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1. Preliminaries 

L(H) denotes the algebra of all linear bounded operators in a complex Hilbert 
space H. WOT (SOT, respectively) denotes the weak (strong, respectively) operator 
topology in L(H). In or I stands for the identity in H. PEL(H) is a projection 
if p2=p*=p. The adjectives "largest" and "maximal" used with "projection" 
will concern the usual partial ordering of projections in L(H). UEL(H) is a partial 
isometry if U'U, UU* are projections. If P, QEL(H) are projections, then 
P v  Q denotes the projection onto the closureof {Px+Qy: x, yEH}. If 5"cL(H), 
then 5e', W*(Se), A(~) stand for the commutant of 5 ~ for the von Neumann 
algebra generated by 6 e and for the WOT-closed algebra generated by 5" and /, 
respectively. Se* denotes the set {S*: SESe}. 5" is symmetric if Se=6 e*, i.e. if 
SESe implies S 'E5  e. If PES"" is a projection, then oq'p={SIPH: SE6e} denotes 
the part of S a in PH. If 6e---{$1, ..., Sk}, then A(S1 ..... Sk)=A(6e). For two 
projections P, Q in a von Neumann algebra ~cL(H)  the symbol P ~ Q ( m o d ~ )  
means that there is a partial isometry UEN such that U*U~-P, UU*=Q. 

Consider a family of operators 5"cL(H). The question we are going to answer 
in the present paper is: Does there exist the largest projection PoE6 a' such that 
(Sap0)" is symmetric? If this question has positive answer, then the decomposition 
H=PoH@(I-Po)H will be called the (SC)-canonical decomposition of 6r (SC) 
replaces the expression "symmetric commutant". Let 

= {PE Se': p is a projection, (6r is symmetric}. 

Each element of ~ will be called an (SC)-projectionfor 6e. Now the above question 
reads: Does there exist the largest (SC)-projection for 5~ 

To explain, where this problem comes from, let us notice that an operator 
TEL(H) is normal if and only if {T}" is symmetric. This is a consequence of 
Fuglede's theorem ([7], Corollary 1.18). Therefore, if TEL(H), then the (SC)- 
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canonical decomposition of {T} (or of A(T)) amounts to the canonical de- 
composition of T onto normal and completely non-normal parts, which is well- 
known. If 60 is an arbitrary family of operators in L(H), then the methods 
developed in [9], which will be also used further, allow to find the largest projection 
P1E5 a" such that S:p~ consists of normal operators. S:e~ will be called the normal 
part o f  6e. In case of commutative 6: this P1 coincides with the largest (SC)- 
projection for 5 ~ Indeed, by Fuglede's theorem, a commutative family 6acL(H)  
consists of normal operators if and only if 60' is symmetric. Therefore 

(1.1) Each commutative family o f  operators has the (SC)-canonical decomposition. 

It is clear now that the question, whether a family 5 : c L ( H )  has the (SC)- 
canonical decomposition, has its origin in the problem of decomposition of an 
operator onto normal and completely non-normal parts. 

If P1 is the largest projection in 6:' such that S:el consists of normal operators 
and if the largest (SC)-projection P0 for 6 e exists, then PI<=Po. The following 
non-commutative example shows that P1 can be strictly less than P0. The oper- 
ator algebra in this example is a non-symmetric algebra with symmetric commutant. 

(1.2) Example. Let P be the projection of H=C2@C onto C. Define 

[ ! l i ]  [ i 0 ! /  T = 0 , Q = 1 , A = A(T, Q). After a matrix computation we see that 
0 0 

/ A'= {T}'c~{Q}'= a : a, bEC . The only projections in A" are O, I, P, I - P .  
0 

The projection P1 that determines the normal part of A equals P and the largest 
(SC)-projection for A is /, because A" is symmetric. A is neither commutative 
(TQ ~ QT) nor symmetric (T* ~ A). 

Next example illustrates similar properties as (1.2) does, but it is sharper than 
(1.2). Namely, the algebra A in (1.3) has no normal part, whereas A' is symmetric. 
This shows that there is no dependence between the canonical decomposition on 
normal and completely non-normal parts and the (SC)-canonical decomposition 
in non-commutative cases. 

(1.3) Example. In C ~ define T = ( ~  10), P = ( ~  ~). Put S = T @ T ,  Q = P @ P  

in C 4. The algebra A=A(S ,  Q) is neither symmetric nor commutative and its 
commutant has the form: 

l/~176 a~ al 0 a2 
A ' =  {SI 'n{Q} '= 0 a4 : al,. . . ,a4EC 

I [0  a a 3 0  a4/ 
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Let us observe that to simplify computing of A' it is enough to determine {T}', {P}' 
and then to apply Lemma 7.4 of [7]. A' is symmetric. A has no normal part. 

Lemma 7.4. of [7] allows to prove the following property: 

(1,4) I f  5ecL(H)  has symmetric commutant, then the commutant o f  5a~")= 
{SG. . .@S:  SES e} is symmetric. 

n t i m e s  

It is also easy to check that 

(1.5) I f  S ~" is symmetric, then (6e*)" is. 

To finish this section we would like to mention that the other reason to investigate 
the (SC)-canonical decomposition more closely appeared after reading papers 
[3], [5], [6], [8], where similar problems for reductive operators and reductive operator 
algebras were studied. Here we shall present a more systematic approach to the 
(SC)-canonical decomposition problem to realize exactly, what is essential and 
important for such a decomposition to exist. In w 2 we construct the (SC)-canonical 
decomposition and we establish necessary and sufficient conditions for the existence 
of this decomposition. In w 3 we provide examples of operator algebras without 
the (SC)-canonical decomposition and we discuss the (SC)-maximal decomposition. 
w 4 deals with some sufficient conditions for the existence of the (SC)-canonical 
decomposition, which are easier to check than the general condition established 
in w 2. Consequences of  one of these conditions called (N) for the (SC)-canonical 
decomposition are studied. Several examples are provided. 

2. Constructing the decomposition 

Let us fix a family 5ecL(H).  As in w 1, let ~ be the family of all (SC)-projec- 
tions for 6 r The canonical decomposition method established in [9] will be the 
basis of our construction of the (SC)-canonical decomposition. 

(2.1) Suppose we are able to prove: 

(i) #~ is hereditary, i.e. i f  PE~, QES~" is a projection, Q<=P, then QE~, 
(ii) I f  PE~, QESr is a projection, Q ~ P  (rood W*(Se)'), then QE~, 

(iii) I f  P, QE~, PQ=O, then P+QE~,  
(iv) I f  P ,E~  is a net that converges to a projection P in SOT and P.<=P 

for each n, then PE#.  

Then 5e has the (SC)-canonical decomposition. The largest (SC)-projection Po for 
5e belongs to W*(5 a) and 5~i-~,o has no non-zero (SC)-projection. 
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Proof." Conditions (i), (ii), (iii) imply that PvQE~ whenever P, QE~, 
by [9], Proposition 1. Thus ~ is a directed family of projections. By Vigier's 
lemma ([11], p. 7), P0=LUB ~ is the SOT-limit of ~.  Now (iv) implies that 
PoE~, what means exactly that 6e has the (SC)-canonical decomposition. By 
[9], Theorem 5, PoEW*(6e). S~_p0 has no non-zero (SC)-projection by (i) and (.4) 
of [9]. Q .e .d .  

Now we shall check the conditions (i), (ii), (iv). The following technical prop- 
erty, whose proof is straightforward, will be used: 

(2.2) Suppose PE5 a" is a projection. Then: 
(a) TE(6ap) ' if  and onlyif TPE6e', for each TEL(PH), 
(b) PTPES~" i f  and only i f  PT[PHE(See)', for each TEL(H). 

Checking (i). Take PE~,  a projection QE6 e' and TE(6~)'. By (2.2), 
PTQP=TQE6e" and PTQIPHE(Sep)'. Since P is an (SC)-projection for 60, 
PT*Q]PH=(PTQIPH)*E(See)'. Again by (2.2), T*QE6e'. Hence T*E(~)' .  
Thus QE~. 

Checking (ii). Take P E ~  and a projection QESa" such that QNp 
(mod W*(6~ Notice that a projection commutes with 6e if and only if it commutes 
with W*(6e). Let UEW*(Sa) ' be a partial isometry such that U*U=Q, uu*=P. 
Take TE(SPa)' and define X=UTQU*. Observe that X = U Q T Q U * =  
UU*UTU*UU*=PUTU*P. Thus X=PXP. Since TE(Sa)' , UEW*(Se)', it 
follows by (2.2) that XE5 a'. Put S=X[PH. Then X=SP. By (2.2), SE(S~e)'. 
Since P is an (SC)-projection for 6 e, S*E(Sae) '. Again by (2.2), X*=S*PE6 e'. 
Hence T*Q=QT*QQ=U*UT*QU*U=U*X*UE6e'. Now T*E(SQ)', by (2.2). 
Thus QE~. 

Checking (iv). Let P ,E~  be a net that SOT-converges to a projection P and 
such that P,<=P for each n. Since the multiplication in L(H) is separately SOT- 
continuous, PE5 e'. Take TE(SPp)'. By (2.2), STP=TPS, SESe. Now SP, TPn= 
PnSTPP,=P, TPSP~=P, TPnS, for each SE5 e, because P,, PES e' and P,<-P. 
Each P, is an (SC)-projection. Thus P~T*PnE6 r for each n, by (2.2). Passing 
to the SOT-limit in the equality P,T*P,S =SP, T*P,, SE5 a (the net P, is norm- 
bounded), we get T*PESe'. Again by (2.2), T*E(6ep) '. Hence PE~. 

We have just proved that the conditions (i), (ii), (iv) hold without any additional 
assumptions on 6 e. The following necessary and sufficient conditions for the existence 
of the (SC)-canonical decomposition are natural consequences of the above con- 
siderations: 

(2.3) Theorem. The following conditions are equivalent: 
(a) 6e has the (SC)-canonical decomposition, 
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(b) 5e satisfies (iii), 
(c) For all P, QE~, PQ=O and for each B=PBQ i f  BE5 v', then B'E5 v'. 

Proof." (a)=~(b). Let P0 be the largest (SC)-projection for 5 v. If P, QE~, 
then P,Q<=Po. Hence PvQ<=Po . By (i), PvQE~.  In particular, P+Q= 
P v Q  if PQ=O. 

(b)=~(a) follows from (2.1). 
(b)~(c). Take P, Q,B as in (c). Then B](P+Q)HE(Sev+a)', by (2.2). Since 

P+QE~, it follows that B*I(P+Q)H=(B](P+Q)H)* belongs to (See+q) '. Again 
by (2.2), B*ESe'. 

(c)=~(b). Take P, QE~, PQ=O. Let TE(Sev+Q) '. Then T(P+Q)E6 a'. Now 
T(P+Q)=(P+Q)T(P+Q)=PTP+PTQ+QTP+QTQ. Since P,Q are (SC)- 
projections for 5 a, PT*P, QT*QE5 v', by (2.2). Thus T*(P+Q)=(P+Q)T*(P+ 
Q)E5 e', by (c). Again by (2.2), T*E(Sav+r ". Q.e .d .  

The condition (c), although concerns nilpotents ((PBQ)*=O if PQ=0) and 
looks simpler than (iii), is not much easier to check, when one wants to apply it. 
Some easier applicable conditions will be discussed in w 4. 

3. (SC)-eanonieal decomposition does not hold in general 

First we present an example to justify the previous statement. 

(3.1) Example. In C ~ define T = ( ~  101, P = ( ~  0).  Put S=T@O, Q=P@O 

in H=C2@C. Define A=A(S, Q). Let E be the projection of H onto the 
first C 2. Then AE=A(T,P), AI_E=CI~ where /2 denotes the identity in C. 
A matrix computation shows that A(T, P)" consists of scalar multiples of the 
identity in C 2. Thus E, I - E  are two (SC)-projections for A. The form of the 
commutant of A: 

A t ---- a l  " a l ,  a2 ,  ~3E 

a2 a3 

shows that A" is not symmetric, whence the condition (iii) is not satisfied. Thus, 
by (2.3), A does not have the (SC)-canonical decomposition. Moreover, the only 
projections in A' are O, L E, I -E .  Thus E, I - E  are two maximal (SC)-projec- 
tions for A. 

A comment is now in order. Since we know that the (SC)-canonical decomposi- 
tion does not exist in general, it is interesting to know, whether some kind of ortho- 
gonal decomposition does occur at all in connection with the property (SC). The 
decomposition we are going to say a few words about is very often of a big signi- 
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ficance. Namely, suppose we are given a family 3 " c L ( H )  of operators and 
a property (W) concerning this family. Let ~ = { F ~ 9 - " :  F is a projection, 

has the property (W)}. Suppose that ~- has maximal elements. If they are 
mutually orthogonal, then H can be written as H = �9 { F H : F  is a maximal 
element of ~ }  ~/ /1 .  Let us call this decomposition the (W )-maximal decomposition 
o f  ~--. It is clear that the (W)-canonical decomposition of ~" (which means that 
there is the largest projection in ~ )  is much stronger than the (W)-maximal one. 
But there are properties (W) and families of operators J" without the (W)-canonical 
decomposition that stilt have the (W)-maximal decomposition. An example can be 
found in [10]. 

It occurs that even the (SC)-maximal decomposition does not exist in general 
and the reason is, that there may exist two maximal (SC)-projections which are 
not orthogonal each other. 

(3.2) Proposition. Let Se be a family o f  operators in L(H). There exist maximal 
(SC)-projections for 6 a but they need not be mutually orthogonal. 

Proof: Let ~ be the family of all (SC)-projections for 6a. Let cg be a linearly 
ordered subset of ~ .  cg is a directed family of projections. By Vigier's lemma 
([ll], p. 7), C =LUB c~ is the SOT-limit of cg. Thus CE~, because (iv) is satisfied. 
Applying the Kuratowski--Zorn lemma we see that there exist maximal (SC)- 
projections. To show that maximal (SC)-projections need not be mutually orthogonal, 

consider two operators T = [ ~  10), P = [ ~  ~ ) i n  C ~. Define S = T e I 2 @ T * ,  

Q=P@O@P in H=HI@H,@H3,  where HI=H3=C2, H,=C.  Let E~,E2 
be the projection of H onto HI@Hz, H2~H3, respectively. Put A=A(S ,  Q). 
E~ is an (SC)-projection for A, as it is shown in (1.3). Computations similar to 
those of (1.3) show that E2 is an (SC)-projection for A. The commutant of A has 
the form: t!al00a!l 0 a l 0  0 

A" = 0 0 a3 0 : al .... , asC C I .  
O 0 0 a 4  
0 a5 0 0 a4J 

It is clear that A' is not symmetric. The only projections E in A' such that 
E ~ E i  are 1 or E~ (i=1, 2). Thus El, E~ are maximal (SC)-projections for A. 
They are not orthogonal each other. Q.e .d .  
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4. Sufficient conditions for the (SC)-canonical decomposition to exist 

We have already observed in (1.1) that the commutativity of a family Y c L ( H )  
guarantees that Y has the (SC)-canonical decomposition. Another result in this 
direction has been found by R. L. Moore. Namely, the main result of [6] states 
that each reductive algebra of operators has the (SC)-canonical decomposition. 
To begin with let us say a few words about the reductivity. Usually it is said that 
an operator algebra is reductive if it contains the identity, it is WOT-closed and 
each subspace invariant under it reduces it ([7], p. 167). But we shall say that 
a family Y c L ( H )  is reductive if each subspace invariant for Y reduces Y. 
We shall make no assumption about neither algebraic nor topological properties 
of Y.  As far as the definitions are concerned, it really does not make any difference, 
because invariant and reducing subspaces are the same for 5" and for A(Y). 
But troubles with the correctness of expressions may arise once one passes to parts 
of Y in reducing subspaces. To be precise suppose that P E Y '  is a projection. 
I f  Y is reductive (in our sense), then Yp is ([7], Lemma 9.1). But one cannot 
say the same if the WOT-closedness is included into the definition of the reductivity, 
because it is not clear, why Ye has to be WOT-closed when Y is. Therefore one 
has to be careful at this point. Looking through the proof of R. L. Moore's results 
([6], Theorems 2, 3) it becomes clear that the WOT-closedness of algebras he deals 
with is never used and his results remain true for reductive families of operators 
in our sense). Moreover, requiring a reductive algebra to be WOT-closed makes 
the use of Theorem 1 of [6] in the proof of the main Theorem 2 of [6] not completely 
justified, b y  the above reasons. 

In this section we present two conditions under which the (SC)-canonical 
decomposition holds. They are considerably weaker than the reductivity, as we 
shall show in some examples. Moreover, we are able to provide examples of operator 
algebras that satisfy our conditions, whereas it is difficult to find non-symmetric 
examples of reductive algebras at all (cf. [4]), mainly because of the close connection 
between the reductive algebra problem ([7], p. 167) and the invariant subspace 
problem (of. [2]). 

Let us introduce now our conditions. Suppose Y c L ( H )  is a family of 
operators. 

(4.1) We say that Y satisfies the idempotent condition (Id) if for each idempotent 
EEL(H) if EEY' ,  then E*EY' .  

Define JC'={PEY':  P is a projection such that for each B = P B ( I - P )  if BEY',  
then B*EY'}. 

(4.2) We say that Y satisfies the nilpotent condition (N) if each projection PEY '  
belongs to ~ .  Notice that operators B = P B ( I - P )  are nilpotents. 
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(4.3) Theorem. Let 6O cL(H) be a family of operators. The following implications 
hold: 50 is reductive =~6O satisfies (Id)=~6o satisfies (N)=~6O has the (SC)- 
Canonical decomposition. Neither of these implications can be reversed. 

Proof." Suppose that 6O is reductive. Let EE6O' be an idempotent. Then 
I - E  is also an idempotent in 6O'. Thus ker E, ker ( I - E )  are invariant for 50. 
Since 6 ~ is reductive, ran E*, ran ( l -E*) are invariant for 50. It is easy to check 
that an idempotent FEL(H) commutes with an operator YEL(H) if and only 
if ran F, kerF=ran( I -F)  are invariant for Y. Therefore E*E6O'. Thus 
6O satisfies (Id). 

Suppose now that 50 satisfies (Id). Take a projection PE6O' and a nilpotent 
B=PB(I-P)E6O'. Then P - B  is an idempotent in 6O'. By (Id), P-B*E6O'. 
Thus B*E6O'. Therefore (N) is satisfied. 

Finally suppose that 50 satisfies (N). Take P, QE6O', PQ=O and a nilpotent 
B=PBQE6O'. Then B =PB(I--P). By (N), B*E6O'. Hence 6O has the (SC)-canon- 
ical decomposition, by (2.3). 

Up to now we have proved all the desired implications. Next we shall present 
four examples to show that these implications cannot be reversed. 

(4.4) Example, Let S denote the unilateral shift of multiplicity one in a separable 
Hilbert space H, Since A(S)=A(S)'  consists of analytic Toeplitz operators, 
up to the unitary equivalence (cf. [7], Theorem 3.4), the only idempotents in A(S)" 
are 0 and L Thus (Id) is satisfied. But A(S) is not reductive. 

This example was commutative and irreducible. Another example of an algebra 
that satisfies (Id), but is not reductive is the algebra A =A(T, Q) of Example (1.2), 
which is non-commutative and has reducing subspaces. A is not reductive for 
general reasons ([7], Corollary 9.12). Clearly, A satisfies (Id). 

Next example shows that (N) does not imply (Id). This example illustrates 
also many patologies that can occur in the (SC)-canonical decomposition. The 
algebra A below is non-commutative, has no normal part and the largest (SC)- 
projection for A is different from 0, L 

(4.5) Example. In C 4 consider three operators 

T =  

010 / 
0 0 0 0  , 

0 0 0  
0 0 1  

Q = ~176176 0 1 0 0 ,  
0 0 0  
0 0 0  

P = 

l 
0 1 0  
0 0 0  " 

0 0 0  

Define A=A(T, Q, P). A is not commutative (TQCQT). After determining the 
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form of the commutant of A 

[[; 1000 ] a l  0 0 C/ 
A'={T}'c~{Q}'n{P}'=[[~ O0 asa2 0a2waz :aa, a2, a~E 

it is plain that the only projections in A' are O, 1, P, I - P .  The only operators 
B=PB(1--P) or B=(1-P)BP are 0. Thus (N) is satisfied. The operator T ~ is 
an idempotent that belongs to A', but T~*r A'. Thus A does not satisfy (Id). 
P is the largest (SC)-projection for A. A has no normal part. Notice also that the 
largest (SC)-projection P for A belongs to .4". As we shall see in (4.7), this is 
a consequence of the condition (N). 

Now we show that the existence of the (SC)-canonical decomposition does not 
imply the condition (N). 

(4.6) Example. In H=C@C 2 define T =  1 and consider the corn- 
0 -  

mutative algebra A=A(T). By (1.1), A has the (SC)-canonical decomposition. 
The projection P of H onto C is the largest (SC)-projection for A. Take 

B =  0 . Then B=PB(I--P) and BEA'. But BT*r Thus A does not 
0 

satisfy (N). 
Now Theorem (4.3) is completely proved. Q .e .d .  
Finally we would like to see, what additional informations does the condition 

(N) give concerning the (SC)-canonical decomposition. We shall prove the following 
theorem: 

(4.7) Theorem. Suppose a family 6OcL(H) satisfies the condition (N). Then the 
largest (SC)-projection Po for 6 ~ belongs to 60". Moreover, both 6oeo, ~-Po 
satisfy (N) and each subspace reducing Z - r ,  is hyperreducing for ~-1,o, i.e., 
reduces (~_po)'. 

Similar properties of the (SC)-canonical decomposition have been proved in 
[3], [5], [7] for reductive operators and reductive operator algebras. These results 
are particular case of Theorem (4.7), by Theorem (4.3). 

Before we prove (4.7) several preliminary propositions are needed. 

(4.8) Proposition. Let 6O be a family of  operators in L(H). Suppose T, T*E6O'. 
Let P1, Pa denote the projections onto ranT, ran T*, respectively. I f  P1 is an 
(SC)-projection for 6O, then P~ is. 
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Proof." It is clear that P1, P~E6O'. Let U be the partial isometry of the 
polar decomposition of T. It is known that UEW*(T) and that U*U=P2, 
UU*=P1 (cf. [1]). Thus PI..~P2 (modW*(T)). Since T, T*E6O" and since 5"' 
is WOT-closed, W*(T)=5`". Hence PI~,P~ (mod W*(5`.)'). Now Proposition 
follows from (ii) of w 2. Q.e .d .  

(4.9) Proposition. Suppose PElf" (as defined above). Let B=PB(I--P)  and 
suppose BE5". Then the projection onto ran B is an (SC)-projection for 5`,. 

The proof of this proposition is exactly the same as the proof of Theorem !, 
(2) of [6]. One has to realize only that not reductivity, but the property (N) is 
essentially used in that proof. 

(4.10) Proposition. Suppose a family o f  operators 6O=L(H) satisfies (N). I f  
PE 6O' is a projection, then 6op satisfies (N). 

Proof." Take a projection QE(6Op)'. By (2.2), QPC:6O'. It is clear that QP is 
a projection. Take B=QB(IpH-Q)E(6Oe)'. By (2.2), BPE6O'. Moreover, BP= 
QB(IpH-Q)P=QP(BP)(1-QP), because r a n B c r a n  Q c r a n  P. (N) implies 
B*P=(BP)*E6O'. Again by (2.2), B*E(~) ' .  Q.e .d .  

Proof of  Theorem (4.7): Let P0 be the largest (SC)-projection for 5`, which does 
exist, by (4.3). Take TE6O'. Since 5`, satisfies (N), 1-PoEvV'. By (4.9), the projec- 

tion E1 onto ran(1-Po)TPo is an (SC)-projection for 5`,. Hence EI<-Po . On 
the other hand, E~<=I-Po . Thus E~=0 and PoTPo=TPo. Let now B=PoT(1--Po). 

By arguments similar to the above ones, the projection onto ran B is an (SC)- 

projection for 6 ~ By (4,8), the projection E2 onto ran B* is an (SC)-projection 
for 5 ~ Thus E2<=Po . But ran B*=(I--Po)H. Thus E2=B*=0,  whence B=0.  
We have just proved TPo=PoT. Thus PoE6O", because T was arbitrary in 5 ~ 
It follows from (4.10) that both ~eo, ~-P0 satisfy (N). To prove the last statement 
take a projection QE(~-eo)" and an operator TE(~_po)'. Since ~-eo  satisfies 

(N), the projection onto ran QT(IPon-Q) is an (SC)-projection for ~-Po'  by 
(4.9). Now (2,1) implies that this projection equals zero. Thus QTQ=QT. Con- 

sidering the projection onto ran (Ipon-Q)T Q we prove similarly that QTQ= TQ. 
Thus QE(S~_eo)". Q. e. d. 

We would like to close this paper with the following simple observation: 

(4.11) Suppose 6OcL(H) is a family o f  operators. The largest (SC)-projection 
for 5`, equals 0 or I in each o f  the following cases: 
(a) the only projections in 6O' are O, 1, 
(b) dim H = 2 .  

Proof." (a) is clear. The largest (SC)-projection for 5`, equals I or 0 depend- 
ing on whether 5`," is symmetric or it is not. To prove (b) it is enough to consider 
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the case when there is a projection P~5~' ,  P ~ 0 ,  P # L  Let  el, e~ be an or tho-  

normal  basis o f  H such that  el, e~ span PH, ( I - -P)H,  respectively. Each  TE5 p 
/ 

fo.  , . , . , s   asis , f  ,s a s a,ar mu t,plo 
/ - ))  t 

o ~ .  t~en ~' ~ ( . ,  ~orefore we may assumo ,.at t~oro is ~=/0 bl~ 
/ 

with a#b .  Then P = ( a - b ) - l ( T - b I ) C 5  ~ Hence 5 r  '. I t  is clear that  
{P} '=D(el ,  e2)= the symmetr ic  algebra o f  all diagonal  operators with respect 

to the basis e~, e~ o f  H.  The p r o o f  will be finished once  we realize that  i f f l , f 2  
is an orthonormal basis o f  H, then the only proper subalgebra o f  D( f l ,  f~) is the 
algebra o f  all scalar multiples o f  L To see this take an algebra A c D ( f l , f ~ )  tha t  

,~a~=~.,~=~. ~ u ,  ,~s~--[0 ~ w~ e=  ~ . ~ S ~ .  
Since ~ '  is a subalgebra o f  D(el, e~)= {P}', the p r o o f  is finished. Q . e . d .  
N o w  (4.11), (b) together  with Example (3.1) show that  2 is the biggest dimension 

o f  a Hilbert  space H such that  each family o f  operators  in L(I-I) has the (SC)- 
canonical  decomposit ion.  
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