(T).

2. Statements of results

The problem appears quite difficult for the PM topology. In view of the fol-
lowing theorem, LF(0)**=L"(c) for discrete o (6€ M,(T)) and the general
problem is reduced to the case of continuous o:

Theorem 1. If o, and o, are the continuous and discrete parts of any o€ M(T), then
L™ (o) = L™ (o) +L*(0,)
and L™ (¢,)c M (T).
On the other hand, the Wiener norm is fully tractable. Let supp ¢ denote the

support of ¢ and let M_(E) be the class of continuous measures supported in L.
Then the fact that LYY (¢)1+=L"¥(s) follows from

Theorem 2. For all € M(T),
L¥¥(0) = M, (supp 0)+L*(0,).

The proof of Theorem 2 is based on a reduction to the weak* topology. For it
will be easy to show that the weak*-closure L**(¢) of £.0 is given by

Proposition 3. For all cc M(T),
L"*(¢) = M (supp o).
Of course, it follows that L**(¢)*+=L"*(s). The reduction to this topology

will be effected by means of a surprising

Lemma 4. If {u,} is a sequence of positive measures converging weak® to a con-
tinuous measure v, then |, —v|wy—0.

In words, this says that pointwise convergence A, (n)—?9(n) implies uniform
Cesaro convergence! This lemma, interesting in its own right, has the following
extension.



Wiener’s theorem, the Radon—Nikodym theorem, and M,y (T) 279

Proposition 5. Let {u,} be a sequence of positive measures converging weak*
10 v. Let E={tcT: v({c})=0}. Then the following are equivalent:

) [#tm—V]wn ~ 03
ii) Jim sup ltm ({EH —v({H] = 03
iif) lim sup ltm({P —v({h)] = 0.

Easy examples show that the hypothesis - 4, =0 is indispensable.

The reader has surely wondered whether a general result holds for all “‘reason-
able” topologies: if € is a “reasonable” topology on M(T) and L¥(¢) denotes the
%-closure of 2.0, is L%(6)*+=L%(0)? If ¢ is a discrete measure with finite sup-
port, the answer is trivially “yes” because of the well-known fact that finite-dimen-
sional vector spaces have a unique topology, which is hence complete. Therefore
L#%(6)=L(0). In general, however, even for discrete measures or Lebesgue measure
and even for norm topologies, the answer is “no .

Theorem 6. Define

tul = sup ({E2L: nezjoian s nez),

where p is the continuous part of u singular to A. Then

LY () = My()+L(})
and for discrete o,
My(E)cL" (o) M,(E)+L(Alg),
where E=supp o.
It follows that L""(A)*+=M(T)=L"" (1) and that L'"(c)t+{=M(E)=L"" (o)

Jor o€ M (T).
3. Proofs

We note first the following trivial facts. For any topology ¥, L¢(c)cL®(c)*+.
If 4,c%,, then L%1(0)>L%(c). If ¥ is weaker than the M-topology, as all our
topologies are, then L%(o) is the é-closure of L!(s). We denote the dual of M(T)
when equipped with the topology € by (M(T), €). For cC M(T), let ann, ¢ be the
annihilator of ¢ in (M(T), ¥). For % c(M(T), ), let ker# be the kernel
of % in M(T). Then a well-known consequence of the Hahn—Banach theorem says
that for any locally convex % and any subspace ¢ M(T), the €-closure of ¢ is
equal to ker (anng ¢). In particular,

3) L% (5) = ker (anng L*(0)).
Proposition 3 follows immediately from this. For we have (M(T), w*) =¢(T),
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so that
L**(6) = ker (ann,»L*(0))

= ker {f¢(T):f=0 on supp ¢} = M(supp o).
The next lemma is useful in proving Theorems 1 and 2.

Lemma 7. If ucL"N(0), then p,cL'(c,).

Proof. With V() as in (1), we see by (2) that for all 7, |u({t)|=VW)=lulwy,
so that p—u({z}) is WN-continuous. Thus, if ¢({z})=0, also u({z})=0 for all
u€L¥N (o).

From the well-known fact that |o,lpy=lclpy for any o (see [2, p. 110]),
we deduce

Lemma 8. o—o0, and oo, are PM-continuous. M (T) and M(T) are PM-
closed.

We may now proceed to the

Proof of Theorem 1. By Lemma 8,
LPM(0) = L™ (6)+ L™(3)
and L™(¢)c M (T), L™ (c))c M,(T). Also, by Lemma 7, L"N(¢,)nM,(T)=
LY (o). Since |pllpn=[pllpsr=Iul, we have
L (o) L™ (s ) L¥N (6 )nM,y(T) = L*(0,),
from which the theorem follows.
Proof of Lemma 4. Let

Q,(Wy=sup {|uI|: I is a closed arc of T of length #}. Then Wiener showed
(see [1, Chap. II, § 2]) that for all g,

1 . n? 1

ST Do OO = 2 2, ().

Hence if 4,=sup, Q (h), we have

Hp—V
n:C
””m_vnzWN = T Am,

where C=sup,, [|ttn—V|py<=. But 4,, 0 as m— (see[7, p. 317} or [4, Chap. 2,
Theorem 1.1, p. 89] for the case v=4; the proof is the same for all veM ).

Theorem 2 now follows from Lemma 7, Lemma 4, and the following two
propositions.

Proposition 8. If 0=vc M (supp o), then there exist positive u,€L(c) con-
verging weak™® to v.
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Proof. That the result holds when v is concentrated on a point < is trivial:
[Vllaed o1 () |a||I,, »*, v, where I,=(t—1/n)-7+1/n. Hence the result holds when v
is discrete. But it is well-known that we can use positive discrete measures to approxi-
mate any positive measure. [J

Proposition 9. If u<vecL™™(q), then ucL™ (o).

Proof. 1t is clear that if vcL'™ (o), then #.vcL*™(0). Therefore L™ (o)

contains the PM-closure of & .v, which in turn contains the M-closure, namely,
L(v).

We now show how Proposition 5 follows from Lemma 4.

Proof of Proposition 5. That (i)=(ii) follows from (2), and (ii)=>(iii) is trivial.

Assume (iii). Write EC=T\E, 0p=fn|ge> a0d @n=(ng)—vs- Then o,+
Om = =Yg~ v.. Splitting g, =07 —¢;, into its positive and negative parts, we
claim it suffices to show that |lg;|l,,~0. For then we would have o,,+ o, Xy,
But 6,+0; =0, so that Lemma 4 implies ¢,,0;; Z~~v,. Since o, %~ 0, we con-
clude that 6, + 0, 22> v,, whence p,—v;2% v,, or (i).

To show that [o;ll;—~0, pick ¢>0. Choose a finite set FCE such that
Seerv({t})<e. Let my be such that sup, g |ua({t})—v({z})|<e/|F| for m=m,.
Wiite E,={t: p.({c})<v({z})}. Then we have

lealln = 2, cp- @D =yt = 25+ 2, g

= Flpr+ S v (@) < 2

for m=my.
Our last task is the

Proof of Theorem 6. Let A,(u)=fi,.(n). Then A,6(M(T), | I, whence by (3),
LM () cker {4,)=. = My(T) +L(D).

Since [ul=|ully, we have L'(A)cL'"(1). It remains to show that M,(T)C
L'"()). Now if peMy(T) and Dy(t)=3,=ye™™ is the Dirichlet kernel,
we have
|(Dy* )~ (m)—A(n)|

[n{+1

[Dy*p—pl| = sup

_ o O _ el
T Rl N+2

Hence Dy*u Ll u. Since Dy pucL(J), it follows that ucL""(A).
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The argument above also shows that for any discrete o,
L"(6)c M, (T)+L1(2).
But it is clear that every C* function belongs to (M (T), | ), whence by (3),
L""(¢)c M(E). Combining these two inclusions gives
L' (o) M,(E)+L*(Ap)-

Finally, in order to prove that M,(E)cL""(qs), it suffices to prove that 6,€L"" (o)
for every x€E, where J, is the Dirac measure at x. But for every &=0, there exists
y with |x—y|<e and 6,€L*(0). Since

o B8] _ et e
Hax 5)’” - S’l‘.lp |n|+1 - Sup I"H‘l
= su M S'zn[x— ‘ < 27e
ST e T
the result follows.
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