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Removability theorems for Sobolev 
functions and quasiconformal maps 

Peter W. Jones(1) and Stanislav K. Smirnov(2) 

A b s t r a c t .  We establish several conditions, sufficient for a set to be (quasi)conformally re- 
movable, a property important in holomorphic dynamics. This is accomplished by proving remov- 
ability theorems for Sobolev spaces in R n. The resulting conditions are close to optimal. 

1. I n t r o d u c t i o n  

The object of this paper is to provide a few conditions, sufficient for a set to 
be (quasi)conformally and Sobolev removable. Such results are useful in dynamics, 
since they provide tools for establishing conformal conjugacy between two topologi- 
cally conjugate holomorphic dynamical systems. Particularly, our Theorem 1 (see 
its dynamical reformulation in Section 4) is used in [GS2] to establish conformal 
removability of a large class of Julia sets. This problem was also studied earlier 
in [Jo] to provide tools for applications in dynamics. 

We are mostly interested in the planar case, but all our theorems work in R n, 
where the notion of quasiconformal removability makes sense. 

Definition 1. We say that  a compact set K c U  is (quasi)conformally removable 
inside a domain U, if any homeomorphism of U, which is (quasi)conformal on U\K,  
is (quasi)conformal on U. 

In the dynamics literature such sets are often called "holomorphically remov- 
able". We prefer to use the term "conformally removable", because it can be essen- 
tial that  one considers maps and not just holomorphic functions. See [AB], [Be] and 
[C] for some of the related problems concerned with functions, rather than maps. 
An easy application of the measurable Riemann mapping theorem (see, e.g., [A]) 
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shows tha t  for planar sets properties of conformal and quasiconformal removability 
are equivalent. I t  is not difficult to see tha t  the proper ty  of quasiconformal remov- 
ability is quasiconformally invariant. Another easy argument  shows tha t  Sobolev 
wl '2- removabi l i ty  (W l'n in R n) is a stronger property. 

Definition 2. We say tha t  a compact  set K c U  is Wl,P-removable inside a 
domain U, if any function, continuous in U and belonging to WI,p(U\K), belongs 
to wl,p(U). 

Note tha t  our definition of Sobolev removability assumes tha t  functions under 
consideration are continuous., so perhaps it is more appropriate  to call such sets 

Wl'P-removable for continuous functions. I t  is not known, whether or not Sobolev 
W 1'2 and conformal removability for planar sets are equivalent or not. It  seems 
that  all known methods of proving (quasi)conformal removability apply to Sobolev 
removability, and no full geometric characterization of removable sets is known in 
either case. 

It  is not difficult to show tha t  any set of a-finite length is conformally removable, 
whereas any set of positive area is not. Namely, compacts  of a-finite length are re- 
movable for continuous analytic functions by [Be] and hence conformaily removable. 

Also by [U], a compact  set has zero area if and only if it is removable for Lipschitz 
functions, analytic off it, and from an exceptional Lipschitz function f analytic off 

the set one easily constructs an exceptional homeomorphism g(z):=z+ef(z), con- 
formal off the set. Those conditions turn out to be the best possible (sufficient and 
necessary correspondingly), expressible in purely metric terms. In fact, it is not 
difficult to see (by constructing an exceptional homeomorphism, quasiconformal off 
the set) tha t  a Cartesian product  of an uncountable set with an interval is not 
conformally removable. A much stronger s ta tement  is proved in [Ka], namely tha t  
such a set contains a non-removable graph, see also [G] and [C]. On the other hand, 

the Cartesian product  of two sets of zero length is conformally removable (ACL 
arguments as below easily apply to such a set since almost every line parallel to the 

coordinate axes does not touch it, see also Theorem 10 in [AB]). See [Bi] for further 
discussion of related problems. 

Standard extension theorems show tha t  (quasi)conformal removability of a 
compact  K inside U is equivalent to its removability inside V (provided, of course, 
tha t  K is contained in both domains), and that  the union of two disjoint compacta  
is (quasi)conformally removable if and only if both  of them are. However, the lat ter  
does not seem to be known if their intersection is non-empty. These s ta tements  are 
much easier to check for Sobolev removability, and one does not need to assume 
that  the compacta  are disjoint. 

Since removability properties do not depend on the reference domain U, below 
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by removability we will mean removability inside C or R n. We will work with a 

compact  set K which is the boundary  of some connected domain ~ (the lat ter  has 
nothing to do with the domain U). Our conditions can be translated to the case 
when K is the boundary of a union of finitely many  domains as well. To simplify 
the proofs, ~ will be assumed to be bounded. In the case of unbounded domains 
one has to restrict summat ion  and integration in the proofs below to some bounded 

part  of i~ containing K=Oi~, or consider the intersection of (~ with some big ball 
as a new domain. We consider the Whi tney decomposition )4)={Q} of ~. For an 
integrable function r we denote by r  its mean value on the cube Q, by ]Q] the 

volume and by l(Q) the side length of the cube Q. 

Definition 3. Fix a family F of curves start ing at a fixed point z0E(~ (or just  a 
fixed distance c away from 0~)  and accumulating to 0 ~  such tha t  their accumulation 
sets cover 01~. We consider the "shadow" cast by a cube Q if a light source is placed 

at  z0: namely the shadow STt(Q) is the closure in 012 of the union of all curves 
~ F  star t ing at z0 and passing through Q. 

Denote by s(Q) the diameter  of the shadow $74(Q), and define a non-negative 
function 0 on f~ by setting QIQ :=s(Q)/l(Q) for Q E W .  The function Q is well-defined 
on interiors of Whitney cubes and hence almost everywhere in f~. 

Remark 1. One can think of the curves from F as of quasihyperbolic geodesics 
start ing at z0. Condition (1) below involves shadows and hence depends on the 
family F, and it seems that  in most of its applications it is opt imal  to use quasi- 

hyperbolic (or hyperbolic for planar domains) geodesics as curves in F: in the 
situations under consideration they satisfy the requirements placed on F and for 
such a family condition (1) is easier to check. 

Since the quasihyperbolic metric diStqh(-,. ) also appears  in a few conditions 
below, we recall that  it is the metric on f~ with the element Idzl/dist(z, 0~). It  
behaves much like the hyperbolic metric in the planar domains, e.g. it is a geodesic 
metr ic- -see  the expository paper  of P. Koskela [Ko] for this and other properties. 

Note tha t  if we take a sufficiently small size A of the Whitney cubes, then any 

curve from F passes through at least one Whitney cube of tha t  size. Hence Ogt is 
completely covered by the shadows of those cubes, whose number  is finite. 

We will be interested in domains f ~ c R  n satisfying (for some family F) the 
geometric condition 

(1) ~ s(Q) n < oo, 
QEw 

or equivalently L~E Ln(f~, m), where m denotes n-dimensional Lebesgue measure. In 

Section 3 it will be shown that  (1) follows from other conditions. Also note, that  
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it is sufficient to include in the sum above only cubes Q contained in some neigh- 
borhood of K,  or, equivalently, Q is integrated over the intersection of 12 with some 
neighborhood of K (because of that  there is no loss of generality in the assumption 
that  f~ is bounded). Covering 0f~ by the shadows of small Whitney cubes implies 
that  boundaries of such domains have zero Lebesgue volume (area in the planar 
case). It is also easy to see that  for domains satisfying (1) every curve from F, 
starting at z0 and approaching 0fl  has exactly one landing point, that  every zEOfl 
is a landing point of such a curve, and if zE,~7-/(Q) there is such a curve passing 
through Q. 

Remark 2. For a simply connected planar domain 12, whose Riemann uni- 
formization map is r D--+~2, and a family F consisting of the images of the radii 

(same as hyperbolic geodesics) our condition corresponds to 

diam2(r < co, 
I 

where the sum is taken over all dyadic arcs of the unit circle OD. 
Our main theorem shows that  the geometric condition (1) is sufficient for qua- 

siconformal removability. 

T h e o r e m  1. If  ~ satisfies condition (1) then K=Of~ is quasiconformally re- 
movable. 

We will use this theorem to deduce other conditions, sufficient for removability. 
Particularly, take F to be the family of quasihyperbolic geodesics. It is almost 
immediate that  boundaries of John and H61der domains are removable. 

C o r o l l a r y  1, Boundaries of John domains are quasiconformally removable. 

Proof. For John domains one has s(Q)<CI(Q), with C depending on the John 
constant. Hence 

s(Q) n < c ~ IQI-< CVolume(12) < co, 
QeW QeW 

and the desired condition (1) is satisfied. [] 

See [Jo] for an earlier proof of the corollary above and the definition of John 
domains. A simply connected domain in the complex plane is called H61der if the 
Riemann uniformization map is H61der-continuous in the closed unit disc. This 
property is weaker than being a John domain. In the multiply connected case and 
in R n the latter definition can be substituted by a proper quasihyperbolic boundary 
condition, as e.g. in [GS1], [Ko]. 
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C o r o l l a r y  2. Boundaries of HSlder domains are quasiconformally removable. 

Proof. Since we will be proving the stronger Theorem 3 and Corollary 4 later 
on, here we just give a brief sketch of the proof in the planar case modulo ideas 
from [JM]. 

Qk Assume that  the domain [~ is bounded. Let { j }j denote the collection of all 
Whitney cubes whose hyperbolic distance to z0 is comparable to k. By the HSlder 
property one has s(Qk)<Ce -ok, and by arguments of [JM], independently of k, 

s(Qk) 2-~ < M < oo. 

J 

Combining these two estimates we obtain (1): 

Qc~V k j k 

Corollary 2 has an immediate application in dynamics: by [GS1] Julia sets of 
Collet-Eckmann polynomials bound HSlder domains, and we arrive at the following 
conclusion. 

C o r o l l a r y  3. Julia sets of Collet-Eckmann polynomials are ( quasi)conformal- 
ly removable. 

In [PR] the rigidity of such Julia sets was shown, which means that  they are re- 
movable for conjugations, arising from dynamics. An improvement of this corollary 
(using Theorem 5) appears in [GS2]. 

Even much weaker (than being HSlder) conditions on the regularity of the 
domain ~ appear to be sufficient for removability, consult [Ko] for other similar 
conditions and their implications. 

T h e o r e m  2. If  for some fixed point zoE~ a domain ~ c R  n satisfies 

(2) diStqh(., z0) �9 L n ( [ ~ ,  m), 

then K:-Of~ is quasiconformally and Wl,n-removable. 

By f~/~ above we mean some neighborhood of K inside ~, since only integra- 
bility near K is needed. To prove Theorem 2 we will show that  (2) implies (1), and 
even more: 

diStqh(',Zo)EL'~(~K,m) ~ (1) ~ distqh(.,Zo) eLl( f~K,m).  

It is interesting to note that  the statement above is sharp in the following sense: 
one cannot replace L n by L n-~ or L 1 by L 1+~. Such integrability conditions already 
appeared in the paper [Je] of D. Jerison about domains admitting Poincar~-type 
inequalities. 
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T h e o r e m  3. If  a domain f~ satisfies the quasihyperbolic boundary condition 

(3) dist(x, 0~) < exp(--(distqh(X, z0) n - i  log distqh(X, Zo))U'~/o(1)), 

as xEl2 tends to O~ for some fixed ZoEl2, then K--O~ is quasiconformaUy and 
W 1,n-removable. 

We will reduce Theorem 3 to Theorem 2 by showing that  (3) implies (2). In 
fact, our proof shows that  (3) implies an even stronger property: distqh(. ,z0)E 
LP(~K,m) for any p<cc .  

C o r o l l a r y  4. If  a planar domain ~ is simply connected and the modulus of 
continuity of the Riemann uniformization map r D--+l~ satisfies 

(4) w r  

as t-+O, then K=af~ is conformally and wl'2-removable. 

Proof. For a point x = r  close to the boundary, and a fixed reference point 
z0, one clearly has diStqh(X, z0)• 1/(1 --]~]) and 

dist(x, 012) < wr 0D)) --we(1 - M ) .  

The corollary readily follows. [] 

Remark 3. By [JM] we know a sharp condition on we, sufficient for the con- 
clusion that  the boundary of a planar domain ~ has zero area: 

fo logw~(t ) 2 dt 
log t ~- = oc. 

Considering conditions that  stop at the log log term, we conclude, that  

 ox (l,og /log,o  ) 
is sufficient for 0R to have zero area, whereas for any ~>0 there exist domains 
satisfying 

i og / (loglog 
with 012 having positive area, and hence non-removable. This shows that  our The- 
orem 3 is very close to being best possible. Unfortunately, there is a small gap 
between conditions (4) and (5), and we do not know whether it is possible to close 
it. 

Our proof of Theorem 1 uses the fact that  quasiconformal maps belong to the 
Sobolev space, and easily translates to show the following result. 
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T h e o r e m  4. I f  for some p> l a domain f ~ c R  n satisfies the condition 

(6) Z (s(Q)/l(Q))#(n-X)lQI < ~ ,  
Q~W 

or equivalently QELP'(n-1)(12, m), with 1 / p + l / f f = l ,  then K = Of~ is w l 'p - remov - 
able. 

Repeating the proofs of Theorems 2 and 3, one can also deduce, from the theo- 
rem above, quasihyperbolic boundary conditions sufficient for Sobolev removability, 
though they look artificially complicated. 

Throughout  the paper we will denote by const various positive finite constants 
(which depend on the equations they appear in). The inequality A<~B will stand 
for A<cons t  B, while A •  will mean const -1 B < A < c o n s t  B. 

Acknowledgments. We wish to thank the referee for many helpful suggestions. 
The second author is grateful to the Max-Planck-Institut fiir Mathematik (Bonn) 
where part  of this paper was written. 

2. A b s o l u t e  c o n t i n u i t y  o n  l ines  

Recall, that  a function f is called absolutely continuous on lines (ACL for 
short), if for almost every line l, parallel to the coordinate axes, the restriction f i t  
is absolutely continuous. It is a well-known fact that  to check quasiconformality of a 
homeomorphism f ,  it is sufficient to check that  it is ACL and quasiconformal almost 
everywhere. By the latter one means that  for almost all x E R  n the homeomorphism 
f is differentiable and satisfies 

(7) max Oaf(x) ~ C min Oaf(x) 
Cr Of 

for some constant C>0 .  Here we take min and max of directional derivatives Oaf 
for all directions a. See Section 34 of IV] or Section II.B of [A] for precise conditions 
ensuring K-quasiconformality with specific K.  

Hence the following proposition implies Theorems 1 and 4. 

P r o p o s i t i o n  1. I f  f~ satisfies condition (6), then any continuous f ,  which 
belongs to W x'p for bounded subsets of K c, is ACL. 

In fact, to deduce Theorem 1, take a domain 12, satisfying condition (1). The 
coordinate functions of any homeomorphism f quasiconformal in K c belong to 
W l'n for bounded subsets of K ~, and by the proposition above (with p=n)  to ACL. 
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Recalling that  K has zero area by (1), we obtain that  f is ACL and quasiconformal 
outside K ,  hence is differentiable and satisfies (7) in K c, i.e. almost everywhere 
in R n. By Section II .B "The analytic definition" from [A] or Theorem 34.6 from IV] 
we deduce that  f is quasiconformal in R n, which proves Theorem 1. To deduce 
Theorem 4 one uses Theorem 2.1.4 from [Z]. Now we can turn to the proof of 
Proposit ion 1. 

Proof. We will fix a bounded domain U, containing K ,  and prove tha t  for any 
direction )~ 

(8) //u lo ,fl= /fu\ lo ,f 1, 

where O;,f denotes the directional derivative of f in the sense of distributions. Here 
and below we will use flu to denote a double integral, where one first integrates 
along a line, parallel to •, and then over all such lines. Hence the identity (8) 

means tha t  on almost every line l parallel to A the total  variation of f is equal to 

fznU\K IOxfl. Since fEWI'p(U\K)CWI'I(U\K), this implies (by Fubini) that  c3xf 
restricted to almost every line l parallel to A is in fact an integrable function. By 
taking all possible directions A and domains U we derive tha t  f E A C L ( R n ) ,  thus 
proving the proposition. 

We fix a direction A, and some line l, parallel to it (with an intent to integrate 
over all such lines and apply Fubini 's theorem at the end). 

We denote the total  variation of f on lNU by flnv [Oxf[, and note tha t  it can 
be arbitrari ly closely approximated by expressions of the form 

(9) ~ If(x j ) -  f(yj)[F f IOxfl, 
j Jtnu\U3[=j,us] 

where the pairwise disjoint intervals [xj, yj] cover lNK  with xj, yj E1NK. 
By condition (1), as the Whitney cubes get smaller the diameters of their 

shadows tend to zero. Hence we can choose such a small size A tha t  no shadow of 
a Whi tney cube of this or smaller size intersects more than one interval [xj, yj], all 
such cubes are contained in U, and the shadows of the cubes of this size cover K.  

Fix one interval [xj,yj]. Since there are only finitely many  cubes of the size 
A, and the set [xj,yj]NK is covered by their shadows (which are compact  sets), 
one can cut [xj, yj] into finitely many  intervals [ui, Ui+l] so tha t  u0 = x j  and un=yj. 
By an easy compactness argument  this can be done in such a way, tha t  for every i 
either (u~, ui+l)CK c or u~ and Ui+ 1 belong to the same shadow SH(Qi), and there 
are curves from F, joining u~ and ui+l to Qi, tha t  do not intersect cubes of larger 
or equal size. 
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In the first case we just write 

If(u,)-f(u~+l)l _< J,,,~,,+~] IO~fl. 

In the latter case we can join ui and ui+l by a curve ~/i, which follows one "F-curve" 

from ui to the cube Qi and then switches to another "F-curve" from Qi to Ui+l. 
Recall that  for an integrable function r we denote by r its mean value on 

the cube Q. For any two adjacent Whitney cubes Q and Q' (i.e. such that  they 

have the same side length and share a face, or one of them has twice the side length 

of the other and they share a face of the smaller one) one can easily show that  

If(Q) - f(Q') I -< 2n-~ (IOfl (Q)l(Q) + IOfl (Q')I(Q')). 

The exact value of the constant above is not important, we use 2 n - l ,  but any finite 

positive number would be sufficient for our reasoning below. Taking the Whitney 

cubes intersecting the curve ~/i and excluding some of them one can choose a biinfi- 

nite sequence of cubes, such that its tails converge to ui and Ui+l correspondingly, 
and any two consecutive cubes are adjacent. Applying the inequality above to this 

sequence, one obtains 

If(u~)-f(u,+~)l<_2 n ~ IOfl(Q)l(Q), 
QM~ ~0 

where the sum is taken over all Whitney cubes intersecting "/i (even at a single 

point). All the cubes in the estimate above have size at most A, and by the choice 

of A they belong to U. 

Now, adding up the estimates for all i, we obtain 

I f ( x j ) - f ( y j ) l  ~ ~ If(u~)- f(u~+l)l 
i 

< io :l+2o E E 
[ u l , u ~ + l ] c K  c ~,u~+l] [ u i , u , + l ] q : K  c Qn~,i #0 

Iofl(Q)l(Q). 

The first term can be simply estimated by f[~:j,yj]\K IO~'fl �9 Note that all Whitney 

cubes we come up with in the second term have one of the points ui in their shadow 

and are of the size at most A. As the following reasoning shows, for the purpose of 

estimating I f ( x j ) - f ( y j )h  we can assume that no cube appears twice in the sums. 

In fact, if there is a Whitney cube Q, entered by two curves ~/k and ~/l, k<l, then 
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we can make a new curve out of them, connecting uk directly to ul+l, and thus 
improving the estimate above, writing 

t f  (xJ) - f(Yj)l ~ ~ If(ui) - f (u ,+  ~)t-t-If(uk) -- f ( u t + ~ ) l - ~  If(u,)  -- f (u,+~)l 
i<k i>l 

and obtaining fewer cubes in the resulting estimate. If necessary, we can repeat this 
procedure a few times, and thus assume that  no w h i tn ey  cube is entered by two 
different curves. 

Therefore, we can rewrite our estimate as 

(10) ]f(xj)-f(y3)] ~ [ IO~fI+2 n ~ IOfl(Q)l(Q). 
J[x j ,y j] \K s?-/(Q)n[xj ,y.~]~0 

Recalling that  by the choice of A no shadow of a cube of that  or smaller size 
intersects more than one interval [xj,yj], we conclude that  every cube Q in the 
estimates (10) appears for at most one j and has shadow intersecting I. Now, 
summing (10) over all j ,  we obtain the following estimate of the expression (9): 

~-~lf(x~)-f(y3)l+Zn U ]O~,fl 
j \Uj [xj,yj] 

sn(q) N[xj,y~]r 
< 2 n 

Iosl(Q) (o)) 
lOfI(Q)I(Q)+ fznV\K lO~fl. 

ST-l( Q )nl~O 

Since fl [O~fl can be approximated by expressions of the form (9), we arrive at the 
estimate 

(11) ~znu lO:,fl ~ 2 n ~ lOfl(Q)l(Q)+~nu\ K [O:,f]. 
Sn(Q)nl~  

Moreover, only Whitney cubes of size at most A (which we can choose to be arbi- 
trarily small) are included in the latter estimate. 

Notice that  a Whitney cube Q participates in the estimate only if the line l 
intersects its shadow, and the measure of the set of such lines is at most s(Q) n-1. 
Integrating (11) over all lines l, parallel to the direction ~, (here # denotes the 
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transversal measure on those lines), and applying Yhbini's theorem we obtain 

fLlO~,fl~ef(LulO~,fl) dl~(') 
S (2n ~ ,ofi(Q)iQJ-J-Lu\K ,o~f,) dlJ(1) Sn(Q)nl@i~ 

<- 2n ~ [Ofl(Q)l(Q)s(Q)n-' +/~v Ioxfl. 
Sn(Q)nl#O \K 

The first series in the resulting estimate is convergent: in fact, by H61der's inequality, 

Z IOfl(Q)l(Q)s(Q)n-1 <- ( Z  [~ 1/p (Z(s(Q)/I(Q))P'(n-1)IQOI/P' 

(12) <oo ,  

where the first sum on the right is (by H/Slder again) at most ~ IOflp(Q)IQI, and 
hence bounded by the Sobolev norm of f in WI,p(U\K). The second is finite by 
condition (6). As before, we can assume that  only Whitney cubes shadowed by 
cubes of a small size A (which we are free to choose) participate in this series, and 
thus (with A-+0) its sum can be taken to be arbitrarily small, and we can just drop 
it from the estimate. Therefore we arrive at 

flu IOxfl ~ ffU\K IO~fl, 

and clearly those quantities are equal, thus proving the desired equality (8) arid 
hence the proposition. 

Note the similarity between estimate (12) and the proof in [KW]. The latter 
can be thought of as an application of the extreme case of the HSlder inequality 
with p = l  and p'=co (i.e. ~ IOfll(Q)s(Q) n-1 <_~'~ lafll(Q) n sup(s(Q)/l(Q)) n-1 in 
our notation). [] 

3. Quasihyperbolic boundary conditions 

Proof of Theorem 2. For a simply connected planar domain we can take F 
to be all hyperbolic geodesics start ing at some fixed point zo and accumulating 
at 0fL In the general case take Zo to be the center of some Whitney cube Q(zo), 
and set q(Q(zo)):=O. For any two adjacent (i.e. sharing at least a part of a face) 
Whitney cubes, join their centers by an interval, and let q(Q) be the number of 
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intervals in the shortest chain joining the centers of Q(zo) and Q. Clearly we can 
remove redundant intervals so that  q(Q) is preserved for all Q c W  and the resulting 
collection of intervals is a tree. Note that  q(Q)~diStqh(Q, zo) for any QEW,  and 
hence by the assumption of Theorem 2 

q(Q)nl(Q)n < co, 
Q c W  

(if 12 is unbounded we include only cubes close to K in the sum above). 
Define F' to contain all chains of intervals starting from z0 (if ~2 is unbounded 

one should take only the chains not escaping to infinity). Then all curves in F' 
have uniformly bounded finite length, and even better: the lengths of their "tails" 
tend uniformly to zero. Indeed, if some curve 7 E F  ~ corresponds to the chain {Qj} 
of cubes with Qo=Q(zo) and j=q(Qj), introduce the "tail" by "Tk:=~f\Uj<k Qj. 
Then by HSlder's inequality one has 

(.1,,.) 
length(Tk) • ~ l(Qj) <- 3"nl ( Q j) n jn/(n--1) 1 <~ --~ < 0~. 1 

j>_k " j > _ k  ~ _ 

Take F to be those curves in F ~ which contain infinitely many intervals, or equiv- 
alently accumulate to K (and hence land at some point in K,  since the length is 
bounded). 

To show that  the family I ~ satisfies the requirements it is sufficient to show that  
any point in K is a landing point of at least one curve from F. Take any z E K.  
There are Whitney cubes arbitrarily close to z, and their centers are joined to z0 
by some curves from F', so there are curves from F' which terminate arbitrarily 
close to z. Since any Whitney cube intersects only finitely many other Whitney 
cubes, we can apply Cantor's diagonal argument to find a sequence of curves 7j CF' 
terminating at points zj and a curve 7EF  such that  l imj_,~ [z-zj[=O and for any 

j the first j cubes in ~/j and ~/coincide. Because of the latter, the tails "~j and ~/J 
start  at the same point, and hence their union joins zj to the landing point yEK 
of % Therefore 

[y-z[ = j--.o~lim [y-zjl  <_ limsup length(TJO'~j) ~< l i m s u p ~ _ , o o  j-~o~ -~2 _- 0, 

so y=z and the curve ~/EF lands at z. Hence every point in K is a landing point 
of some curve from F, and this family satisfies the requirements. 

Now for every cube Qc1/Y find a curve from F going through it, such that  its 
length is comparable to s(Q). Taking all the Whitney cubes it passes through, we 
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obtain a sequence of cubes Qj =Qj  (Q), such that Qo =Q, j +q(Q)=q(Qj), the cube 
Qj is shadowed by Q, and s ( Q ) < ~ = l  l(Qj). Note also that by the construction 

of P a given cube ~) is shadowed by exactly q(~)) cubes i k-1 {Q }i=o with q(Qi)=i. 
Now applying HSlder's inequality, we obtain 

QcW Qew -j=l 
oo / oo \n--1 

<-- ~ Y~.l(Qj)nq(Qj)n-1/n(Zq(Qj)-(n+l)/n ) 
QcW j=l "j=l " 

oo oo n--1 

= ~ ~-~.l(Oj)nq(Oj)"--'/n( ~ i -('~+')/n) 
QE~V j=l  "i=q(Q)+ l 

(3O 

~ ~-~.l(Qj)'~q(Oil'~-l/'~(q(Q)+l) -(n-1)/'~ 
QeW j=o 

= ~ l(Q')nq(Q)n-1/n Z (q(q)w1)-(n-')/n 
Q)CW Q:(~=Qi (Q) 

q(Q) 
~- ~ l (Q)nq(Q) n ' l / n  ~ i - ( n - l ) / n  

QCW i=1 

Y~ l(Q)nq(O)n-Wnq(Q.) 1/n 

= ~ l(Q.)nq(Q.) n 

g2ew 

[ distqh (z, Zo) n din(z), 
Jn 

thus proving the theorem. 
We also promised to show that (1) ~ diStqh(., zo)ELl(~g, m). Indeed, since 

the total volume of the cubes shadowed by a given cube Q is <s(Q) n, one can write 

f distuh(Z, Z0 ) dm(z) • ~ IQI diStqh(Q, z0) • ~ IQl#{Q': Q < Q'} 
Qe~V QcW 

: joj<  Z s(r 
Q'E)4) Q-.<Q' Q' EYV 

Above the notation Q-<Q' means that the cube Q' shadows the cube Q. [] 
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Proof of Theorem 3. We will follow the ideology of [JM], preserving the nota- 
tion. 

Recall the definitions 

d(x, r) :-= max{5(z) : z e a ,  I x -  z I = r}, 

5(x) := dist(x, 0~2). 

We fix some point z0El2 and write q(x) for diStqh(X, z0). 
Denote by :D the collection of all sets of large logarithmic density: 

I):={Ac[0,1]: forallr<roonehas /A d t > l l o g  1 }  
n[~,l] t - 2 

where r0 is some fixed small number, and define the Marcinkiewicz integral I0 as 

]0(x) := i n f{ /A  d(x't) '~-1 } dt:Ac~P for x~i2 .  tn 

Then Theorem 2.5 in [JM] states that  

Volume({z e ~c:  •(z) > A}) _< C Volume(a)e -cx, 

with absolute constants (it is proven there for planar domains, but the general case 
is similar). Thus there is a constant a > 0  such that  

(13) f ~  exp(a/~0(x)) din(x) < cr 

for any domain f~. 
It is immediate from the definition of the quasihyperbolic metric that  for a 

point x away from z0 one has q(x)>f[o,ll dt/d(x, t). Applying H61der's inequality, 
we obtain for any point x E R  n away from zo, any positive number r<l, and any 
set AC/ )  the estimate 

dt n-- 1 t n d t  ( l log ! )~ <- (/~n[~,,l d~tt )~ <_ (/zm[~,ll d(X,t) ? /~n[~,ll d(x't)n-1 
,x d(x, t) n- 1 

(14) <~q(x)n-1 nir,ll tn dt. 

Make a new domain f~' by cutting out of ft for every Whitney cube Q a cube 
�89 with the same center and side length �89 It is easy to see that  for xE�89 and 
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r>nl(Q) one has d(x, r)=dn(x, r)• (x, r), and hence the Marcinkiewicz integral 
I~ for the new domain satisfies 

1 } 
I~(x) ~ i n f  t ~ dt : A E T) , 

k JAn[r,1] 

if x belongs to a small cube Q with l(Q)<ro. Thus taking infimum in (14) over 
A E / )  leads to 

(15) (log 1 )  n <constq(x)'-ll~(x) 

for xE 1Q and r=nl(Q). By the assumption (3), 

r ~ (~(x) <_ exp ( 
- -  ( q ( x )  n -  x 

o(1) ) '  
log q(x)) 1/~ 

as r--~0, which can be rewritten as 

( 1) n q(x)n-ilogq(x) 
log r -> o(1) 

Combining the latter estimate with (15) we infer that  I~(x)>_logq(x)/o(1). Thus 
for x close to the boundary of f~ (i.e. for small r) 

q(x) n < exp(aI~(x) ), 

and we deduce (using (13) for the domain [2') that  

q(x)"dm(x)= E f q(x)"dm(x)<~c~ + E f~ exp(aI~(x))dm(x) 
QEIIV J Q  small Q E W  Q 

<_ const + f exp(aI~(x)) din(x) < co ~ 
Jc 

reducing Theorem 3 to Theorem 2. [] 

4. Applications in dynamics 

We will reformulate condition (1) in the following dynamical setting: suppose 
that F is a polynomial, 9t is the domain of attraction to co, and JF=-K=c912 is 
the Julia set of F.  Suppose that  {Bj} is a finite collection of domains whose 
closure covers JF, denote by {P/~} the collection of all components of connectivity 
of pullbacks F-~Bj, and by N(P~) the degree of F n restricted to Pin. 

One can write the geometric condition 

(16) E N(P~) diam(P~) 2 < co. 
i,n 
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T h e o r e m  5. In the setting above condition (16) implies (1), and is therefore 

su.~icient for the conformal removability of the Julia set. 

Proof. The idea of the proof is tha t  the hyperbolic metric is almost preserved 
near the Julia set by the dynamics, so, roughly speaking, Whitney cubes are pulled 

back to Whi tney cubes, and their shadows to shadows. 

More rigorously, for every sufficiently small Whi tney cube Q take the minimal 
n such tha t  Q is well inside some P~,  which is equivalent to taking the maximal  
n such tha t  Fn(Q)  is well inside some Bj.  Then (the required distortion estimates 
are provided by Lemma 7 in [GS1]) s (Q)<diam(P~) ,  and the number of cubes Q 

corresponding to a fixed P~ is <~N(P~). Our theorem follows. [] 
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