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1. Introduction 

Let M(T) denote the class of complex Borel measures on the circle T = R / Z  
and Mo(T ) the subclass {/l: lim,_.**/~(n)=0}. It was recently proved [5, 6] that 
M0(T) is characterized by its class of common null sets. To make this more precise, 
we use the following notation. For any subclass CgcM(T), we let 

cg• = {EcT: E is a Borel set and VpCcg IpI(E) -- 0} 

be the class of common null sets of cg. Likewise, if 8 is a class of Borel subsets of T, 
we write 

6"" = {pEg(T):  VEEgI~I(E) = 0} 

for the class of measures annihilating r Then by definition, the class of sets of 
uniqueness in the wide sense, U0, is equal to M0(T) • and [6] shows that U~ =M0(T ). 
That is, Mo(T) •177 =Mo(T ). 

Now notice that we can write M0(T ) in another way. Let PM be the pseudo- 
measure topology on M(T): I[/~[leM=supnez I~(n)l. If ~ denotes the trigonometric 
polynomials and 2 Lebesgue measure on T, then Mo(T ) is the PM-closure of ~ .2 .  

If M denotes the usual norm topology on M(T), then the M-closure of ~ .  0., 
for any O.EM(T), is La(o.)={f.o.: f Ifldlo.l<oo}. It is clear that La(o.)• 
{E: I0-1 (g)=0}, whence the Radon--Nikodym theorem is equivalent to the asser- 
tion Ll(o')•177 This leads us to ask if the analogous theorem holds for 
PM. In other words, if LeU(o.) denotes the PM-closure of ~.o' ,  is Leu(o.)•177 
LPM(O.) 9. 

Consider now Wiener's theorem [3, p. 42], which says that for all pEM(T), 

(1) V~)  -- l im  ( 
1 

2N+ 1 ZIn'-~N [/2(n)l*J 
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exists and equals 
(2) V(#) = (~Yr Itt({T})12) l/z" 

In particular, V(#)=0 if and only if/z is a continuous measure: ttEM~(T). Let us 
introduce the "Wiener norm" 

 .11 
N ~ 0  ~. x ~ i v  T 

Then V(#)=O if and only if/t belongs to the WN-closure of ~ .2 ,  which we denote 
LwN(2). In other words, LwN(A)=Mc(T), from which it immediately follows that 
LwNOO•177 Again, we ask if this holds with 2 replaced by any a~M(T). 

2. Statements of results 

The problem appears quite difficult for the P M  topology. In view of the fol- 
lowing theorem, LeM(a)•177 for discrete a (a6Mn(T)) and the general 
problem is reduced to the case of continuous a: 

Theorem 1. I f  a c and a n are the continuous and discrete parts o f  any a C M(T), then 

L eM (a) = L P~t (ac) + L 1 (an) 
and LPM(ac)cM~(T). 

On the other hand, the Wiener norm is fully tractable. Let supp a denote the 
support of a and let M~(E) be the class of continuous measures supported in /~. 
Then the fact that LWU(a)•177 follows from 

Theorem 2. For all o-6M(T), 

L wzr (a) = M~ (supp a) + L  1 (ad). 

The proof of Theorem 2 is based on a reduction to the weak* topology. For it 
will be easy to show that the weak*-closure LW*(a) of ~ .  a is given by 

Proposition 3. For all a6M(T), 

LW*(a) = M(supp a). 

Of course, it follows that L'~'*(a)l• The reduction to this topology 
will be effected by means of a surprising 

Lemma 4. I f  {/tin} is a sequence o f  positive measures converging weak* to a con- 

tinuous measure v, then [[I~m--VHwN~O. 
In words, this says that pointwise convergence ~m(n)-*9(n) implies uniform 

Cesaro convergence! This lemma, interesting in its own right, has the following 
extension. 



Wiener's theorem, the Radon--Nikodym theorem, and Me(T) 279 

Proposition 5. Let {Pro} be a sequence o f  positive measures converging weak* 
to v. Let E={zCT:  v({z})r Then the following are equivalent: 

i) I[#m-vllwN --'- O, 

ii) lira sup l,Um({'r})-v({'r})[ = O; 
m ~ o  t ~ T  

iii) lim sup Ipm({'r})-v({'c})l = O. 
m ~  t C E  

Easy examples show that the hypothesis /z,, =>0 is indispensable. 
The reader has surely wondered whether a genera ! result holds for all "reason- 

able" topologies: if c6 is a "reasonable" topology on M(T) and L~e(r denotes the 
~-closure of ~ . a ,  is Le(a)•177 If  a is a discrete measure with finite sup- 
port, the answer is trivially "yes" because of  the well-known fact that finite-dimen- 
sional vector spaces have a unique topology, which is hence complete. Therefore 
Le(a)=LI(a) .  In general, however, even for discrete measures or Lebesgue measure 
and even for norm topologies, the answer is "no '. 

Theorem 6. Define 

l i . ! l  --- su--p n Z}o{ISl::(n)I: nCZ)) 
where #,c is the continuous part o f  IX singular to 2. Then 

= n . ( x ) +  L (z) 
and for discrete a, 

where E = s u p p  a. 
It follows that L" ii ( 2 ) • 1 7 7  Ii (2) and that L II it ( a ) • 1 7 7 1 6 2  iI (a) 

for 

3. Proofs 

We note first the following trivial facts. For  any topology c~, L~(a)~L~e(a)•177 
If  ~tc~f~, then L~l(a)~L~e'(cr). If ~ is weaker than the M-topology, as all our 
topologies are, then L~e(a) is the X-closure of  Ll(a).  We denote the dual of  M(T)  
when equipped with the topology c~ by (M(T), c~),. For c c M ( T ) ,  let annv c be the 
annihilator of c in (M(T), c~),. For  q / c (M(T) ,  c~),, let kerq /  be the kernel 
of q / in  M(T). Then a well-known consequence of the Hahn--Banach theorem says 
that for any locally convex ~ and any subspace ~ c M ( T ) ,  the C~-closure of  ~ is 
equal to ker (ann~ ~). In particular, 

(3) L~e(a) = ker (ann~Ll(a)). 

Proposition 3 follows immediately from this. For we have (M(T), w*)'=e(T),  
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so that 
LW*(a) = ker (annw.L'(a)) 

= ker { fC(T) : f  = 0 on supp a} = M(supp a). 

The next lemma is useful in proving Theorems 1 and 2. 

Lemma 7. If/t~LWN(a), then ltd~La(ad). 

Proof. With V(/~) as in (I), we see by (2) that for all z, I~((T))I~_ V(~)---<ll~llwN, 
so that /z~t({z})  is WN-continuous. Thus, if a({z})=0, also #({z})=0 for all 
#6LWN(a). 

From the well-known fact that Haj][e.,_-<][a][eu for any a (see [2, p. 110]), 
wo deduce 

I, emma 8. a~-~a a and a~.a c are PM-eontinuous. Mc(T ) and Ma(T) are PM- 
closed. 

We may now proceed to the 

Proof of Theorem 1. By Lemma 8, 

L PM ( a )  = L TM (ac) + LeU(ad) 

and LeM(a3cMc(T), LPM(a3cMa(T). Also, by Lemma 7, LWN(a3c~Md(T)= 

Ll(ad). Since II~l[ wN<- -ll~ll~u<=l[~[IM, we have 

L~ ( ~ )  c L "~  ( ~ )  c L *~ (~d) n g ~  (T) = L ~ (~ 

from which the theorem follows. 

Proof of Lemma 4. Let 
f2u(h)=sup {[/d[: I is a closed arc of  T of length h}. Then Wiener showed 

(see [1, Chap. II, w 2]) that for all/a, 

2 N +  1 ZI"I~-N l/~(n)lZ II~ll~C2. . 

Hence if Am=SUph f2um_ , (h), we have 

~ $ C  . 

[I/~m-- VI!~'N ~ ---T- Zlm, 

where C = s u P m  []/tm--Vl[M<~. But  A m § as m ---~:~ (see [7, p. 317] or [4, Chap. 2, 
Theorem 1.1, p. 89] for the case v=2 ;  the proof  is the same for all v6Mc). 

Theorem 2 now follows from Lemma 7, Lemma 4, and the following two 
propositions. 

Proposition 8. I f  0-<vEM(supp a), then there exist positive Izm6L~(a) con- 
verging weak* to v. 
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Proof. That the result holds when v is concentrated on a point ~ is trivial: 
IlvllM/lal(I~) I 11I  where I ~ = ( ~ -  l/n). z+ 1In. Hence the result holds when v 
is discrete. But it is well-known that we can use positive discrete measures to approxi- 
mate any positive measure. 1 

Proposition 9. I f  #<<vELeM(a), then IzELPU(a). 

Proof. It is clear that if vELPM(t7), then ~.YcLPM(tr). Therefore LPM(tr) 
contains the PM-closure of  ~ . v ,  which in turn contains the M-closure, namely, 
L~(v).  

We now show how Proposition 5 follows from Lemma 4. 

Proof of Proposition 5. That (i)~(ii) follows from (2), and (ii)=,(iii) is trivial. 
Assume (iii). Write EC=T'x.E, trm=ltm[e,, and Om=(PmlE)--Vd. Then am+ 

0~=/tm--Vd w* re. Splitting 0~=Q + - Q ~  into its positive and negative parts, we 
claim it suffices to show that I]~IIM-~0. For then we would have a~+Q + '~---~* vc. 
But + am+Q~ _0 ,  so that Lemma 4 implies %Qm + w---~ v~. Since 0ff wN 0, we con- 
clude that a,,+Om ~'N vr whence pm--Vd WN V,, or (i). 

To show that ll~mllM-~0, pick e>0.  Choose a finite set F c E  such that 
~ F v ( { z } ) < e .  Let no be such that for m~mo. 
Write E ~ = { z :  pm({Z})<v({z})}, Then we have 

8 

for m>=mo . 

Our last task is the 

Proof of Theorem 6. Let An (p) = /~sc (n ). Then An~(M(T), II II)', whence by(3),  

L"" () . )cker  {A,}~_~. = Md(T) q-Ll(it). 

Since II#II<=II/~IIM, we have Ll(2)cL""( ; t ) .  It remains to show that Ma(T)~  
L"J:(2). Now if g6Md(T) and DN(t)=~t,l~Ne*~i=t is the Dirichlet kernel, 
we have 

[(DN* #)" (n)-- ~ (n)l IID~*~-/I = sup [nl+l 

= sup I~(n)l ~ II/IM 
Inl>N lnt+ 1 - N + 2 "  

Hence DN./~ "-~" ~t. Since Ds,pELI(2), it follows that g~L u n(;t). 
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The argument  above also shows that  for  any discrete a, 

LII it (a) c Md (T) + L ~ (2). 

But it is clear tha t  every C = function belongs to (M(T),  II II)', whence by (3), 

Lll ti ( a ) c M ( E ) .  Combining these two inclusions gives 

Lii tt (a) C M d ( E )  +L1  (21e). 

II Finally, in order  to  prove that  M d ( E ) c L  Ij (a), it sutfices to  prove that  6~EL" it(o) 

for  every xEE,  where 6~ is the Dirac measure at x. But for  every 8 > 0 ,  there exists 

y with I x - y l < e  and 6yELl(a).  Since 

II,L-0~[I = sup 13x(n)-3,(n)[  = sup {e-Z="X--e-ZZf'l 
Inl+l  In l+l  

t27rnx-27rnY[ < 2 n I x - y  I < 27rs, 
-<_ sup lnl + 1 

the result follows. 
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