On the hyperconvexity of holomorphically
convex domains in the space C”
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§1. Preliminaries

In 1974, Jean-Luc Stehlé has given in his paper [4], such a conjecture? that
holomorphically convex domain D=D in C" is hyperconvex. In 1976, Jean-Louis
Ermine has shown in his paper [1] that this conjecture is positive in case of holo-
morphically convex Reinhardt domains®. But, in general case, it is as yet unknown
that this conjecture is positive or not. Evidently, holomorphically convex domain
in C" can be approximated by an increasing sequence of analytic polyhedra and
analytic polyhedra are hyperconvex.

The purpose of this pape: is to give such a proof that this conjecture is positive
in case of holomorphically convex domains of some type by means of the above
approximation.

Definition 1.¥ Let D be a relatively compact open set in C". D is said to be
hyperconvex if and only if there exists a plurisubharmonic function p(z) defined on
a neighbourhood of D and negative on D, such that

{z€D|p(2) = c}
is a relatively compact set in D for any c¢=<O.

The following lemma is easily shown from Definition 1.

1) Cf. [4], pp. 167, 177 in which D is relatively compact in C".
%y Cf. {1}, pp. 131—133.
%) Cf. [4], p. 163.
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Lemma 1.9 Let D be a relatively compact open set in C". D is hyperconvex
if and only if there exists a plurisubharmonic function p(z) defined on a neighbourhood
of D and negative on D such that for z€D

zllr.?p r(z) =0.
In case of D———ﬁ, Lemma 1 is modified by J.-L. Ermine as follows:

Lemma 2. Let D=D be a connected and relatively compact open set in C".
Suppose that for any sequence S ={z,}, véN which has no accumulating point in D,
there exists a plurisubharmonic function pg(z) defined on D, such that pg(z)<0O
on D and

lim_ pi(z) =0,
A oo
Then, D is hyperconvex.

Proof. The proof can be seen in [1].

§2. Indicatrices of Finite Order

Let D, and D, be domains in C” such that C"—D,ccD;. Let fi(z) and
J2(z) be holomorphic on D, and on D, resp., and both of f;/f; and fy/f; be
holomorphic on D;nD,.

We consider a current (in the sense of G. de Rham) on C", defined by

0, =2id dlog|fi,(2)] (k=1,2).
Because of the pluriharmonicity of log |f;/f:l, we have, on D,nD,,
fi
Je
and then ©,=0,. Let us denote f=f; and D=D, and give the following definition.

@1_93 = 2ldz di log = 0,

Definition 2.9 The current on C*:
O = 2id,d;log|f(2)]

is said to be a current associated to the hypersurface V" '={f(z)=0}cc D, where
f(2) is a holomorphic function defined on a bounded domain D in C"

49 Cf. [4], p. 163. The limit lim, .. gp p(z) means that for any &=>0, there exists a neighbour-
hood U(dD) of D, such that | p(z)|<e, for every z€U(dD).

%) Cf. [1], p. 136, where the property is called “HC-convex”.

&) Cf. [2], pp. 368—369.
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Since this current @ is positive, closed and of type (1, 1),” we construct a form

(2]

i
S ~n_1 ~_ -
V=—mgnd™, d=+ d,d;log >, z,7,

n
and give the following definition.

Defimition 3.® The function

V(@) = ¥ defined on =0
( ) f izl =<t v ° -

is said to be a projective indicatrix (of the current ©) whose centre is the origin or
simply an indicatrix (of ©) of centre O.

It is shown in the paper of P. Lelong ® that there exists a limit ¥#(0)=
lim, o #(#)=>0, and the function §(7) is increasing and positive for 7=0.
Definition 4.’ Indicatrix ¥(f) defined for t=1,=0 is said to be of finite order
A, if and only if

Definition 5. A current © which is positive and closed is said to be of finite order,
if its indicatrix is of finite order.

Indicatrices of currents satisfy the following lemma.

Lemma 3.*Y Let #(f) be an indicatrix of a current © which is positive and
closed on C". Then, the following two conditions are equivalent for s=0, a=0

@ [rosav@) <+

.. s beo o st co
(i) tllinmv(t)t =0 and f ¥()¢ dt < + o,

Proof. The proof is easy.

Lemma 4. Let 1 be an order of ¥(1) and ly=inf {s| [} “t~°d¥(t)< +<=}. Then,
2=2,.

7y Cf. (21, pp. 365—369 & [31, pp. 244—245, pp. 247—250.
8) Cf. [2], pp. 371—373.

% Cf. {2], pp. 371—372 & [3], pp. 259—261.

10 Cf. [2}, p. 373.

1) Cf. [2], pp. 373—374, Proposition 2.
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Proof.
Ao = inf{sltliin V() = 0}

= sup {SI,EEL §(e)r = Cy > 0}

()

= sup{ l hm log—= = log Cs}

This shows that 1=4,.
Lemma 5. If an inequality

[T retai() < e

holds for an integer p and a=0, the order of ¥(f) is finite.
Proof. The proof is easy from Lemma 4.

By means of the current of finite order, the following important properties of
hypersurfaces have been obtained by P. Lelong and H. Skoda.

Theorem 1."® Let f(z) be a holomorphic function on a domain D in C* and
© be a positive and closed current on C" associated to the hypersurface V" ‘=
{f(2)=0} containing no origin. If O is of finite order, there exists an entire function
F(z) on C", such that

V-l = {F(2) = 0}.

Proof. The proof can be seen in [2].

In the paper of H. Skoda, a part of conditions in Theorem 1 is somewhat
modified. It is as follows:

Corollary™. Suppose that with the same hypothesis as Theorem 1,
f:“’ 12145 () < + oo,
where V(¥) is an indicatrix of @, u is an integer and a=0. Then, there exists an entire
Sunction F(z) on C", such that
yn-1= {F(z) = 0}.
%) Cf. [2], pp. 394—397, Theorem 5.

13y Cf. [5], p. 138, Theorem 7.2. The hypothe31s that @ is of finite order is replaced with the
finiteness of integral.
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§3. A Class of Holomorphic Functions

Definition 6. A set R, of functions that are holomorphic on a domain DcC"
is said to constitute a class, if the relation feK;, implies that cfc K, where c is
an arbitrary complex number.

For example, the set P, of all polynomials defined on D, or the set &, of
all holomorphic functions defined on D constitute a class resp., and G, contains
every class R,. Let us consider a particular class as follows:

Lemma 6. Let Oy, be a current associated to the hypersurface Vf"‘1=
{f@=9\/e®, v be a complex const.} containing no origin. Let us define
Fo={f(2)O®p| the order of Oy, be finite for a complex const. y}. Then,
&p constitutes a class.

Proof. Suppose that f(z)€F,. Then, g=cf (c: complex number) is also holo-
morphic on D. The currents @, and @,,., that are associated to the hypersurfaces
Ve—t={f(2)=y} and V" '={g(z2)=cy} resp. have the following relations:

Oy = 2id, d;loglg—cy| = 2id, d;loglc(f—7)| = Ogy-

Let ¥,(f) and ¥,(¢) be indicatrices of Oy, and O, on |z[|<t resp., and
Ay and A, be orders of ¥, and ¥, resp. Evidently, we have

This shows that
g=cf€%p.

Hence, &, constitutes a class.

Definition 7. Let D be a relatively compact open set in C". D is said to be
K-convex, if and only if for any compact set KD, the set

R= N {zD|\f(2)| = sup |f(O)]}
fesy fek

is also compact, where R, is a class of functions defined in Definition 6.

Remark. As a particular case of Definition 7, F-convexity, PB-convexity and
®-convexity can be defined corresponding to classes &p, B, and G, resp.
Especially, ®-convexity is also called holomorphic convexity.

In Main Theorem, we are to give a proof that the Stehlé’s conjecture is positive
in case of F-convex domains in C”, and for that purpose we prepare for a definition
of analytic polyhedra on class &, and a lemma.

Let us define an analytic polyhedron on class &, as follows:
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Definition 8. Let D be a relatively compact open set in C". An open set
P(cc D) is said to be an analytic polyhedron on class &p, if and only if there exist
k holomorphic functions f(z)€Fp, for a=1,2, ...,k defined on a neighbourhood
U(P)(ccD), such that

P={zUP)| D <1, a=1,2,.., k}.

An approximation to the -convex domain D in C" by the sequence of ana-
lytic polyhedra on class &, is given by the following lemma.

Lemma 7.)9 Let D be a relatively compact open and §-convex set of C". Then,
it is the union of an increasing sequence of bounded analytic polyhedra P,, véN on
&p, such that

P,ccP,,,ccD, D=JP,.

Proof. Since D is the union of an increasing sequence of compact sets K,
vEN, it is sufficient to construct an analytic polyhedron P for an compact set
K of this sequence, such that

KcP, PccD,

and the functions f,(z) (=1, 2, ..., k) defining P, belong to &;.
Since D is a relatively compact F-convex domain and KccD, there exists

a compact set K, such that
Kc K c= D,

and for an arbitrary point z,€9D, there exists a neighbourhood U(z,) satisfying

the relation
U(zgnDcD—-K

(see Definition 7). For a point zg€U(z)nD, there exists a function f*(2)€Fp
satisfying the following properties:

S‘Elg [z =1, [f; (z)| = 1.
Because of the construction of K, it is evident that

| (2 =1
for every point zcU (z5)nD.
Since dD is compact, @D can be covered by a finite number of neighbourhoods
U(z,) of z,£0D (a=1,2, ..., k) which are constructed as the above U(z,), and
the corresponding functions

(D) = f+(€Fp

1y Cf. [6], pp. 140—141.
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(zF is an arbitrary fixed point in U(z,)) satisfy the following properties:

sup [ £z (2)] = 1
z€R

and
,(®»l=1 on U(z)nD.

Therefore, we have obtained the analytic polyhedron
P={zD| |/, <1, f,€Fp, a=1,2, ..., k}
which possesses the following properties:
KcKcP, PccD.
Thus, our proof of Lemma 7 is completed.

Remark. As we see in the proof of Lemma 7, we can choose a neighbourhood
U(@D) of oD in C" such that the relation

U@D)AnDcD—P

holds and every function f,(z) (¢=1,2,...,k) defining P satisfies the following
inequality
22 =1 on U@D)nD.

§4. Main Theorem

Main Theorem. Let D=D be a connected, relatively compact and §-convex
domain in C". Then, D is hyperconvex.

Proof. Let S=1{z,}, véN be a sequence of points in D, such that S has no
accumulating point in D. To prove our theorem, it is sufficient to construct a pluri-
subharmonic function pg(z) defined on a neighbourhood of D and negative on D,
such that for §={z,}, véN,

VEIJZL, 2s(z,) =0 (by Lemma 2).

There exists a set Eg(C0D) of accumulating points of {z,}, such that for any
20€Es, {z,} has a subsequence {z, } convergingto z,. Then, it is sufficient to prove

Jm ps(z,) =0
for the above {z, }.
Kk

Since D is §-convex, there exists an increasing sequence of bounded analytic
polyhedra P,, véN on class &p, such that

z, P, (u=12,...,v)
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and
P,ccP,,y,ccD, D=JP, (by Lemma 7).

Corresponding to {P,}, véN, let us consider a sequence {g,}, véN such that
&,>0,¢,~0 (as v—+oo).
For each P,, we can choose k, holomorphic functions f, ,(z) (x=1,2, ..., k,)
defined on a neighbourhood U(P,)(c D) of P,, such that
P, ={zeUP)|If,..d <1, a=1,2,..,k)

Since f, ,€&p, the current @ ol associated to the (complex) hypersurface

v
[¢4
V:’j;l ={/.,.(2) = 7|7 be a complex const. and [y| = 1}

is of finite order. Then, there exists an entire function FU)(z) on C”, such that
)
Vil ={F"(z2) =0} (by Theorem 1).

Let us consider a fixed point Z€9D —Es. For any neighbourhood ¥V (2) of Z,
there exists a number vy, such that for any v=v,

OP,NV(Z) = 0,

and for a point zJ€dP,NV (£), there exists at least a function f, ,(z) defining P,,
such that
L) =7, BNI=1L

We can assume without loss of generality a=1, y*=1 and consider an entire func-
tion F%(z) corresponding to the hypersurface {f, y(z)=1}. Since log |F%(2)|=
—B,>—2 (B,=0: const.) on a neighbourhood U,(@DY<U(D)) of 4D as shown
in Lemma 7, Remark, log |F{}(2)] is continuous on U,(dD) and from the compact-
ness of 9D, there exist

) max log |[F}(9)| = M,, minlog|F(2)| = m,
an

N 1

m, = mv—;:_'(A/Iv—mv)s
(in case of M, = m,, M, = m,~1—1/s,).

The real hypersurface W, ,={| fm(z)|=1| Jv,«(Z)EEp) is expressed as a union
of complex ones, such that

Ww = U{fe(2) = 7| £,,.(2)€8p, 7 beaconst. and |y| = 1}.

Therefore, for each o (x=1, 2, ..., k,) and each y (Jy|=1), we can choose a number
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¢y, >0, such that

sup (log |F{7) (Z)I“Cv,a) <, on D,
1=a=k,,|y|=1
where F0)(z) is an entire function corresponding to the hypersurface {f, ,(z)=7y}.
Because the family of entire functions F)(z) are uniformly upper bounded on
compact set DX {|y]=1}" Then, the function
92 = sup{log |} (2], _ up (log [F2 ()] —c,,2)}
=ask,,|y=
is evidently continuous plurisubharmonic on a neighbourhood U(D) of D and
satisfy the following relations:

max ¢, (2) = max ¢, (z) = M, (by maximum principle)
and
min ¢,(2) = m,.
Let us define a function

&l (2)— M,
L
(in case that M,=m,, Y, (z)=¢,{¢,(z) —M,}). Then, ,(z) is continuous plurisub-
harmonic on U(D) satisfying the following inequalities:
¥, (2)<0 on D,
—&,=y,(2)=0 on 0D,
and especially on the point z}
&{ sup  (log|FN ()] —¢,.)— M.}
-

lﬂ (Z*) _ 1=a=k,,|y|=1

&y (mv —M, v)
M v, M yv— My
(in case that M,=m,, ¥, (zH<e,(,—M,)< —1—¢,).

Furthermore, let us construct a function pg(z) in the form of the upper envelope,
such that

<_1—8va

ps(2) = lipsupgs(©),  gs(@) = sup ¥, ().

Obviously, ps(z) is continuous plurisubharmonic on U(D), and ps(z)=0 on D.
But, we can not accept the equal sign, because of W ,(z})< —1, z¥eD, véN (by
maximum principle). Then, we have

ps(2)<0 on D.

At last, we are to show that

v!}glw Ps (Zv) =0.

15 Cf. [2], pp. 376—379 Proposition 5 in which there exists a number 6 >0 such that |ja|| > =0
and [2], pp. 394—397, Theorem 5.
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From the construction of pg(z), it is shown that for any z,€Eg, there exists a
neighbourhood U(z,) which is independent of P,, such that

ZeU(zy)

and pg(z) is continuous on U(z,). Therefore, for any ¢=0,

Ps@—psGz)l <5 on Uz).

For this ¢, we can choose a sufficiently laige integer k,, such that

0<svk<% for k=k,.

Since ps(zg)=supeen iV, (20} —&, =¥, (20)=0, it follows that

&
) < ps(zy) = 0.

Hence, we can conclude that
ps(z,)] <&
for z, €SnU(z,), k=k,. This shows in general that for §={z,}, véN,

Jm_ ps(z,) = 0.

Thus, our proof of Main Theorem is completely finished.
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