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-Macaulay type 

Let R be a reduced local Noetherian ring of dimension one, and assume that 
the integral closure /~ is finitely generated as an R-module. The main theorem of 
[13] gives necessary and sufficient conditions in order that R have only finitely many 
non-isomorphic indecomposable finitely generated torsionfree modules. These ne- 
cessary and sufficient conditions (listed in (1.2)) were introduced by Drozd and 
Roiter in [2] and shown to be equivalent to finite CM type for localizations of 
orders in algebraic number fields. (See also [8] and [5].) Since the non-zero finitely 
generated torsionfree modules are exactly the maximal Cohen--Macaulay modules, 
these rings are said to havefinite CM type. In the geometric case, when R is the local 
ring of a singular point of an algebraic curve over a field k, these conditions impose 
stringent conditions on the singularity: Its nmltiplicity must be less than or equal 
to three, and when the multiplicity is three there is an additional condition, harder 
to describe in geometric terms. While this latter condition is easy to test for any 
specific singularity, it seems worthwhile to give an explicit classification, up to 
analytic isomorphism, of those singularities whose local rings have finite CM type. 

In their 1985 paper [4] Greuel and Kn6rrer gave explicit equations for the 
plane curve singularities of finite CM type over an algebraically dosed field of 
characteristic zero. The classification in positive characteristics (but still over an 
aigebraically closed field) was obtained by Kiyek and Steinke in [99]. The classifica- 
tion given here (in w 5): is valid over arbitrary fields and includes space curves as well 
as plane curves. 

An earlier version of  this paper avoided the case of  fields of characteristics 2 
a n d  3. 'I am grateful to the referee for recommending that all characteristics be 
t rea tedand for-providing a key idea in the analysis. 

1) This research was partially supported by a grant from the National Science Foundation. 
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1. Pullbacks and Artinian pairs 

Let R be a reduced local Noetherian ring of dinaension one with finite normaliza- 
tion /~r Let e be the conductor of R in /~, and put A=R/e,  B=R/e.  Then R is 
represented as a pullback: 

; ~ (1.1)  
A o B  

The bottom line of the pullback is an Artinian pah', that is, a module-finite 
extension A ~ B  of Artinian rings. ~fhe symbols A ~ B  and (A ,B)  will be used 
interchangeably. Artinian pairs (Ai, Bi) are said to be isomorphic if there is a 
ring isomorphism f :  B~B~. carrying Aa onto A2. If the A~ are k-algebras, we 
define k-isomorphism by requiring f to be k-linear. By an (A, B)-module, we mean 
pair (V, W), where W is a finitely generated projective B-module and V is an 
A-submodule of W satisfying BV= HI'. A morphism from (V~, W~) to (V2, W2) is 
simply a B-linear homomorphism W~-*I~ carrying V~ into ~.  The (A, B)-modules 
form an additive category, and we have the notions of direct-sum decompositions 
and indecomposables. The Artinian pair (A, B) has finite representation type pro- 
vided there are, up to isomorphism, only finitely many indecomposable (A, B)- 
modules. 

1.2. Proposition. Let R, A, B be as above, and let M be the maximal ideal of  R. 
The following are equivalent." 

(a) R has finite C M  type. 
(b) The M-adic completion k has finite CM type. 
(c) The Artinian pair (A, B) has finite representation type. 

These conditions imply 
(F1) B is generated by 3 elements as an A-module; and 
(F2) (mB+A)/A is cyclic as an A-module, where m=M/c  is the maximal 

ideal o f  A. 
/ f  (F1) and (F2) hold and the residue Jield(s) oJ B are separable over the residue field 
o f  A, then R has finite CM type. 

Proof. (a) and (c) are equivalent, by [13, 1.9]. ~fhe completion /~ satisfies all 
the standing hypotheses on R, and its associated Artinian pair is the same as that 
of R. (See [15, A.1].) Therefore (b) and (c) are equivalent. The remaining implica- 
tions are (2.1) and (3.1) of [15]. 

In view of the equivalence of (a) and (b), we will usually restrict our attention 
to complete, reduced, local rings of dimension one. (The integral closure of such 
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a ring is automatically finitely generated. [M, w 31].) Our classification theorem 
covers only the equicharacteristic case. Furthermore, we will usually need the sep- 
arability condition imposed in the last assertion of  (1.2). 

Most of  the work involved in our classification will take place in the bottom 
line of the pullback (1.1). In w 3 and w 4 we will classify the Artinian pairs coming 
from rings R of  finite CM type, and in w 5 we will lift the classification to the rings R. 
~I'he following theorem from [15] shows that the Artinian pair carries all the 
information we need to recover R: 

1.3. Theorem. Let R be a one-dimensional, reduced, complete, equicharacteristic 
local ring with coefficient field k. Assume that the residue.field(s) of  R are separable 
extensions of  k. Then the ring R is determined, up to k-isomorphism, by the k-iso- 
morphism cla~:r of  the Artinian pair (A, B) in diagram (1.1). 

Proof I f  R = R  then R~k[[X]]  by Cohen's structure theorem for com- 
plete local rings. I f  R~/~ ,  we appeal [15, A.2]. (In the statement of [15, A.2], k is 
assumed to be perfect, but the proof  goes through under the alternate assumption 
that the residue fields o f / ~  are separabWe algebraic extensions of k. 

2. Notation and lemmas 

Let R be a reduced, local ring of  dimension one, with module-finite integral 
closure /~. The multiplicity /~ =/~ (R) can be defined to be the number of  generators 
required for /~ as an R-module. Of  course, this is the same as the number /~(A, B) 
of  generators required for B as an A-module (where A and B are as in (1.1)). Also, 
# is the exact bound on the number of  generators required for ideals of R. (See, for 
example, [3].) I f  ~t(R)= 1, then R is a discrete valuation ring, so of course R has 
finite CM type. On the other hand, if  #_->4, then R can never have finite CM type, 
by (F1). Therefore we assume from now on that i t=2  or 3. Suppose, now, that R 
satisfies the hypotheses o f  (1.3). Since /z<4, R has at most one residue field K 
properly extending k. I f  no residue field of  /~ extends k properly, put  K=k.  We 
let d=d(R)=[K:k] in either case. Let s=s(R) denote the number of  minimal 
prime ideals of  R. (Then s ~ p ~ 3 . )  Since /~ is a direct product of  discrete valua- 
tion domains, it follows that s(R) is the number of  maximal ideals of R. Write 
/~=/-/~=z/~i with /~i local, and number them so that /~1 has residue field K. By 
[11, Theorem 91] and the separability of K/k, 1~ has a unique coefficient field 
containing k; we denote this coefficient field by K. By Cohen's structure theorem 
/~z~K[[X]],  and the other /7 i (if there are any others) are isomorphic to k[[X]].  
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Now we consider the Artinian pair associated to R. We know B is the direct 
product of local rings B~, and each B; is of the form F[[X]]/(X"), where F=K 
if  i=1 and F=k otherwise. We will usually write F[x], x"=0  for the trun- 
cated power series ring F[[X]]/(X"). We know A is a local k-subalgebra of B, 
and k is a coefficient field of A. Also, A contains no non-zero ideal of B. 

Conversely, every Artinian pair satisfying these conditions comes from a com- 
plete local ring R of  the sort we have been discussino~.~ To see this, take R=//~=~" ~ R~," 
where R ~ K [ [ X ] ]  and /~_-_k[[X]] for i ~ 2 ;  and define R by the pullback 
diagram (1.1). See [14, 3.1] for the details. 

From (1.2), the separability of K/k, and the fact that / ~ 3 ,  we know that 
R has finite CM type if  and only if (A, B) satisfies (F2). In w 3 and w 4, where we 
will classify the Artinian pairs coming from rings R of finite CM type, the following 
(somewhat redundant) assumptions and notation will be in effect: 

(2.1) K/k is a separable extension of degree d<=3. 
(2.2) 
(2.3) 
(2.4) 
(2.5) F=k 

A is a local k-subalgebra of the finite-dimensional k-algebra B. 
k is a coefficient field of A. 
B=HI~=I Bi, where s ~ 3  and each B~ is local. 
Each Bi is of the forrn F[x], x"=0,  where F=K if i=1,  and 
if i>1 .  
No non-zero ideal of  B is contained in A. (2.6) 

(2.7) #=#(A,  B ) = d i m  k (B/mB)~3, where m is the maximal ideal of A. 
Having fixed a separable extension K/k of degree ~3,  we will refer to an 

Artinian pair A ~ B  satisfying (2.2)--(2.7) as a special Artinian pair. We record 
the following useful identity: 

(2.8) s + d + d i m  k (J/mB)=g+ l, where J is the radical of B. 

2.9. Lemma. Let A ~B be the special Artinian pair JOt the Hng R. 
(2.9.1) dimk B=>2 dimk A, with equality (/and only (/ R is GorenstehT. 
(2.9.2) I f (F2)  is satisfied, then dimk B<=2 dimk A + I .  

Proof The first assertion is a special case of [6, Korollar 3.7]. To prove (2.9.2), 
let e=dim~ ((mB+A)/A)=dimk(mB/m). Then d i m ~ ( B / A ) = p + e - 1 .  By (F2), 
mB/m is a cyclic A-module, and since it is unfaithful we have e<d imt  A. Thus 
dimk B/A<=dimk A+~-2=<dimk A + 1. 

This lemma will be used repeatedly in the following way: We will use (F2) to 
force various specific elements of B to be in A. Once we get A to contain a sub- 
algebra A0 of  dimension at least half that of  B, we'll know that A=Ao. We wilt 
apply (F2) in the following equivalent form: 

(F2) dim k (mB+A)/(m2B~A)<- 1. 
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Notice that dimk (roB + A)-- dim k (roB) + 1. The dinaension of mB will be usually 
be clear from (2.8). 

Most of  the algebras we encounter will have to be manipulated into the form 
specified by our classification. We will use the following simple lemma: 

2.10. Lemraa. Let F be afield, and let Y:F[t],  t " : 0 .  Let ~ be any unit of F. 
Then there is a unique F-automorphism o f F  taking t to ~t. (Warning: The inverse 
automorphism does not necessarily take t to x-at.) 

We end this preliminary section with a simple proof of the fact (implicit in [1]) 
that double points (i.e. /1 =2) have finite CM type. The advantage of  a direct proof  
(independent of  (1.2)) is that no separability condition is needed. We drop temporarily 
our standing assumptions on R. 

2.11. Theorem. Let R be a reduced local ring oJ" dimension one. I f  the integral 
closure ~ is generated by 2 elements as an R-module, then R has finite CM type. 

Proof. By [10, 2.1], every indecomposable torsionfree R-module is isomorphic 
to an ideal of R. I f / i s  a non-zero ideal of R, then I is a faithful ideal of R/(O:I), 
and the latter ring enjoys all the standing hypotheses on R, by [10, 1.2]. Since R 
has at most 2 minimal primes, there are, by [10, 1.2], at most 3 possibilities for 
the annihilators (0:I) as I ranges over all non-zero ideals. Therefore it will suffice 
to prove that R has only finitely many isomorphism classes of faithful ideals. 

Each faithful ideal I is an invertible ideal of its endomorphism ring O(I), by 
[10, 2.1], and the latter is a ring between R and /~. Therefore O(I) is semilocal, 
whence I and Q(I) are isomorphic as ~o(I)-modules, hence as R-modules. We now 
appeal to [10, 2.2], which implies that there are only finitely many rings between 
R and /~. 

3. The geometric case: K = k  

In this section we will classify the special Artinian pairs of finite representation 
type, under the additional assumption that there is no residue field growth, that is, 
d =  1. We will present each k-algebra A in a form that will make the classification 
of the corresponding rings R in w 5 essentially transparent, even though this will 
sometimes involve what appears to be an unnatural choice of generators. 

In the next three theorems some of  the Artinian pairs are listed with a paren- 
thetical assumption on the characteristic of the ground field k. The pairs listed 
without such an assumption occur in all characteristics. Thus, for example, if  
char k r  the special Artinian pairs with / t=2  and s =  1 are classified by (3.1.2); 
while if  char k = 2  the classification includes (3.1.2) and (3.1.3). In all three theo- 
rems the classification is irredundant; e.g., in characteristic 2, no Artinian pair in 
in (3.1.2) is isomorphic to a pair in (3.1.3). 
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We begin with the case # = 2 .  By (1.2) and (2.11), finite representation type 
is automatic when # ~ 2 ,  so our computations amount to a classification of  double 
points. This classification is well-known for algebraically closed fields of charac- 
teristic ~2.  

Notation. Throughout  this chapter and the next, when working with a trun- 
cated power series ring FIX], x"=0 ,  we will use the notation h,, for an unspecified 
element of order at least m. Thus, for example, x2+ha represents an element of  
the form x2+ax4+bx5+ .. . .  

3.1. Theorem. Suppose g = 2  and d = l .  I f  s > l ,  then A ~ B  is k-isomoiphic to 
(3.1.1) k[(t, u)]~k[t]• t "=u"=0 ,  n_->l. 

I f  s= I, then A ~ B  is k-isomorphic to 
(3.1.2) k[t"]~k[t], t2"=0, n ~ l ;  or 

(ehark--.--2) (3.1.3) k[tZ+et']~k[t], t2"=0, n>=2, r an odd integer, l < r < n ,  
~ k *  : -  k -  {0}. 

?r the integer r in (3.1.3) is uniquely determined by the pair A ~ B ,  and 
is uniquely determined modulo the group k *~-2 of  ( r - 2 )  tn powers hz k*. Conversely, 

each of  these pairs is a special Artinian pair with p = 2. 

Proof. I f  s > l ,  we can write B=k[t]Xk[u], t " = u ' = 0 ,  with l<=m<=n. From 
(2.8) we see that mB=tk[t]Xuk[u]. If  t~0 ,  it follows that mB is not contained 
in (t2k[t]•215 In any case (even if t=0) .  It follows that m 
contains an element of  the form f=(t+h2,au+h2),  with a~0 .  By (2.10) we may 
assume (t,u)CA. An application of (2.9) now shows that m=n and A=k[(t,  u)], 
as desired. 

Suppose s = l .  We note that dim k B = 2  dimk A. (This follows from the proof  
of  (2.9) or from its statement and the fact [1] that R is Gorenstein if # (R)=2. )  
Then B=k[t], P ' = 0 ,  for some n=>l; and by (2.8)we have mB=t2B. Therefore 
m cannot contain an element with non-zero linear term, but m must contain an 
element of  the form f=t2+h3.  If  char k ~ 2 ,  write f=t~[t, and use Hensel's 
lemma (or, more to the point, [14, 2.3]) to find eCB with c~e=g. By (2.10) 
there is a k-automorphism ~p of  B taking t 2 t o i l  Then, on replacing A by ~o-l(A), 
we may assume lZCA. Now dim k k[t2]=n=A, so A=k[te], and we have (3.1.2). 

Now suppose k has characteristic 2, and assume A ~ B  is not isomorphic to 
the pair (3.1.:2). Choose, in m, an element f=t2+~f+h,+~,  with a ~ 0  and r (<2 n  
by our assumption) as large as possible. Then r is odd, for otherwise we could replace 
f by f - f f i~ ,  thereby increasing I". 

Our goal is to eliminate h,+~. If  h , + ~ 0 ,  write f=g+et'+fltq+hq+~, with 
r<q<2n. It will suffice, by induction, to replace A ~ B  by an isomorphic pair 
for which m contains an element of the form f - t~-- '~t"ha+~.  If  q is even, we have 
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the element f+13fql2; so assume q is odd. Put u = q - r + t ,  and consider the auto- 
morphism ~0: t-*t+(fl/~)t u. Let g=qo(f)=t~+otF+(fl2/~)t2U+hq+l. We want to 
eliminate the term of  even degree without disturbing the rest. 

More generally, suppose g=f+~f+ev+h ,~+l ,  where "ev" denotes a sum of  
terms of  even degrees greater than or equal to 2v. I f  v>=q-r+l ,  we will see that 
g~=t2~+e~+~+hq+~. Assuming this for the moment, we can replace g by g+~g~ 
for a suitable constant 7, getting an element g'=te+~.f+e~.+l+hq+l. Repeating 
this process if necessary, we eventually get the element we want. 

Now g~=t2~+hq+x+z~p~j, where pq is a scalar multiple of t2(v-i-J)(eo)JF i, 
and the sum is extended over pairs (i,j) satisfying O~i<=v, O<=j<-v-i, ( i , j ) ~  
(0,0). I f  i = 0  and j -> l ,  p~j is a sum of terms of  even degrees greater than or 
equal to 2 ( v - j ) + 2 v j = 2 v + 2 j ( v - 1 ) > 2 v .  q-herefore it will suffice to show that 
the remaining Pij (for i ~ l  and j=>0) have order at least q + l .  But this is clear, 
since 2 ( v - i - j ) + 2 v j + r i  is increasing in i and j and is greater than q when i = l  
and ./=0. 

Now we will prove the uniqueness assertion and the fact that none of  the pairs 
in (3.1.3) is isomorphic to the pair of (3.1.2). Let B=k[t] ,  t2"=0; and consider 
the subrings A l = k [ f + ~ f ]  and A2=k[t'2+fltq], where ~ - 0 ,  r and q are odd 
and 1 < r ~ q < 2 n .  We will show that (A~, B)~(A2,  B) if and only if r=q ,  /3~0 
and fl/e is an ( r - 2 )  th power. 

I f  the pairs are isomorphic there is an automorphism q): toa t+h2,  a#O, 
carrying f : = f  +~g into k[g], where g=t2+13tL Now qo( f )=a2t2+adf  +e2+ 
h,+~, where e~ denotes even stuff of degree at least 4. Write ~o(f)=xg+yg2+ .... 
and note that x = a  ~-. Also, since c~a'f is the first odd-degree term of  q~(j), it fol- 
lows that q=r  and xfl=ea'. Therefore /~/a=a "-2. Conversely, if r=q  and 
f l / e = a ' - 2 ~ 0 ,  the automorphism ~0: t ~ a t  yields an isomorphism from (Aa,B) 
onto (A2, B). 

The proof  of  the last statement is left to the reader. 
The next three theorems deal with the case p = 3  (but still d = l ) .  Of  course 

s (R)~3 ,  and we treat the three possibilities for s separately. In each case, we omit 
the straightforward verification that the pairs listed are special Artinian pairs with 
the specified parameters. 

3.2. Theorem. Up to k-isomorphism, the special Artinian pairs satisy'yhlg (F2), 
and with p = 3 ,  s = l  and d = l  are exactly theJollowing: 

(char k = 3) 

(3.2.1) k -~ k[t], t 3 = O. 

(3.2.2) k[t 3] ~ k[t], t ~ = O. 

(3.2.3) k[tZ+t 4] ~ k[t], t 5 = O. 

(3.2.4) k[t  3,t 4] ~k[ t ] ,  t 6 = 0 .  
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(char k = 2) (3.2.5) k[t  s, t4+?] ~ k[t], t" = O. 

(char k = 3) (3.2.6) k[ta+fl t  ~, ?] ~ k[t], t s = O. 

0 . 2 . 7 )  k [ r  ~, t ~] -~ k [ t ] ,  t ~ = 0. 

(char k = 3) 0.2.8) k[ ta+t  4, t 5] ~ k[t], t s = O. 

(char k = 3) (3.2.9) k[tS+),t  7, t z] ~ k[t], t g = O. 

(char k = 5) 0.2.10) k[t  3, t s + f t  7] ~ k[t], t 8 = O. 

Moreover, the constants ~, 7 and 6 in (3.2.6), (3.2.9) and (3.2.10) are uniquely 
determined modulo k *~, k .4 and k .2, respectively. 

Proof. We know that any such pair A ~ B  has B=k[ t ] ,  t"=0,  for some 
n_->l. I f  A = k  then n = # = 3 ,  and we get (3.2.1). 

Assume now that A contains k properly, that is, m ~0 .  By (2.8) mB=tak[ t ] ,  
so m contains a non-zero element f = t 3 + h 4 .  Then n_->5, since otherwise B f  would 
be a non-zero ideal of  A, contradicting (2.6). 

Suppose n=5 .  Then A = k [ f ]  by (2.9). If  char k ~ 3  we use (2.10) to elim- 
inate h4 and get (3.2.2). I f  char k = 3  and h4g0,  write f= t3+~t t  4, ottO. The 
automorphism ~0: t ~ t  carries k[ t3+t  4] onto k[ f ] ,  and we obtain the pair of  
(3.2.3). It is easy to check that the pairs (k[ta],B) and (k[ t3+t4] ,B)  are not 
isomorphic in characteristic 3. 

Supposing next that n=>6, we see that n ~ 7  by (2.6), and A contains k [ f ]  
properly by (2.9.2). Select a non-zero element g = t e §  with e > 3  and min- 
imal. Then (F2) implies that e is either 4 or 5. Moreover, these possibilities force 
n to be 6 or 8, respectively, by (2.6); and A = k [ f , g ]  in either case by (2.9). 

Assume e = 4  (and n=6) ,  and write g = t ~ + ~ t  5. I f  char k ~ 3 ,  we may as- 
sume f = t  ~. If  also char k ~ 2 ,  the automorphism t ~ t + ( 1 / 4 ) ~ t 2 + ( 3 / 1 6 ) ~ t  a 
carries t 3 to t s+(3 /4)~g  and t 4 to g, both of  which are in k[ta, g]. Therefore, if  
char k ~ 2 ,  3, (A, B) is isomorphic to the pair in (3.2.4). I f  k has characteristic 2 
and ~ 0 ,  the automorphism t ~ t  carries k[t3, t4+?] to k[t3, t4+~ts], and 
we obtain (3.2.5). 

Now, still assuming e = 4  and n=6 ,  we suppose k has characteristic 3. The 
automorphism t - ~ t - ~ t  ~ carries g = t 4 + ~ t  5 to t 4 and carries f another element 
of  the form t3+h4. Thus we may assume A = k [ t 3 + f l ? ,  t4], and if f l~0  we 
have (3.2.6). It is easy to check that fl is uniquely determined modulo k .2. Conversely, 
if  a~k*, the automorphism t ~ a t  takes k[ t3+~t  5, ?] to k[t3+a2flt  ~, ?]. 

Next we assume e = 5  and n=8 .  If  c h a r k r  we may assume A=k[ ta ,  g], 
where g = t S + 6 t  ~. I f  k has characteristic 5, we have (3.2.7) or (3.2.10). In the latter 
case, we leave to the readea" the easy proof  of  uniqueness of  6 modulo k .2. If, on 
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the other hand, char k g 3 ,  5, we note that the automorphism q~: t~t+(1/5)f t3+ 
(4/25)62t 5 takes t ~ to ta+(3/5)flg and t 5 to g. Then ~0 -1 carries A to k[t ~, ts], 
and we have (3.2.7). 

Finally, we examine the case e=5 ,  n = 8  and char k=3 .  Write g=tS(l +h~), 
and use Hensel's lemma or [14, 2.3] to solve e S = l + h  z in B. Using the inverse 
of  the automorphism t~et,  we may assume g=t  ~, and now A=k[ f ,? ] ,  where 
f =  t 3 +h4. We can clearly eliminate the terms of degree 5 and 6 in f ,  leaving f =  t z+ 
pt4+Tt 7. If  /zr the automorphism t ~ p t + v ?  takes k[t3+?,t  5] to k [ s  
and we get (3.2.8). I f  /~=0 we have either (3.2.7) or (3.2.9). The proofs of  unique- 
ness of  ~ modulo k .4 and of irredundancy in the classification are left to the reader. 

3.3. Theorem. Up to k-isomorphism, the special Artinian pail's satisfying (F2), 
and with #=3 ,  s = 2  and d = l  are exactly the following: 

(3.3.1) k[(0, u2)] ~ k• 

U ~n ~ 0 ,  n ~ 1 .  

(char k = 2) 0.3.2) k[(0, u2+~tu')] -~ kXk[u], 

u ~n=-O,r odd, 1 < r < 2 n ,  n ~ 1, trek*. 

(3.3.3) k[(0, u2), (t, u2"+~)] --- k[t] • 

t 2 = U 2n+z  = 0 ,  n _--> I. 

(char k = 2) (3.3.4) k[(0, u2+ceu'), (t, u2"+1)] ~ k[t]• 

t 2 = u  2"+2=0,r odd, l < r < 2 n + 2 ,  n_->l, ~ k * .  

(3.3.5) k[(t, u'), (0, ua)] ~ k[t] •  

t 3 =- U s = 0 .  

(char k = 3) (3.3.6) k[(t, u2), (0, ua+u 4) -~ k[t]Xk[u], 

13 = U 5 = 0 .  

Moreover, the htteger r in (3.3.2) and (3.3.4) is uniquely determined by the iso- 
morphism class of  the pair A ~ B ,  attd the constant ~ is uniquely determhled 
modulo k *"-~'. 

ProoJ~ Let (A, B) be a special Artinian pair satisfying (F2) and the listed 
parameters /~, s, d. Then B=k[t]Xk[u], tP=uq=O. By (2.8), J/mB is one-dimen- 
sional, so we may assume mB=tk[t]• and of course u,~0 (that is, q=>2). 
The arguments used in the case of (3.1.1) show that we may assume A contains 
f :=( t ,  uO'+h3). Furthermore, if char k ~ 2 ,  we can take h3=0. 

If  p ~ 2 ,  it follows from (2.6) that q is even. Moreover, since t2=0, the aria- 
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lysis we did in the proof  of (3.1) shows that in characteristic 2 we may assume either 
f = ( t , u  2) or f=( t ,  u2+~t'), where i" is odd, 1-<r<q and ~Ek*. 

Suppose first that p = l ,  that is, t=0 .  Then dimk B = q + l ,  while dim k k [ J ] =  
q]2. By (2.9), A=k[ f ] ,  and we have (3.3.1) or (3.3.2). 

I f  p = 2 ,  the conductor condition (2.6) forces q=>4 (one of  the requirements 
of  (3.3.3) and (3.3.4)). Condition (F2) implies that A has to contain k[J] properly. 
On the other hand, k[f] already has dimension q/2, just one less than (dimk B)/2; 
so by (2.9) A]k[f] is one-dimensional. Choose g C A - k [ f ] .  By subtracting an 
appropriate element of  k [ f l ,  we may assume g=(at, bue+he+l), where e is odd 
and b r  On multiplying by b - i f  (~-e-1)lz, we can take g=(at, uq-1), and now 
a gO by (2.6). (Of course, this means e was equal to q - 1  at the outset.) Now 
A=k[f ,g] ,  and it is harmless to replace j by J - a - l g .  The new f looks like 
(O,u~-a-lu ~-1) or (only in characteristic 2) (0, u2+~u '+a- luq-~) ,  with ~ 0 .  

In the former case, if  char k ~ 2 ,  we can eliminate the u q-a term from f via 
the automorphism t~t ,  u~u+(l/2)a-au q-"-. Since this automorphism fixes both 
t and u q-l, g is still in A, and now f = ( 0 ,  uS). In the latter case, if r < q - l ,  we fol- 
low exactly the same steps as in the proof  of (3.1) to eliminate the term of degree 
q - 1 .  We now have f = ( 0 ,  u s) or f = ( 0 ,  u~+~u'), and (after replacing at by t) 
g=(t, uq-X). We have arrived at (3.3.3) or (3.3.4) with n=q/2-1.  

Finally, assume p_->3. Our goal is (3.3.5) or (3.3.6), so we must show that 
p = 3  and q=5 .  We have f~-(t, uZ+h3)EA, and it follows easily from (2.6) that 
either q = 2 p - 1  or q=2m with m>=2p. Also, (F2)implies that m2B+A con- 
tains 2 linearly independent elements in the span of {(t, 0), (0, u2), (0, ua)} and 
hence a non-zero element of the form (0, au2+bu3). Therefore A contains an ele- 
ment of  the form g=(h2, au2+bu3+lq), where either a or b is non-zero. 

Suppose first that agO. Then one checks that 1,/~ . . . , / P - ~ , g  . . . .  ,g~ are 
linearly independent, where e is the greatest integer strictly less than q/2. Then 
p + q = dimk B ~ 2 dimg A ~ 2 ( p + e) = 2p + 2 ( e + l ) - 2 ~ 2 p + q - 2 ,  which contradicts 
our assumption that p ~ 3 .  Therefore a =0,  and we may assume that g=(h~, u3+h4). 
I f  q were greater than 5, one could use the fact that q>=2p I to choose suitable 
exponents a and b to get f~gb=(o, uq-a), which would in turn contradict (2.6). 
Therefore p = 3  and q=5 .  

Now we have A=k[J~g], where f = ( t ,  u~+h3), g=(ct", u3+du4), and t3= 
uS~-0. After replacing g by b--c/z, we can assume c=0 .  If  char k ~ 3 ,  we proceed 
as follows: We use the automorphism t-~t, u~.u-(d/3)u s to make d--0. Next, 
we use a multiple o f g  to b r i ng f to  the formf~-  (t, uZ+xu4). By (2.9) A = k [ f - x [  z, g] = 
k[ ( t - x t  2, u2), (0, ua)]. The automorphism t ~ t + x t  2, u--,u puts A in the form 
prescribed by (3.3.5). Finally, if char k = 3 we can eliminate the hz term in.~ getting 
A=k[(t, uS), (0, u3+du4)]. If  d = 0  we have (3.3.5), while if d ~ 0  we use the auto- 
morphism t~d-2t ,  u~d-~u  to transform (A, B) to the form of  (3.3.6). 
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3.4. Theorem. Up to k-isomorphism, the special Artinian pairs satisfyhTg (F2) 
and with s = 3  are exactly the following: 

(3.4.1) k [ (O , u , v ) ] ~kX k[ u] X k[ v ] ,  u " = v " = O ,  n ~ l .  

(3.4.2) k[(O,u,v), (t,O,v")]--- k[t]Xk[u]• t" = O, 

u" + l = v  n+l=0,  n=>l. 

Proof. Write B=k[ t ]Xk[u]xk[v] ,  tP=uq=r  with t~p<=q-<-r. Then 
mB=tk[t]Xuk[u]Xvk[v] ,  by (2.8). Using (2.6), one checks easily that q=r .  If  
p = q = l ,  we get the case n = l  of  (3.4.1); while if  p = l < q  ~e see that m is not 
contained in B(0, u, v2)•B(O, u 2, v). In this case we use (2.10) and (2.9) to put 
(A, B) in the form of  (3.4.1). 

Suppose p ~ 2 .  Assume first that m contains an element with non-zero linear 
term in each variable. By (2.10) this element can be assumed to be (t, u, v). Using 
(2.9), we deduce that the codimension of k[(t, u, v)] in A is the greatest integer 
<=p/2. A little computation shows that A contains an element of  the form g =  
( t+h2,0,  av~+he+O, where a # 0  and 0 < e < q .  Since g . . . . .  gP-~ are linearly 
independent modulo k[(t,u, v)], our observation on the codimension shows that 
p = 2 ,  whence A/k[(t, u, v)] is one-dimensional. Therefore e = q - 1 ,  and A =  
k[(t, u, v), (t, O, avq-t)]. 

I f  q_->_3, the transformation t-~aq-2t, u~au ,  v ~ a v - a 2 v  q-x takes 

k[(0, u, v), (t, 0, v~-b] 

to A, and we have (3.4.2) with n = q - l .  Next, suppose p = q = 2 ,  so that ,4-- 
k[(t, u, v), (t, O, av)]. I f  a =  1, then A contains B(0, u, 0), contradicting (2.6). Thus 
a # l ,  and we can use the automorphism t~.at, u~(1- -a )u ,  v-~v to transform A 
to the algebra k[(0, u, v), (t, 0, v)] of  (3.4.2). 

Now assume that m does not contain an element with order 1 in each variable. 
Then m is contained in the union of three proper subspaces, and it follows that k is 
the 2-element field. We may assume that m contains an element J := ( t , u ,  he), and 
again we see that the codimension of k[ f ]  in B is the greatest integer less than or 
equal to p/2. Now A also contains (up to an automorphism of k[v]) an element 
of  the form g=( t+he ,  h.,, v). Since g . . . . .  gq-~ are linearly independent modulo k[ j] ,  
it follows that p- -q=2 .  Now A = k [ f , g ] = k [ ( t ,  u, O), (t,O.v)], which, up to a 
permutation of  the variables, i!; the case n = l  of (3.4.2). 

The case-by-case application of (2.10) may lead one to conjecture that higher 
degree terms can always be eliminated if the ground field has characteristic 0 or 
p>>0. Indeed, a general theorem to this effect would have saved a lot of tedious 
repetition. Unfortunately, no such theorem seems possible, as shown by the fol- 
lowing example: 
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3.5. Example. The following two special Artinian pairs are k-isomorphic if  
and only if  char k = 3 : 

Aa :=k [ t  3, t 7 ] -~B:=k [ t ] ,  t 12=0. 

A~. := k It 3, t v + t s] ~ B. 

Consequently, the rings R~=k[[T 3, TT]] and R.2=k[[T 3, rT + r81] are isomorphic 
i f  and only if char k =3.  

Proof. Suppose ~0 is a k-automorphism of  B such that tp(A0=A2. Then ~p(t)=xt 
for some unit x of  B, say, x=a+bt+h2,  with a ~ 0 .  Then t3x~EA~_, and it fol- 
lows that 3b=0.  On the other hand, the fact that tTxTEA2 forces 7b=a. Thus 
k has characteristic 3. Conversely, if cha r (k )=3 ,  the map ~p: t ~ t + t  2 takes 
t a to f+t6EAz and t 7 to (t~+ts)(1-tS)EA2. 

To prove the last statement, it is enough, by (1.3), to show that (A~, B) is the 
Artinian pair associated to R~; and this is really just a matter of  computing the 
conductor. The conductor of  Rx Jr] its normalization k[ [T]]  is clearly T12k[[T]]. 
For  R.~ we reason as follows: Given any n_->12, we can find F, CR2 of  the form 
T"+H,+x, where H has order at least n + l .  Then T"=F,+a~F,+~+a~F2+...ER2 
for suitably chosen constants a~. 

Notice that (F2) fails for these Artinian pairs. 

4. Residue field growth 

In this section, K/k is a separable field extension of  degree d = 2  or 3. We 
begin with the case d = 2 , / ~ = 2 .  

4.1. Theorem. Up to k-isomorphism, the special Artinian pail's satisfying (F2) 
and with d=2, / t - - -2  are the followhlg: 

(4.1.1) k[t] -~K[t], t" =0,  11 >= 1. 

Proof. Clearly s = l ,  so B=K[t], t"=0, for some n=>l. Also, J - r o B ,  and 
by (2.10) we may assume tEA. Then A=k[t] by (2.9). 

Next we tackle the most difficult case of  all: d = 2  and / t=3.  

4.2. Lemma. I f  d = 2  and l l=3,  then s = 2  and J = m B .  

Proof From (2.8) we have s = 2 - d i m ~  J/mB. If  s were equal to 1, J/mB 
would be a vector space over K, and its k-dimension would be even, an obvious 
contradiction. 
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4.3, Theorem. Let [K:k]=2,  and let ~ be an arbitrary but fixed element of 
K - k .  Up to k-isomorphism, the special Artinian pairs JOt K/k satisfvhTg (F2) and 
with ~ = 3  are exactly the following: 

(4.3.1) k[(t,O)] ~ K [ t ] x k ,  t"--O, n ~ l ,  

(4.3.2) k[(t,u), (~t",u)] ~ K [ t ] •  t "+1 = u z = O, n ~ 1. 

Proof. By the lemma B=K[t]xk[u],  tP=uq=0, and mB=J.  Using (2.10), 
we may assume (t,u)Em. Now p>=q, for otherwise B(t,u)q-lEA, contradicting 
(2.6). I f  q = l ,  (2.9) forces A to equal k[(t, u)]; and we have the family (4.3.1) 
with n=q. 

Suppose now that q=>2, and count dimensions: mB+A has k-dimension 
2 p + q - 2 ,  while the dimension of m2B+k[(t, u)] is 2 p + q - 4 .  By (F2) A con- 
tains an element f=(at+h~, bu+h2) in which a~b.  Yhen A also contains g = : f -  
b(t, u ) -h2=(c l t+. . .+%_~t  p-l, 0), with c ~ 0 .  Now g,g~ . . . . .  gq-~ are linearly 
independent modulo k[(t, u)], so the k-dimension of A is at least p+q--1.  On 
the other hand, dimkB~-2p+q. It follows from (2.9) that q = 2  and A has 
{(t,u)i: O ~ i ~ p - - 1 } u { g }  as a k-basis. 

I claim that not all c~ are in k. For otherwise xve could subtract k-multiples of the 
powers of (t, u) fi'om g, getting (0, u+h.,)EA and contradicting (2.6). Letting r be the 
first subscript i for which c~ k, we see that A contains h :-(c~ t p-" +... + c, t p-a, 0) = 
(t, u)P-I-e g. 

Suppose for the moment that r<=p-2. ~[hen p - r ~ 2 ,  and we can subtract 
k-multiples of powers of  (t, u) from h, getting (c,t p-a, O)EA. Now uP-~=0 be- 
cause p - l ~ _ r + l ~ _ 2 = q .  Therefore A contains (tP-~,O)=(t,u) p-a. But then 
A~=B(f -~, 0), violating (2.6). This contradiction shows that r = p - 1 .  

We now know that c~Ek for / < p - l ,  but %_~k .  Therefore A contains an 
element of  the form (ctt~-~,u), where ~CK-k .  (ln fact, ~ = q + l  if p = 2  and 
e = - % _ 1 / c ~  if  p>2 . )  Also, A is the k-span of  this element and the (t, u) ~, 0 ~ i =  < 
p - 1 .  More generally, for each f lEK-k ,  let A~ be the k-span of (fit p-~, u) and the 
(t, u) i. Then (A~, B) is easily seen to be a special Artinian pair satisfying (F2). 
Moreover, when f l=~ we get the Artinian pair in (4.3.2) with n = p - 1 .  We just 
need to check that, for fixed p, the isomorphism class ef (A~, B) does not depend 
on the choice of [IEK-k.  

Suppose p = 2 ,  and let fl, 7EK-k .  We seek 6EK, d~k, both non-zero, such 
that the (K• t ~ f t ,  u-~du carries Ao onto A;.. In other words, we 
want ( 6 - d ) / ( ? -  1)Ek and ( f i r -  1)/(y-  1)Ek. The latter condition can be satisfied by 
letting 6 be either 1/fl or ?~ft. One can then solve for dby  writing 6 = d .  1 + e .  ( ] , -  1) 
with d, eEk. The two choices for 6 can't both force d = 0 ;  for otherwise ? would 
be in k. 
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If  p > 2 ,  it's easier since now u ' - l = 0 :  Given fl, TCK-k ,  write fl=d7+e, 
with d, eCk. The (KXk)-automorphism t ~ t + 7 ( d - l ) t  p-l, u-~du carries Aa 
onto A s. 

The final case [K:k]=3 is much easier to handle: 

4.4. Theorem. Let K/k be a separable fieM extension o f  degree 3, and let ~ be 
an arbitrary but fixed element o f  K - k .  Up to k-isomorphism, the special Artinian 
pairs for K/k satisfying (F2) are exactly the Jollowing: 

(4.4.1) k -~ K. 

(4.4.2) kit, ~t] -~ K[t], t '2 = O. 

Proof Clearly the listed pairs are special and satisfy (F2). Conversely, let (A, B) 
be a special pair satisfying (F2). From (2.8) we have B=K[t], tP=0, for some 
p ~ l ;  and mB=tK[t]. If  p = l  we get the pair (4.4.1); so suppose p > l .  An 
application of (2.10) allows us to assume that tOgA, and then (F2) implies that A 
contains an element f=e t+h2,  with ~ K - k .  Then A contains t 2, at2+h3 and 
e2t2+h3; and if  p > 2  we would have A ~=Bt "-~, a contradiction. This shows that 
t2=0, and A is the 3-dimensional k-algebra spanned by 1, t and ~t. For f lEK-k ,  
let Ap be the k-span of 1, t and fit. The pair in (4.4.2) is (Ar B), and we have to 
show that (A~, B) and (A~, B) are k-isomorphic. 

Since [K:k]=3 there exist a,b ,c ,d~k ,  not all zero, such that aa+ba~= 
e+d~. Put Q=a+b~, and observe that t ~o t  is an automorphism of B carrying 
A, onto A~. Thus, the k-isomorphism class of the pair (Ar B) is independent of 
the choice of the element ~CK-k .  

5. The classification 

Let R be a one-dimensional, reduced, complete, equicharacteristic local ring, 
and let k be a coefficient field. We will classify, up to k-isomorphism, the rings R 
of  finite CM type, assuming only that the residue field(s) of the normalization /~ 
are separable over k. (This assumption is imposed partly as a technical convenience, 
but primarily so that (1.2) can be applied. It is unknown whether (1.2) is vMid with- 
out the separability hypothesis.) We begin x~ith the rings having no residue field 
growth. We list all the rings in parametric form, as subrings of k[[TJ], k[[T]] X 
k [ [U] ] ,  or k[[T]]•215 ~n some cases, we also represent the rings 
by equations, as homomorphic images of k[[X, Y]] or k[[X, K Z]]. I have tried 
to find the defining equations in characteristic 2 for the rings B,' and M" in the next 
theorem but have succeeded only for small values of n. The equations in these ex- 
amples appear to have an interesting combinatorial structure that deserves further 



Curve singularitics of finite Cohen-Macaulay  type 353 

i n v e s t i g a t i o n .  O n  the  o t h e r  h a n d ,  a s m a r t e r  cho ice  o f  g e n e r a t o r s  in the  p a r a m e t r i c  

f o r m s  m a y  resu l t  in s i m p l e r  e q u a t i o n s .  F o r  e x a m p l e ,  it  s h o u l d  be  p o s s i b l e  to  e l i m i n a t e  

the  t e r m  X 3 Y in  the  e q u a t i o n  for  E ' .  

W e  d e n o t e  the  idea l  g e n e r a t e d  b y / a n d  g by  ( f ,  g}. P a r e n t h e s e s ,  e.g.,  ( j ' ;  g)  

a re  used  fo r  e l emen t s  o f  d i rec t  p r o d u c t s .  The  p a r a m e t e r  n runs  t h r o u g h  a l l  pos i t i ve  

in tegers .  

5.1. Theo rem.  L e t  R be a one-dimensional,  reduced, complete,  equicharacteristic 

local ring, and let  k be a coefficient f ield. Assume that the residue f i e ld ( s )  o / t h e  normal-  

B n 

(char  k = 2) B;, = 

C n - -  

E = 
(char  k = 2) E '  = 

(char  k = 3) E "  = 

F = 
(char  k = 3) F '  = 

(char k ----= 3) F" = 

(char k = 5) F "  - 

G = 
H = 

(char  k ---- 3) H '  = 

L = 
(char k = 3) L'  -- 

(char k = 2) M,' -- 
N n 

(char  k = 2) N,; = 
P n  ~: 

Q .  

Table  1 

Curve singularities of  finite CM type with ro rcs:duc fie!d growth 

A = k[[T]] 
k[[r"-, T'- . . . .  l] 
k[[T~+~T . . . .  , T . . . .  ]], r ~ ~: 
k[[(T, t~), (0, U")I] = k[[X. r ] ] / Y ( Y - X " ) ,  
k [[r~, r q ]  
k[[T 3, T a + T~]] 
k[[X, rl]/iY'~ + X "~ Y+ X ~ - X") 
k[[Tr~ + ./T~, r q ]  
k[[X, Y] ] / (?  r ~ + 7 ~ r ~ + r ~ + ;,x"- r"- - A~> 
k[tT ~, T~]] 
k[[Ta + T ~, Tq] 
k[[X, r ] ] /Cr ,  + r~ - x r ~  - x"- r ~ - .v.~) 
k[[T 3 +fiT 7, T~]] 
k[[X, r l ]F f l  ~ r '  + F - x P  + Y~- /~x~  r " - - x . , )  
k[[r~, r~ + ~;T:]] 
k [[X, Vll/(, )'~ -~- 2;,X' Y -  X:' - ;,~ X 7) 
k[[T~, T' ,  T~]] 
k [ [ r  3, 7 ~, r q l  
k[[:r~ + r,', r~, Tq] 
k[[(T, U~-), (0, U~)]] - k[[X, Y ] ] / / Y ~ - X  ~-) 
k[i(T, 
k[[X, 
k[[(0, 
k[[X, 
k[[(0, 
k[[(0, 
k[lX, 
k[[(0, 
k[[(0, 
k[[X, 
k[[(o, 
k[[X, 

U%, (0, L'~+ Ur 
y]] /y (y"-+X ~ y -  X:~' + X ,) 
u-~), (T, V ..... )]] 
y ] ] / x ( F - - -  x . . . .  ) 
U2+~U . . . .  ), (T, U . . . . .  )1], 
u"~), (o, u~~ (T, 0)]] 

/ ' ~  l l  

Y, Zl]lC(x,  Y)  c,( y~--  x . . . . .  , z~ )  
U~-+c~U~'+'), (0, U-" . . . .  ), (T, 0)]], r < n -  1 
u, v), iT, O, v")l] 
Y l } l x Y < y - x . >  
U, V), (0, 0, v"), (T, 0, 0)]] 
Y, z l ] / ( ( x ,  y)~- (~, z ) ' , ~ ( r -  A '', z~) 
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ization ~ are o f  degree one over k.  Then R has finite C M  type i f  and only iJ R is k-iso- 
morphic to one o f  the rings listed in table 1. In this table the parameters n and r are 

positive integers uniquely determined by the ttre isomorphism class o f  R, and or, [3 and 
are non-zero elements o f  k,  unique up to congruence modulo k .2"-~, k *~ and k .2, 

respectively. 

Proof. By (1.2) and  (1.3), it is enough to check, using table 2, that the list of  

Ar t in i an  pairs corresponding to these rings agrees with the un ion  of  the lists in 

Theorems 3.1--3.4.  Compu t ing  the Ar t in ian  pairs  for the rings in the theorem is 

s traightforward,  and  the details are left to the reader. For  the exceptional rings in 

small  characteristic, where high powers of  the variables are no t  po lynomia l  functions 

of  the generators,  the method  used in the second paragraph of  the p roof  of  (3.5) can be 

used to compute  the conductor .  Notice that  the odd integer r of  (3.1) and  (3.3) has 

been replaced by 2 r + l ,  and  that  in some cases the parameter  n has been shifted 

by 1, so that  in the tables it takes on all positive integer values. 

Table  2 lists the Ar t in ian  pair  (A, B),  as well as other possibly useful informa-  

t ion,  for each of  the rings in table 1. The number  "char ."  gives the characteristic 

Table 2 

Artinian pairs associated to tl:e curte singul~rities of fir, ire CM OTe 
with no residue fieM growth 

char. R Art. pair 1l (R) a (R) dirnk A dimk B emb. ind. 

A 0 ~ 0  l t 0 0 1 
B .  (3.1.2)  2 1 11 2n 2 

2 B', (3.1.3) 2 1 n 2n 2 
C, (3.1.1) 2 2 n 2n 2 
E (3.2.4) 3 1 3 6 2 

2 E '  (3.2.5) 3 I 3 6 2 
3 E" (3.2.6) 3 1 3 6 2 

F (3.2.7) 3 1 4 8 2 
3 F '  (3.2.8) 3 I 4 8 2 
3 F ~ (3.2.9) 3 1 4 8 2 
5 F"  (3.2.10) 3 1 4 8 2 

G (3.2.1) 3 1 1 3 3 
H (3.2.2) 3 I 2 5 3 

3 H'  (3.2.3) 3 I 2 5 3 
L (3.3.5) 3 2 4 8 2 

3 L' (3.3.6) 3 2 4 8 2 
M~ (3.3.3) 3 2 n+2  2n+4 2 

2 M~" (3.3.4) 3 2 n + 2 2n+ 4 2 
N, (3.3.1) 3 2 n 2n+ I 3 

2 N" (3.3.2) 3 2 n 2n+ 1 3 
P,, (3.4.2) 3 3 n+2  2n+4 2 
Q, (3.4.1) 3 3 n 2n+ 1 3 

0 
I1 

n 

n 

2 
2 
2 
3 
3 
3 
3 
! 

2 
2 
3 
3 
n +  1 

n + l  
n 

n 

n + l  
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(2, 3 or 5) in which the exceptional rings occur. (The rings with no entry in the 
"char." column occur in all characteristics.) The number "emb." is the embedding 
dimension of R, that is, the number of generators required for the maximal ideal 
M of R; and "ind." is the index of nilpotency of the maximal ideal m of A. 

Before moving on to the case of residue field growth, we discuss the geometry 
of  the curves of  finite CM type with more than one analytic branch (s_->2). To 
keep the discussion from getting too technical, we restrict to characteristic 0 or 
p >3. The equational descriptions represent R as the completion of the local ring 
at the origin of an algebraic curve. The double points (#=2)  are the rings 6 , .  
These correspond to the union of two smooth curves meeting at the origin, trans- 
versally if n = l ,  tangentially if  n > l .  

The triple points with two branches are L, +44, and N,. L corresponds to the 
union of the cusp y2=x3 and the x-axis. (In fact, the x-axis can be replaced by any 
smooth curve tangent to the x-axis at the origin.) M,, and N, correspond to the 
union of the (possibly higher order) cusp y2=x2"+l and a smooth curve whose 
tangent line at the origin is distinct from the x-axis. For M, ,  the tangent line of  the 
smooth component lies in the xy-plane, and for A;, it does not. 

Finally, P, and Q, come from curves with three analytic branches. All three 
branches must be smooth, and they have either two (if n > l )  or three (if n---l) 
distinct tangent lines at the origin. (Thus, for example, y (y -x2 ) (y+x2)=O defines 
a curve singularity of infinite CM type, since all three branches have the same tangent 
line.) The curves for P,, are planar, that is, the tangent space at the origin is two- 
dimensional; with Q, the tangent space is three-dimensional. 

The singularities for which every indecomposable CM module is an ideal have 
been studied by Bass [1], Nazarova and Roiter [12] and Greither [3], and were 
finally classified by Haefner and Levy in [HL]. In our context, these rings are the 
double points B, and C,,  and just two of the triple points: P~ and Q1. 

Now we suppose _~ has a residue field K properly extending k, and we keep 
the notation established in the beginning of w 2. Thus K is the coefficient field of 
the first component of/~,  and d(R)=[K: k] is either 2 or 3. For a given separable ex- 
tension K/k, we will list all the rings R of finite C M  type. Of course the k-iso- 
morphism class of R depends on the extension K/k, so there will in general be 
continuous families of  non-isomorphic k-algebras of finite CM type. For each K, 
let ~ be a fixed element of K - k .  In the classification below, the k-isomorphism 
class of the ring R does not depend on the choice of  ~. 

We will use symbols such as A2, to denote a family of rings R with d(R)=2.  
Similarly, D3 denotes a ring R with d(R)=3.  

5.2. Theorem. Let R be a one-dimensional, reduced, complete, equicharacteristic 
local ring, and let k be a coefficient field. Assume that the normalization ~ has ares- 
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Table 3 

Curve singularities of finite CM type with residue field growth 

A2, = k[[T, {T"]] = k[[T]] + T"K[[TI] (d = 2) 
B2. = k[[(T, o), (~T", 0), (0, U)I] 

= k[[(r, i l l  +(T"K[iT]] X Uk[[Ul]) (d = 2) 
C2,, = k[[(T, U), (~T", U), (0, U')]] 

= k[[(T, U)l]+k(xr '~, U)+(T"+'K[[TI]XU~k[iU]]) (d = 2) 
D3 = k[[T, cr, ~2T]] = k+ TK[[T]] (d = 3) 
E3 = k[[T, cr]]  = k+(k4-k~)T+r2K[[T]] (d = 3) 

idue fieM K properly extending k and that K/k  is separable. Then R has finite C M  
type i f  and only i f  d:=[K:k]<=3 and R is k-isomorphic to one o f  the rings in table3. 
The parameters n range over the positive integers. The parenthetical number d is the 
degree o f  the extension K/k, and ~ is an arbitrary element o f  K - k .  The isomorphism 
class o f  R does not depend on the choice o f  ~. 

As before, the p r o o f  amounts  to comput ing  the Art inian pair  for each ring 

and  compar ing  these pairs with those listed in w 4. 
A remark on nota t ion :  In the second description o f  C 2 , ,  k[[(T, U)]]  is the 

power  series ring in the single variable (T, U) and is regarded as a subring o f  

K[[TI]Xk[[U]] .  Also, k(~T' ,  U) denotes the k-linear span of  (~T", U). 

Table 4 

Artinian pairs associated to the curve singularities of finite CM t3 pe 
with residue field growth 

R Art. pair d(R) It(R) s(R) dimk A dimk B emb. ind. 

A2, (4.1.1) 2 2 1 n 2n 2 n 
B2n (4.3.1) 2 3 2 n 2n+ 1 3 n 
C2,, (4.3.2) 2 3 2 n+2  2n+4 3 n+ 1 
D3 (4.4.1) 3 3 1 1 3 3 1 
E3 (4.4.2) 3 3 I 3 6 2 2 

In table 4, we list the Art inian pairs (A, B) associated to the rings in table 3. 
Again,  "emb."  is the embedding dimension of  R, and " ind ."  is the least i such that  

m i = 0 ,  where m is the maximal ideal o f  A. 
Perhaps it is wor th  giving explicit equations for the singularities o f  finite C M  

type when k = R ,  the field o f  real numbers.  We assume K = C ,  since the case 
K = R  is described adequately in -fheorem 5.1. The only possibilities are A2,,  

B2,  and C2~. Taking ~ - ] / - - -1  in Theorem 5.2, we easily deduce the following: 
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5.3. Coro l la ry .  Let  R be as in theorem 5.2, with k = R, the real number field. 

Then R has finite C M  type i f  and only i f  R is one o f  the following (for some n>=l) �9 

R [[X, Y, Z]]/(X2"+ Y'~, XZ') 
R[[X,Y, ZJ]/(X~"+Y~--Z~ (x~-z)z) 
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