Basis properties of Hardy spaces

Per Sjolin and Jan-Olov Stromberg

1. Introduction

Set I=[0,1] and let (x,); denote the Haar orthogonal system. If feL(I)
we write Gf(t)= [} f(u)du, t€1. Let m be an integer, m=0, and let ( fimy=
denote the system of functions which is obtained when we apply the Gram-Schmidt
orthonormalization procedure to the sequence of functions 1, ¢, 2, ..., "%, G™y,,
G™tly,, G™*y,, ... on I. We use here the usual scalar product in L?(Z). The systems
() are called spline systems and in particular (£{”) is called the Franklin system.
These systems are complete in L*(7) and have been studied by e.g. Z. Ciesielski and
J. Domsta [6]. We shall write f; instead of f{™ and set f,(t)=0 for t€R\J.

For n=2 we have n=2/4+] where j=0, 1=I[=2/, and set t,=(—1/2)27.
Then D™f, is absolutely continuous on I and it is known that

]Dkf;,(t)l = Mnk+1/2rnlt—t"[’ O=k= m+1, =2, el (1)

where M and r are constants depeding only on m and O0<r<1 (see [6], p. 316).
Assume that { belongs to the Schwartz class of functions S(R) and that
le#(x)dx¢O. Set Y (x)=t"2y(x/t), t=0, x€R, and for fES’(R)

frx) = sup |f*¥.(x)], x€R.

The Hardy space HP(R), O<p-<oo, is then defined to be the space of all f
such that |[f|g,=[f*,<o, where |gl, is defined as (f|g(x)|?dx)"/?.

For a=0 we set N=[a], where [] denotes the integral part, and d=o—N.
If o is not an integer set

4, = {peC"R); sup |4, D% ¢l|/|hf <o}
(here 4,F(x)=F(x+h)—F(x)) and if a is an integer set

Ao ={peC"(R); sup 42D ]/ JH] <=}.
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Also set A,=A,/P", where P¥ denotes the class of polynomials of degree =N. The
projection from A, to A, is denoted II. For O<p=1 set a=1/p—1. It is then well-
known that for 0<p<1 A, is the dual space of H” (see e.g. P. Sjogren [10]). If
f€HP, 0<p<1, and Y€A, then

Y(f) =354 [bedx,
where @€II7'(Yy)< A, and 37 4;b; is an atomic decomposition of f (here 4;6C
and each b; is a p-atom). If @€ 4, set o(f)=(I1(9))(f) for feH". Also set
HP*(I)={f€H"(R); suppfcl and o¢(f)¢R for every real-valued ¢€A,},

O<p=l.
It is also well-known that (HY)*=BMO and we set

H'()={fcH'R); supp fcI and f real-valued}.

Now assume that 1/(m+2)=p=1. It follows that a=m+1 and hence it is a
consequence of (1) that we can find g,€4, (g,6BMO in the case p=1) such that
g.=f, on I. If fEH?(R) we then set a,=a,(f)=g,(f), n=—m, —m+1,....
If feH?(I) then a, does not depend on the choice of g,. This is a consequence of
Lemma 3 below. We shall prove the following theorem.

Theorem. Assume that m=0 and 1/im+2)<p=1. If feH?(I) then the
Jollowing holds:

CoNf e = (37, @ £ o = Coll o @

=27, a,f, with convergence in HPY. 3)
If (m)w—_m is an enumeration of —m, —m+1, —m+2, ..., then also

=2, @y fo, with convergence in HP. e

If =27 ins1Cnfn With convergence in HP, then c,=a,(f)
(here N=[1/p—1]). (%)

Remark 1. Tt is easy to see that f,€ H?(I) if n=—m+N-+1 and that gq,=0
for n=—m+N if f€HP(I). The theorem implies that (f,)~,.,.~41 IS an uncon-
ditional basis for H?(I) if 1/(m+2)<p=1. We shall also prove that these bases are
equivalent.

Remark 2. The inequalities in the theorem hold as well with (37 at [
replaced by (3=, aix)/? (x, is defined as the characteristic function y; whenever
n=1).
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For analogous results in the case p>1 see S. V. Bockarev [1], Z. Ciesielski,
P. Simon and P. Sjolin [7] and Z. Ciesielski [4]. The case p=1, m=0 has been stu-
died by P. Wojtaszczyk [11], Z. Ciesielski [5], F. Schipp and P. Simon [9] and A.
Chang. The first explicit construction of an unconditional basis for H* was carried
. out by L. Carleson [3]. Earlier B. Maurey [8] had proved the existence of an unconditi-
nal basis in H'. In this paper C and r denote constants, which satisfy C=0 and
0<r<1 and may vary from line to line. ‘

2. Proof of the theorem

We shall first make a special choice of the functions g, mentioned in the intro-
duction. If —m=n=1 then f,(t) = >v*'c,t*, tcl, for some constants ¢,. We
then set

g0 = (S e (D, 1€R,

where YcCy (R) and ¢ (1)=1, —1/2=¢=3/2, and Y (t)=0 if r=—1 or r=2.
We then construct g, in the case n=2. First set ¢, =D, (1), k=0, 1, ..., m+1.
Then (1) yields |e,|=Mn*T"2"0"% | We set

C; -
P(x) = ;'n:ol'TJ"x)

and h,(x)=P(x)y,(x), x=0, where Y, (x)=y¥(2nx). It follows that h,(x)=0 for
x=1/n and h®0)=c,, k=0,1,...,m+1. We have

1
n

10 @] = 375 e

]j_k = C I g2 (=t i = Gyt
O=x=1/m k=0,1,...,m+1.
It follows that
|h® (x)] = Cn*+2p0-t) 0=x=1/n, k=0,1,...,m+1.

We set g,(x)=h,(x—1), x>1, and define g,(x) in an analogous way for x<0.
Then D™g, is absolutely continuous on R, g,(¢)=0 if dist (¢, I)>1/n and

[D*g, ()] = Mn*+12prl-tl . 0=k =m+1, n=2, (R, (6)
where O<r<l1.

Lemma 1. If m=0 and 1/(im+2)<p=1 then

IS w2 £, = Coll fllues  fEH? ().
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Proof. The condition on p implies that a=1/p—1<m+1 and hence N=[a]=m.
The functions f_,in+1> f-m+n+2s f—msN+3s --- afe orthogonal to f_,., ..., fomsn
and hence orthogonal to 1, f, ..., . It follows that f,, n=—m- N1, are multiples
of p-atoms and hence belong to H?(R) and HF(I).

Assume @€C7, ¢ real, [edx=1, p(x)=0 for [x[>1, ¢,(x)=c1o(x/e).
For fcH?(I) and —m=n=-m+N we have

a,(f)=g.(f)= IBILI}’ 2. (f*0,) = laiif})fgnf*%dx =0,

since g, is a polynomial of degree =N in a neighbourhood of Iand fx ¢, H'nCy .
We fix a positive integer M and set

T =3¥,  ye1eatnfa(®,

where ¢,=+1, a,=a,(f), fcH’*(R) and e=(g,).
We shall first prove that
IT:bl, = C, Q)

if b is a p-atom. We may assume that b is real-valued. Then there exists an interval
J=[c,d] such that supp bcJ, |b]..=|/|7V? and

[b@idt=0, k=0,1,..,N. ®)

Set Bl(s)zfs_wb(t)dt and Bk(s)=f‘_ka_1(t)dt, k=2,..,N+1.
It follows from (8) that supp BycJ, k=1, 2, ..., N+1, and it also follows that

1Billeo = |JJ5-YP, k=1,2,..., N+1. )

We have Tb(t)= 3" . ...64./(t), where a,=a,(b), and integrating by
parts we obtain

a,(0) = [ &,(&)b()ds = (— 1"+ [ D¥+3g,(5) By 41(s)ds.
For —m+N+1=n=1 it is clear that
lenantill, = Cplan] = Collblas = Cp.
Setting  S,b(1)= 3 ¢,a,f,(t) it is therefore enough to prove
IS.bll, = C,. 10
An application of the Holder inequality shows that

fsz S.blrdt = (fr ISe b|2dt)p/2 (,[2] dt)l_m =C (Zraﬁ)p/zljll_plz- a1y

We claim that
2;” a2 = C|J-», (12)
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Setting h,=g,—f, we have
a,= [g.bds= [f,bds+[h,bds=c,+d,.
(f,) is an orthopnormal system and hence
Sz [ b= [brdr=|Ip-te,
We have
M 2 — zgf(fh,,(t)b(t)dz)(fhn(s)b(s)ds) = [[ G, 9)b(1)b(s)d1 ds,

where G(t, )= ¥ h,()h,(5).
Setting Q=I><I and O,=(1, 1)+Q’ Q2=(1a —"1)+Qa Q3=('—l, 1)+Q and
Q:=(—1, —1)+Q one finds that

SMa= I, where I =fo G(t, )b(Nb(s)deds,i=1,2,3,4.
i

For (t,5)€Q; we have | 2 by )k, (5)|=C 27%;(1, 5), where y; is the charac-

2/ 41
teristic function of the square [1, 1+2771X[1, 1+2~7]. It follows that |G(t, s)|=
C((t—1)*+(s—1)*)""2, (1, 5)€Q;, and hence

Bl = U ff e,

= Y 21 2)—1/2 — 1-2/
= CJ| pff(uz+vz)1/z§}/§|1| (w409 dudv = ClJP=5P.

(1= D2+ (s—1)?)~V2dt ds

‘We have the same estimates for I, I; and I, and conclude that 2;" di=C|J|r 2P,
We have proved (12) and it then follows from (11) that

Lo, ISebPdE = C. (13)
We shall now prove that

fl\w |S,bPdt = C. (14)
We have

18,60 =33 la,f, (01 = 33| [ DY+28,(5), () By 41 ()]
and invoking (1), (6) and (9) we obtain
|S.b(@)] = CSY ¥ +1-1e [ pN+2prls—talpeli=tal 4

27+1

= C|JN+i-vp 37 I+ f, (S rmis el prli=tal) g

= CN Ve [ (S 20040 g Wil g,
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where O<g<1. We observe that
2: zj(N+2)q2Jr = Cf: XV g gy = Cf:’ PGy Ay py= N+ = Cyp=(N+D 5 = (),

and hence
[S.b(@)] = CIJ]N“'I“’_/'J [t—s|=N-2ds = C|JPN+2-Ypjt—t,|-N~2 1 I\2J,
where f, denotes the center of J. It follows that
fl\w |S,blrdt = C|J|¥+2p-1 fml [t— o]~ +Dr gy

= ClJ|W+2r=1 [ ~Widr gy = C,
~ , i
since (N+2)p=1.
We have proved (14) and the proof of (10) and (7) is complete.
Now let f€H?(I) and let 3" A;b; be an atomic decomposition of f with
(2T Ay = Goll £llas

It follows that a,(f)=27 A4;a,(b;) and hence T ef(t)=2‘1’° AT b(1).
Thus -
]Tsf(t)lp = le ]lilp]Tabi(t)‘p

and
ST f OFdt = Cp Z7 147 = Coll f o

Using a property of the Rademacher functions (see A. Zygmund [12], p. 213)
we then conclude that

[ a D = Cyl £ 15
and the lemma follows when we let M tend to infinity.
Lemma 2. Assume that m=0 and 1/(m+5/2)<p=1. If c,€R,
nz-—m+N+1, and (3=, xS <o, then 37, i1l

converges in H? and

”Zojm+N+1 cnf;l“HP = CP”(Z°—°m+N+IC'21ﬁ‘2)1/2”p'

Proof. 1t is sufficient to prove the lemma in the case when only finitely many ¢,
are non-vanishing. The general case then follows from a limiting argument if we use
the fact that H? is complete.

Since f,€H?, n=—m+N+1, we have for —m+N+1=n=1

lewtils = Cle? = Cle” [ frdx = C [ (cf,2ydx.
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It is therefore enough to prove

”Z; Cnfn”Hp = C”( ;" C'2' ”2 1/2”p.

Since all f,, n=2, are orthogonal to 1, 1, ..., f"*' the iterated primitive func-

tions G*f,, 1=k=m+2, will be supported in I and satisfy the estimate’
Ikan(t)[ = Mn—k-(-l/Zrn}t—tnl
Let y€Cq (—1,1) with flﬁdx 0 such that SUP; > [P (28)|=c=>0 for é=+1 and

let Y, (x)=y (x/1)]/1.
Then by A. P. Calderén and A. Torchinsky [2], Theorem 6.9, p. 56,

”2: cnﬁt”HP = Cp”AlI/(Z: cnfn)”p’ p=>0,

where
an@={ff, . Arnor 22" fes.
We will show that
' 1/2, 1 )
45 il = I T g <=1

To do this we shall define an auxiliary function in the upper half plane and for
this need that there for each n=27+1, j=0, 1=I=27, exists a subinteravl I’ of the
interval I,=[(/—1)2J, 279] such that

(] = ent
{ (15)

| fa(0)] = en*?, x€1,,
for some constant c¢>0. .

Proof of (15): The function D™*f, makes a jump at ¢, of magnitude, say A=0.
Thus at least one of the left and the right limit at #, has magnitude =A4/2.

I, is divided by ¢, into two intervals of length 2-7=1 and on at least one of them
f» can be written in the form A, JJ7*'(x—«;) where «; are complex numbers and
|4o| = 4/(2(m+1)!). Now we can find a subinterval I, of length §=27-1/(3(m+2))
such that dist (/,, Rea)=4 for every i. It follows easily that |f,(x)|=c42-7("+D
on I,.

In order to estimate 4 we define 4, f(x) ——f(x+h) —f(x) and x,=max (x, 0)
and set

80%) = X () By (x— 1)1,

Then g is supported on [t,—(m+2)277"% 1], | gl.=C27/™+D and conse-
quently || gila=C2-/m+3/2),

Looking at the discontinuities of D™+1g we see that we can write g= =20 _.bifi
where b;=[gfidx. In particular |b,|=|fgf, dx|=]gl,=C2-/™+3/2 Since
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D™+1f,, i<n, are continuous at t, we find that D™+1g makes a jump of magnitude
|bs] A=CA2-I+3/D_ On the other hand we check directly that D™+'g makes a jump
of magnitude (m+1)! at t,. Thus A=c2/m+3/»
From this inequality and the estimate above we conclude that (15) holds.
Now we define the function F on Rf ={(x, ); x¢R, >0} by

lcalnV? when (x, HELY = —;-I,,’X[Z‘f—l, 2= n=2,
Fx, ) = -
0 when (x,)eRANUZ'.
2

Note that all I, n=2, are disjoint. Furthermore, if we define

AF(x) = {ffly—xlﬂ’t )Iz e dt} xeR,

with y>0 small enough and

@ ={[f,, 170, o+ =y L ser, 2=,
then
1
& AF () = (37 a(A®))" = Cea(F) @)

and also

- AF ®) = (35 a(x0))" = Cgi(F)(*)

for all A>0. But if p>1/1 we also have
gz (F)ll, = ClAF,
(see [2], Theorem 3.5, p. 20). This gives the equivalence between the norms

(S ncify |, and [[(S7,c2)"|, for p=o.

To prove Lemma 2 it is enough to prove
144 (35 entls = ColgXE) (16)

for all A with O<A<m+5/2. We need to estimate W, xf,(»).

Case 1: tm=]. By integration by parts we get

W £ (D) = [(D™24 ) % (G™+2 £)(»)| = HD”"‘zl//thf[z
= Ct‘”"sf

|z—y]| <t

G"‘*’fn(Z)Id?

—y|=<t

n—m—a/zrnlt,‘—zl dz = C(nt)—m—3n1/2rmax{n(}r"—){[——t), o).
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Case 2: tn<1, t<y<1—t. Integrating by parts we obtain
W) = G+ RLYON = Gl sup 1D, (2)] = Cen®2rin=),

Case 3: tn<l, |y|<t or |y—1]<t. We have

[Yex fu (D) = ”‘//1”1 Sup FAGIES Cnt/2pnlta=yi,

[2—y
In the remaining case tn<I1, y<—t or y>1+1¢, it is clear that

Yexfo(y) = 0.
From the definition of F we get

ek (Snzi cafn) )] = C Spayye (i) =3 pmastalit,—s1=0,0)|¢ |q1/2
dzds

5 g S 208

dzds\V?
= C(f G130 oz, 22 ]

for all ¢=0. Here we have used the Cauchy — Schwarz inequality and the fact that

dzds
1+ e, max{(|z—~y|—t)/s, 0}
ffR)( {s; s<2t) (S/t) r §2 =C.

a0 = ([,

Then we obtain

Now set

dydt)12

(A(I)(x))z
Cff,y xl=t (.ffRX{s gz (SfOYI S pmax(zyl=00s A Pz, Dl

dzds dydt
t2

m & pmax{(|z—y]—1)/s dydt dzds
<Cff |F(z, 5)|? (ff(]y xl<t)ﬂ{t>s/2)(/)2 +5—¢ pmax{(Iz—y[—1)/s, 0 ) 5

and since the inner integral is less than

- d
2m + 5 —& pmax{(|z x| ~2t)/s, 0}
fs/2 (s/1) r

it follows that

—2m—5+2¢
= c[1+ = x']

A(l)(x) = Cgf,+5,2_a(F)(x)
for all ¢=0.
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By the estimate in Case 2 we get when ft<y<1-—t¢

I‘/Ita'e (2n<1/t cnf;t) (y)' =C Zn<l/t tnrn[’"_yl‘cnlnllz

2—ylis dzds
= CffR)({s s=>1/2} (t/s)rl & F( )

H/\

[ffRX{s vt (t/S)rlz—yI/s‘F( P dZdS)l/z’

where we have used the Cauclly — Schwarz inequality.

Set
dydt
A= ([ W Granen O
We get
dzds) dydt
an 2 = lz-yl/s
(A (x)) C/:/.[y x| =<t (f/R)((s s>1/2} ( /s)r - IF( l ) 2
dydty dzds
- lz— I/s z
= CffRﬁ_ }F(Z’ s)lz(ff(|y~x|<t}ﬂ(t;t<2s} (t/s)r Y 12 ) s2
and since the inner integral is less than
dt
Cr"“"”s‘/.ozs(t/s)—t~ = Cplz—xlis
we obtain
AW (x) = Cgf (F)(x)
for all A=0.
We then set
dydt)”z
m () = 2
AT (f S ts-st=anot=auts—s<ay Ve* (Zncnea )P == -

For A™ we can get no pointwise estimate but we shall prove that
1490), = Cligk (P,

for all A=0.
We have
dydt
) -
(4T @) = ff(ly—xl<t)n(lyl<t) e (Zna af ) O ==

d_J;zd_t_ = (AW (x))2 4 (AT (x))2,

L tsr<anipmswa Mt Grncanen YOI

Since 4™ and A®™Y can be treated in the same way we shall only consider
A™ and prove that
AT, = Cllgi(F),» 4=>0. 17
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We set
AJ0 () = (f Sir—sivnimnWex Zyzge, YO

and it follows that

dydt) j=0,

. A(mo)(x) = ?_0 A}m) (x)
We shall prove that

49Dz = C [*7 (gt (F)(x)Pdx (18)

2-J—-1
and since
|AMYr = 3 (482

we get (17) from (18) by summation.
We have
/%" (2'21111,{;214-1 c,,‘f,,)(y) =

if =2~/ and by the estimates in Case 3 we have when |y|<t<2~/

Wex (S @O =CZ)

2/ <pn=2i+1

= lr—yifs
Cffo{z-J ~l<s<2- J}r - F( )

WAL nity ~y|lc”]n1/2

dzds
52

L8)"< cermrm

= C[ffnx{z-f rseses He=slis| F(z, )2

for any w with {w|<2~/ and all A>0. Here we used the fact that

ff ,.Iz—yl/Sii_Z_fdi =C.
RX {2-i-1<s<2-7) 5%

Thus if |w|<2~7 we have

A(IH)(X) = Cg,l(F)( )(ff {ly—x[<n{y|

dyd’t]”2
<t<2-3} 2
and since {|y—x|<}n{ly|<t<2"}c{|y|<t, |x|/2<t=<2-} the integral is ma-
jorized by A
2 df 24+t .
—_— —_— ~Jj+1

me/z ;= 2log x el < 277+,

and

—-Jj+1y1/2
AM(x) = Cg(F)(w) (log+ ? [x] ) '
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Hence

2—j+1]p/z
P dx

p/2
= e gt (P [, (loe ) dx = C2 g EY0IP

4miz = Clgte 27 1og

—2-J+1

and since this holds for all w with |w|<2~7 we get (18) by integration over w.
The above estimates for 4P, A and A™ and the inequality

A'[’(Z; cﬂ‘/‘;l) = A(I)+A(II)+A(XH)

now yield (16) for A<m+5/2.
This completes the proof of Lemma 2,

Lemma 3. For fceH?(R), O<p=1, set f.(x)=f(x/c), c=0 (f, is well-defined
if fis a function and the definition is easily extended to distributions). Then f.—f
in H? as c—~1.

Proof. First let beCynH?. We have
1b—bellae = Co(lb—bellp + I H(b—bo)ll,),

where H denotes the Hilbert transform. Since b€Cy itis clear that lim,.; |b—b,|| ,=0.
We set g(t)=g.(t)=n"1(x—t)"1 for tcsuppb and |x| large. Then g (¢)=
c,(x—1)"""1 for some constants ¢, and hence

Hb(x) =fg(t)b(t)dt=f(g(t)— ZLO—g—(;;!(i)t”]b(t)dt

and )
|[Hb()| = Clx|="~2 [ 1" +[b(9|dt = Clx|~"~*

for large values of |x|. It is also easy to see that Hb.=(Hb), and that Hb is conti-
nuous. Using these facts, the above estimate of Hb(x) and the inequality
(N+2)p=1, we apply the Lebesgue convergence theorem to conclude that

liog | (5 — b, = Limy | b —(FIb).l, = 0.

It follows that lim,., |b—b.|g,=0.
It is well-known that Cy ~HP? is dense in H? and the lemma follows if we also
invoke this fact.

Lemma 4. Assume m=0 and l[(m+2)<p=1. Let P denote the set of all
finite linear combinations with real coefficients of the functions f,, n=—m+N+1.
Then 2 is dense in H?(I).
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Proof. Set HY(I)={feH?(I); supp fCI°), where I° denotes the interior of I.
We first observe that HE(I) is dense in HE(I). In fact, if fEH?(I1) set h(x)=
f(x+1/2). Then h,(x—1/2) approximates f as ¢ tends to 1 and supp h.(x—1/2)cI®
if c<l.

By convolution with an approximate identity we then conclude that H§(I)nCg
is dense in HF(I).

Now let feH{(I)nC5 and thus [f(x)x*dx=0, k=0,1, ..., N. Set

Spf=2" afe, Wwhere

a, = ay(f) =fﬁ‘fdx.

Since (f,) is a complete orthonormal system we have lim,... [S,f—fl:=0.
We shall use the estimate

| f=Safllur = Cll f=Safllo+ CIH(f—Sa ]l

and the first term on the right hand side clearly tends to zero as n—eo.
We write

VH( =S = [, JH=SHP dx+ [ IH(=S,/)|dx = 4,+B,.

Using the Holder inequality and the boundedness of H on L*(R) we conclude
that

A, = C( [ |H( =S, NPdx)" = C([ | f~S.f1Pdx)"

and hence lim,... 4,=0.
Estimating H(f—S,f) in the same way as we estimated Hb in the proof of
Lemma 3 we obtain

H(f=S, )| = Cl f=Safllalx|""=2, x| >2.

It follows that lim,... B,=0 and hence S,/ tends to f in H? and the proof of
the lemma is complete.

Proof of the Theorem. We first prove (3). Assume fEH?(I) and set S, f=
2 . G fi, where a,=a,(f). It then follows from Lemma 2 and Lemma [ that

1S, f e = Coll(Z @i 5|y = Coll fllaw-

Assume >0, let & be defined as in Lemma 4 and choose P¢Z such that
|f—Plgr<e. Then S,P=P if n is large enough and hence S,f—f=
Suf— S, P+P—f.
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It follows that
[1Saf—S e = 1Sa(f—Pl|fte + |1 P—f lIfto = Cll f~ Pllfr=Ce",

if n is large enough, and thus (3) is proved.

The second inequality in (2) follows from Lemma 1 and the first inequality is a
consequence of Lemma 2 and (3). '

To prove (4) we use (2) to conclude that

Il-f—zln-"la”kf;’k”HP = CPH(Z:;”'H- a'%kf;'i)uz”p

and the right hand side tends to zero since ||[(37, an f,,i)”?“p is finite.
To prove (5) we observe that if f= X7 .. ccfi then

a,(f) = 8.(f) = Zewg, (/) = Zo, [ gafidx = c,.
The proof of the theorem is complete.
Remark. If we observe that
(37 ()Y = Cugi(F) () + g1 (F)A - x))
for any k€Z, we obtain equivalence between the norms

”Z;o by frt(inzn+N+1“Hp

”2;0 b, ﬁ(l”:v)n'+ N+ 1”HP

for m=1/p—2, m'>1/p—2 and O<p=l.
In fact, if 5,€R, then

125 00 fieniallar = Coll (S5 020"
= G35 Brthomen )l = Col (i B o)
= Cy(Ibol + ...+ |-yl +1 25 (P,)
S Col(Z i o ona i) Ny = Coll (35 B SR el
= Col| 35 bu S0 w13 e

(here F is defined with ¢, replaced by b,,, —y_1 and A=1/p). It follows that
)2 i nar and (f) 4 v41 are equivalent bases for H?(I) under the above
conditions on m and n'. '

and

Remark. During the preparation of this paper we have learnt from P. Wojtasz-
czyk that he has used the theory of molecules to study basis properties of the Franklin
system. We remark that the theory of molecules can be used also for m=1. In fact,
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using the notation and estimates in the proof of Lemma 1, we can prove that

I1S:blIz=°ilt—1," S, bl = C,

where 1/p—12<y<N+3/2 and 0=(/p—1/2)/y.

This estimate and Theorem 7.1 in [10] can then be used to give an alternative

proof of (3) and (4) in our theorem.

10.
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