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1. Introduction

The aim of the present work is to give some generalizations of a well-known
theorem by Zygmund and Verblunsky, which in one of its original forms can be
stated as follows [13, p. 352]:

Let Z ® o @™ be a trigonometric series with complex coefficients and suppose that
@, = o(n), n — co. If the series is Abel summable to an everywhere finite function
J € LNT) then the given series is the Fourier series of [.

This theorem has been generalized in various directions. Verblunsky [13, p. 356]
proved it under weaker conditions on the Abel sums of the series and Shapiro [8]
has obtained analogous results in higher dimensions under the assumption that
ZRs]misR +110m] = o(R) as R tends to infinity. Results have also been obtained
for trigonometric integrals of one variable by Verblunsky [12] and of several variables
by Shapiro [7]. In these theorems summation by the Abel-Poisson or by the Cesaro
method is used. ‘

In this paper the theorem will be formulated in a more general form and proved
for a class of summation methods which contains the Abel-Poisson method as a
special case. Many of the earlier results will appear as corollaries.

The method of proof will consist in replacing summation using a given kernel
H by summation using a kernel K, which is a certain linear combination of H
and its dilatations. The properties of K will be such that we then can deduce our
results directly.

I wish to express my gratitude to professor Yngve Domar, who suggested the
problem, for his kind interest and support.
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2. Notations and definitions

The points in the n-dimensional Euclidean space R® or in the n-dimsnsional
torus T* will be denoted by x = (x, %, ...,2,). We shall write |z|=r =
(@ +ad + .. a2

If F is any given function on R" and if R > 0 then we define the function
Fr by the relation Fg(x) = R"F(Rx) for all z € R™

If a function F has derivatives almost everywhere then we denote those
derivatives by [0F/ox,] etc. By 9F [0z, etc. we mean derivatives in distributional
sense.

We denote the Laplacian by A4, i.e.

2 2
Af:Z—a;J; and [Af] =3 {—a;fz

We write B(x, ¢) for the open ball with centre z and radius p, |B(g)| will
denote its volume.
A real-valued function H on R" is said to belong to the class 9¢ if:

(i) H is non-negative and twice continuously differentiable
(ii) H is radial, i.e. there exists a function Hy; on [0, + o) such that H(x) =
Hy(|z]) for all x € R"

(iii) H is integrable and Hdx =1
Rn
(iv) dHy/dr is ron-positive
(v) @HyJdr? = O(r~"+2+y ags r > o for some &> 0.
In the sequel we shall not use the notation H,, but write abusively H(x) = H(r)

and H' for H, = dH,/dr.
A locally integrable funccdion F on R™ is said to belong to the class I if:

1
W}f’ﬁlldx:o(l) as B 0.

B(0, R)
6 denotes the Dirac measure, i.e. the measure given by the unit mass at the
origin.
Throughout G will stand for the function defined by the following relation

G(x) == ¢ - if n>3

=y, log [x| if n=2

where the constants ¢, are chosen so that AG = 4.
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The Fourier transform of a function F or a measure p is denoted by F ana
% respectively, both when the transform is defined in the ordinary sense and in
the distributional sense.

3. Some lemmas

Before we can prove our main theorems we need some lemmas. The first one
is fundamental for the method of proof in this paper and contains the main new idea.

Lemma 3.1. Suppose that H is a given function in the class (. Consider the

o dt
Sfunction K defined by the relation K(x) =2 / X H,(z) 3 for all x € R*™\{0}. Then

K satisfies the following conditions:

(iy K 1is non-negative and twice continuously differentiable for x = 0.
(iiy K is radial.
(iii) K s integrable and Kdz =1,

Rﬂ
(iv) AK = A — M6, where A 1is the function defined by A(x) = — 2H'(|x|)/||
for £+0 and where M = A dzx.

Rfl

Proof. (i)—(iii) are obvious. To prove (iv) we choose an arbitrary function
@ € Cy(R™). The result then follows from the following equalities:

CAK, ¢y = (K, Ag) = 2 f Ag() dxf Hy lxl) t3 —

_2hmfdth<p H(lxl) B =

T

2k AHz(lx])d
- Tff, "’dx s 0T

n—17zys
= 2 lim (pdxjrg<u{ﬂx—l)) dt =

T o0 [x!
R" 1

=lim [ (— ¢d; + gd)z =<4 — MJ, p)
T—->o0

R"
with 4 and M defined as in (iv) above.
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In our next lemma we assume that » > 2, but the result also holds for n =1
with obvious modifications of the statement and its proof.

Lrmwma 3.2, Let B c R® be an open ball, let G be the function defined in section
2,let H € 9 and define, as in lemma 3.1, the function K by K(x) = 2 f H,(x) de/?
1

for all xz € R™\{0}.
If F €M satisfies the following conditions:

(iy ¥ s upper semi-continuous in B

({i) limg,  (F * AKg)z) > f(x) for all x € B, where f is integrable, is finite in

the ball B and has compact support,

then A(F — f+G) >0 in B, i.e. F —fx* G is an almost subkarmonic function in B.
Proof. Let F;, be defined by Fyx) = F(z) for z € B and zero otherwise.
A trivial estimate gives

H'(r)

7

2
[AK)(z) = — = O(r=2+)

ag r— oo and we hence easily obtain that

lim (AKg = (F — Fp))(z) =0 for all z€B.

R
F, therefore also satisfies (i) and (ii) and we may hence without loss of generality
agsume that F vanishes outside B.

Assume now that (ii) holds with strict inequality for all « € B and that f is
upper semi-continuous. Let Kp be defined by Kg(z) = Kg(x) for all z in some
ball B(0, ) with o greater than two times the radius of B and zero otherwise.
Then

Hm F « AR, = lim F % AKy for all x €B.

Since f is upper semi-continuous and finite there exists for each z, € B and each
e>0 a 8> 0 such that f(x) < f(x,) + ¢ whenever |z — 24| < d. Hence

AR g 5 (f = G)(o) = (Bg * f)(@) < fla) + 26

for all R larger than some R, depending upon 2, and e.
Using the finiteness of f again we conclude that

lim (F — f+ @)« ARg)(x) > 0 for all 2 €B. (3.1)

R>on
Furthermore, since f is bounded above, we can easily prove that — f= G
and hence also ' — f« G is upper semi-continuous. Suppose, still on the assumption
~that (ii) holds with strict inequality, that F — f G is not subharmonic in B.
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Then we can find a harmonic function % such that @ = F — f+ G 4« has a
maximum in some interior point x, of B. But then (iv) of lemma 3.1 gives
limg, , (D * ARR)(x,) < 0 which contradicts (3.1) since limg,  (u* AKg)(x,) = 0.
The result now follows in the particular case we have considered.

To prove the general case we choose, using the Vitali-Carathéodory theorem
[4, p. 75], a non-decreasing sequence {f.}i-, of upper semicontinuous funcrions
satisfying:

@) fe—f a.e. and in L'norm as k— o
(ii) fk <f in B.

The first part of this proof tells us that A(F — fi+ ) >0 in B. But fix G
converges to fx G in the distributional sense and thus A{F — f=* G) > 0, which
proves the lemma.

The following two lemmas are simple generalizations of lemmas of Shapiro [9,
p. 69—70] and our proofs are essentially the same as his.

LeMMA 3.3. Let F be an arbitrary function in M, let F be its Fourier transform
and assume H € (.
Define the functions » and U by

2H'([2}) g
n(z) = — Wfor x € R™\{0}

and

¢ if k<1
0 otherwise

Uz) = {

where the constants C and M are chosen such that U (0) = #(0) = 1.
If F s a measure such that [ﬁA’|({x; N < |z] < 2N}) =o0o(l) as N — o then
(F x 2 — F = Ug) tends to zero uniformly in R* as R — co.

Proof. Put V =% — U. Since rV € LY(R") we know that Ve CY{R*) and
since T//’\(O) =0 we immediately see that VA(T) = O(r) as 7—0. Furthermore,
since H € 9(, it follows that dx/dr = d/dr(— 2H'(r)/Mr) € LA(R"). Since dU/dr
is a bounded measure we can conclude that 17(7') = O(r-1) as r— .

Put p = F. Then

1 A .
[T+ V()] = }(W [ g

-
= (2711)" 2 f

2NS|xl<2N+1

<

A X
7 (§>I dlu(z) -+ o(1) .
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Using the fact that VA(r) = O(r) as r-—+0 we obtain

2NZ<R f{ ff(%)[ dlulx) = 3 o(z;:) —o(l) as R— 0.

N
2V<R
21'<]J\:[<2j 1

Further because IA/'(r) = O(r1) as r— o it follows that

N R
> 14 <§> d|u|(z) :;NERO (Eﬁ) =o(l) as BR— o0,

N.
>R N Jj<2N+1

and the lemma is proved.

Lemma 3.4. With the same assumptions ond notations as in lemma 3.3
lim  sup |[F* Uglx) — F = Ug(y)]) = 0.

R>ow |x—y|<R™

The proof is similar to the preceding one and is therefore omitted.

4. The main theorems

As before let H be an arbitrary function in the class 9¢. Write f,(z) and

f*(@) for the lower and upper limits respectively of (F + AHg)(x) as R tends to
infinity.

THEOREM 4.1. Let F be a bounded continuous function on R*. If
(i) f« and f* are finite for all » € R
(1) fo =y, where x is o locally integrable function,
then fo =f* ae. and AF = f,.

Proof. Tt is sufficient to prove that f, = f* a.e. and AF = f,, in an arbitrary
open ball Bc R*. We can without loss of generality assume that # vanishes
outside B, because if we define a function F, by Fy(z) = F(z) for x € B and
Fy =0 otherwise, then limg, ((F — Fy)* AHg)(z) = 0 for all x € B. Clearly
we can also assume that y has compact support and we define as before the
functions K and x by the relations

- dt
K(x) = 2 f H,(yc)t—3 , « € R"™\{0}
1

2H (|22 .
%(:U)Z——-W B xGR\{O}

where we choose M so that f s dx = 1.

RrR®
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Then the following useful relation holds.
dt ‘
2 (F*AH,)F:M(F*x—F*xT):F*[AK]~MF*;¢T. (4.1)
1

The proof is a direc‘r application Of Fubini’s theorem:
/(F*Aﬂ)ts“‘Qf fo—yAH,y)d =

~2fo—ydyfAH, "ot [ P — p)ete) — oy
R’l
where the last equality follows from the proof of lemma 3.1.
Relation (4.1) also holds if F € M, which will be of use later.
If we now in (4.1) let 7' tend to infinity it follows from the continuity of F in
B that the last expression in (4.1) tends to (F x AK)(x) for all x € B. After a
change of scale we obtain

o]

212 / (F = AH,)(x) % = (F % AKg)(x) for x € B.
R

From this we conclude that y <f, <. <o¢* <f* in B, where g@,(z) and
¢*(x) are the lower and upper limits of F x AKg(x) as R tends to infinity.

We can assume that y is finite for all x € B. Lemma 3.2 then shows that
the function @ = F — y+ G satisfies A® > 0.

Hence AF = y + u where u = A® is a positive measure (see e.g. [5, p. 29])
and hence F x AHp = (u + ) = Hg.

But limg_, y * Hp = x a.e. We also claim that lim u = Hy exists a.e. and equals
some locally integrable function g¢.

To prove this we shall use the wellknown fact [4, p. 149] that

1
lim —&— f du
r—>0 IB( )IB(x,r)
exists for almost all z and equals a locally integrable function, which we denote
by g¢.
By a simple calculation we obtain

o Hylo) ny)de—y) fﬂmd(fdy ) -

|x—y|<r
©

f Hy(r)dr fd[u 1)[/R"+1H’(R¢) <Bz)fdﬂ(y))d7‘.

le—y|<r {g—y|<r
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Using the Lebesgue dominated convergence theorem we now easily get that

Hm g« Hp(z) = g(x) a.e.

R0

From this it follows that f, = f* a.e. in B and that f, and f* are locally
integrable and so lemma 3.2 gives

AF —f @) =0 in B

and, since B is arbitrary, the theorem follows.

Remark 4.1. The above theorem remains true even if condition (ii) is replaced by
(@) f* = x, where y is a locally integrable function.

For a method of proof see [13, p. 358].

In our next theorem we shall replace the condition ¥ continuous by a condition
on the Fourier transform of F. This will give us a generalization of the results of
Verblunsky [13, p. 352] and Shapiro [8, Theorem 1].

THEOREM 4.2. Let F belong to the class M and let F denote the Fourier transform
of F (in the distributional sense). If
(1) F is a measure satisfying |ﬁ’|({x; N < |z} < 2N}) =o(1) as N — oo,
(ii) fo ond f* are finite for all x € R",
(i) fo =2, where x is a locally integrable function,
then f. =f* a.e. and AF =f,.

Proof. Let BC R* be an arbitrary ball. It is sufficient to prove that f, = f*
a.e. and AF =f* in B.

Let B, be a bounded neighbourhood of B. We claim that it suffices to consider
an I which vanishes outside B,. To show this we choose a function h € Cy(R")
which equals 1 on B and vanishes outside B,. Define F, = Fh. We then get

17?0 — Fsh where ke C?(R*) and where
l;(x) = O(|z|™?) as x— oo for all p. (4.3)

Let Ey={z € R"; 2" < |z| < 2"+'} and denote the measure & by u. The
function ﬁ’o then satisfies

f |PJdz = o(1) as N — o, (4.4)
En

since
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os/lﬁoldx sfdw(y)fv?(x—y)ldx=
Ey R Eyn

- fdeNf e -+ [ dl [ e — o+

lyl<2N—1 aN—lg|y 2N 42 Ex

[ awl [ i@ - e =1+ 1,41,
|y|22N+2 EN
where, using (i) and (4.3)

N_2 N

I, < |u|(U Ei) sup [h(z)] = o(1) as N — o
I yzaN—1
I, < [y](lliljllf]k) sup IiL(x)[ =o0(l) as N-—»

R"
I; < > (u(B:) sup Mx)]) = o(1) as N — 0.

We can thus as claimed take F and yx to vanish outside B,
As we noted above, relation (4.1) holds also for F € V. Furthermore, (ii) shows

T
that 2 f (F = AH,) dt/f* converges to a finite limit for all x € B as 7T tends to
1

infinity. From (4.1) it follows that lim, . (F * #7)(x) must exist and take finite
values for all x € B. But we also know that (F = x;)(z) tends to F(x) for
almost all z. We can therefore assume that lim,_  F % »x; = F for all z and that
F is finite everywhere. ,

If we again set ¢*(z) and ¢, (x) equal to the upper and lower limits respectively
of (F x AKg)(x) then we get as before y <f, <o, <¢* <f* in B.

The remaining part of the proof is now an adaptation of the arguments used
by Verblunsky and Shapiro.

Choose an everywhere finite upper semi-continuous function u < y.

If ®=F —u+G were upper semi-continuous we could as in lemma 3.2
conclude that @ was subharmonic.

Let therefore D be the set of all points in B where @ is not upper semi-
continuous. We claim that D is the empty set.

Assume that D is non-empty. By the Baire category theorem there exists a
ball B’ = B(x,, 2d) such that z, € D and such that F « AHy(z) is uniformly
bounded for € DN B’ (where D denotes the closure of D).

From this it follows by relation (4.1) that F % % converges uniformly in D N B’
and hence that the restriction F|j4p Is continuous.
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Choose now an arbitrary number M > (— u * G)(x,).
Since — u * G is upper semi-continuous and since Flp,p is continuous we
can assume that d has been chosen so that

D(x) < M + F(x,) for all z€DNB . (4.5)

Let x be an arbitrary point in B” = B(z,, d) not belonging to D and let
# € DN B be one of the points minimizing the distance to 2 from DN B'.
Put BR= |z — 2'[-! and let U be as in lemma 3.3.

Let ¢> 0 be given. Since R > d-! we can assume that d has been chosen
so that

IF # Unle) — F(&)| < [F % Ugle) — F + Unla)]| + (4.6)
[F 3 Ug(z') — F = ug(@)] -+ |F = xz(2’) — F2')] < e.

That this assumption is allowed follows from lemmas 3.3 and 3.4 and from the
fact that F x % converges uniformly to F on DN B’. We may also assume that

|F(xg) — F(y)] < ¢ for all y€DNEB (4.7)
and, since — %% (G is upper semi-continuous, that
(—uxQ)x Ugly) < M for all y €B’. (4.8)

Since @ is upper semi-continuous in the ball B(x, |[xt — «'|) we have that @
is subharmonic there and hence that

Dx) <D+ Uglx) =F = Ugle) — (u+ Q) % Ug(z) . (4.9)
From (4.6)—(4.9) it follows that
D(x) < M + F(zy) + 2¢ for all z€eCDNB

and together with (4.5) this gives a contradiction. We conclude that @ is upper
semi-convinuous in B.

Thus 49 >0 in B and using the same argumeut as in the proof of theorem
4.1 we get that f, = f* a.e., that f, and f* are locally integrable and that
AF —foxG)=0 in B.

This proves the theorem.

5. Application on trigonometric series and integrals
The preceding theorems can be applied to the theory of summation of trigono-

metric series and integrals. In the particular case when H is the Poisson kernel they
will give us some of the classical results by Zygmund, Verblunsky and Shapiro.
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We shall denote the points in Z* by m = (m,,...m,) and write
Im| = (m] + m3 4 ...+ m)', (m, @) = 3T mi

We start by defining the summation methods in question and by making some
remarks.

DeristrioN 5.1. Let H € Y and let Y ,cpn m €™ be a given trigonometric
series with complex coefficients.
The series is said to be summable-(H) at the point = € R" if

A [
1' - H - i(m %)
i 3 ().
meEZ
exists and is finite.
If we have the condition @m = O(|m|¥) for some k£ the series defines a periodic
distribution on R* which we denote by f. We can write

m

> a,,.ﬁ(E) et — v Hy

In general this should be interpreted as an equality between two distributions. In
all cases we shall consider, however, the series on the left hand side will be absolutely
convergent for all R > 0 and we simply define fx Hy as its sum.

We shall let f,(2) and f*(z) denote the lower and upper limits respectively of
f=Hg(x) as R tends to infinity.

Now we can formulate some corollaries to theorems 4.1 and 4.2.

TaEoREM 5.1 (cf. [14]). Let > ,cpm an €™ be a trigonometric series with com-
plex coefficients, let H € 9 and suppose that X ]amﬁ (m/R)| < oo for all R > 0. If

(1) D zo — @m|m| 2™ is the Fourier series of a continuous function F,
(i) fi and f* are finite everywhere,
(iii) fyu =y for some integrable function y

then f, =f* a.e. and the given series is the Fourier series of fi.

Proof. If we suppose that ¢, = 0 (as we may, without loss of generality) then
the conditions of theorem 4.1 are satisfied and the result follows.

TaEorREM 5.2 (cf. [13], p. 356]). Let X ane ™ and H be as in theorem 5.1
If (i) and (iit) of that theorem hold and if in addition

iy > lam| =0(N?) as N— o
N<[m[<aN

then the conclusion of theorem 8.1 still holds.
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Proof. Assume that ay, = 0 and let F € L¥T") be the function whose Fourier
series is > ..o — |am||m[2€®™%. Consider F as a tempered distribution on R™
Its Fourier transform consists of point masses at the points {2zm}. Condition (i’)
implies that this measure satisfies condition (i) of theorem 4.2 from which the
theorem follows.

Next we shall prove a result concerning trigonometric integrals.

THEOREM 5.3. Let f be a given function in the Schwartz class S’ of tempered
distributions and let H € 9C be such that fHyp € LY(R") for all R > 0.

Write f:fo + fl, where ]A”O has compact support and where fl vanishes in @
netghbourhood of the origin.

Let f €S’ be the tnverse Fourier transform of f and let f.(x) and f*(x) denote
the lower and wpper limits of f* Hg(x) as R tends to infinity.

If
(i) — ly{—zf(y) s the Fourier transform of a continuous and bounded function F;
(ii) fo and f* are finite for all x €R®
(i) fy = x, where yx is a locally integrable function,
then fo.=f*=f a.e.

Proof. Let f; be the inverse Fourier transform of ﬁ-, ¢t = 0, 1. Then f, € C*(R")
and hence lim f; * Hg = f, for all . From theorem 4.1 it follows that AF; = f;
and the theorem follows.

Remark 5.1 (cf. [7]). Condition (i) is satisfied if for instance
() Fo) + lyp)yreLr
or if
(b) fA(y)(l + |y»L € L2 and ffA(y)(l + lyR)te®) dy
B(0, R)

converges pointwise to a continuous function as R tends to infinity.
By the same method, but using theorem 4.2 instead of theorem 4.1, we obtain
the following result.

TaEOREM 5.4. Let f, L fe f* and H be as in theorem 5.3.
If (1) and (2it) of theorem 5.3 hold and if in addition

@i f)f)dy:o(Nz) as N -—> oo

N<ly|<2n

then f, =f*=1Ff ae.
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6. Exceptional sets

In the preceding sections we have throughout assumed that f« Hy is bounded
as a function of R at all points z. This condition can be somewhat weakened and
results corresponding to those obtained by Verblunsky [13, p. 356] and Shapiro
[8, theorem 2], [7] can be proved.

If » =1 it is for instance sufficient both in theorems 4.1 and 4.2 to assume
that f, and f* are finite except in a denumerable set E if in addition we know
that

JfeHpx) =0(R) as R-— co for all z €X.

If »>2 it is sufficient in theorem 4.1 to assume that f, and f* are finite
except in a set of zero capacity with respect to the kernel — G. In theorem 4.2
1t is sufficient to assume for » > 2 that f, and f* are finite except in a set without
finite cluster points.

The following result seems to be new. For the sake of simplicity we do not
formulate it in full generality.

THEOREM 6.1. Suppose n > 2. Let 3 ,cpn 0m €™ be a given trigonometric series
with complex coefficients and assume that H € FC is such that X |a,,f1 (m/R)| <
Jor all R > 0. Assume further that E is o bounded closed set of capacity zero with
respect to the kernel — G.

If

i) >  lam| =0(N?) as N—
N<jm|<2N
(il) im > g, aul(m/R)e™? = C for x¢E, where C is a constant,
(iil) there ewists 6> 0 such that X a.H(m/R)é™? = O(R* % as B> o for
z €EF,
then @, =0, m =0, and a,=C.

Proof. We may without loss of generality assume that a, = 0.

Let F, € IT") be the function whose Fourier series is X — a,|m|2 '™,

Consider F, as a periodic function on R" and let B c R* be an arbitrary
open ball containing E. As in the proof of theorem 4.2, we can multiply F; by a
function kb € Cy(R") which equals 1 on B and which vanishes outside a neigh-
bourhood B, of B. It is sufficient to prove that the function F = hF, equals
C a.e.on B. Put y = Oh and let as before » denote the function — 2H'(r)/Mr.

From (ii) and (iii) it follows that

f (F « AH,)(z)dt/®
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converges both when z € B\E and when 2 € B\CE and hence, using (4.1),
that F * xp(x) tends to a finite limit for all x € B as T tends to infinity.

We can therefore assume that F has been chosen finite everywhere and such
that limg, ., F %%, = F for all = € B.

Let D be the set of points where F is not continuous and suppose that D
is non-empty. Using the Baire category theorem we then can prove that there
exists a ball B’ = B(x,, 2d) such that its centre z, belongs to D and such that
R’“(F % AHg)(x) is uniformly bounded for z € DN B’ and for all R >1. By
(4.1) this implies that F #2x; converges uniformly in DN B’ and hence that
Fi5np Is continuous.

Write @ = F — y = G and note that y x @ is continuous. Proceeding as in
the proof of theorem 4.2 we get that @ is continuous in a neighbourhood of =z,
and thus that F is continuous in B.

Using (4.1) once more we see that lim (F = AKg)(x) = C for all « € BN CE
and we can conclude from lemma 3.2 that the support of A® is contained in K.
Since E has capacity zero and since @ is continuousin B it follows from a classical
theorem [3, theorem VII.1] that @& is harmonic in the whole of B, which gives
the theorem.

7. A pointwise saturation theorem

In this section we shall consider a problem of a slightly different type.
It is a well-known theorem by Hille that if the Abel-Poisson means u(r, z) of
a function f€ C(T) satisfy

u(r, x) — f(x)
m—— 2

- 1
1 — 0 (7.1)

r>1—-0
uniformly in T then f equals a constant [3, p. 122]. For an account of further
results in this direction see e.g. Sunouchi [10].

We shall here prove a theorem which shows that the above result remains true
even under the much weaker assumption that (7.1) holds pointwise. Andrienko [1]
has recently obtained a similar result for (C,1)-summability.

Let N be the distribution on R whose Fourier transform is N (t) = —¢-signt,
define f — f% N (where the convolution is defined by means of the Fourier trans-
form) and let P be the Poisson kernel, ie. P(x) = c.{l 4 [90[2)—'%rl where the
constants ¢, are chosen so that P(0) = 1.

The main results of this section is the following theorem.

THEOREM 7.1. Let n =1 and let X be the space LYR) or LYT). Suppose
that f € X s finite everywhere and let — o0 <a <b < 4 0. If
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lim R(f = Pg(x) — f(x)) = g(x) for all x €[a,b],

R->o0

where g s a locally integrable and finite function, then

— = —g i [a,b].
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(7.2)

Proof. We start by noting that the proof of theorem 4.2 actually gives a stronger
result than stated in that theorem. We have, in fact, only used the assumptions

(ii) and (iii) to prove that the integral

/°-° dt
[ m)@ 5
1
is convergent and that
@*(x) = lim 2R? (f = H)(z) r
R->w pd
and
. dt
pele) = lim 2B2 | (f5 H)(@)

R R

both are finite for all x and that ¢, > y for some locally integrable function .
The assumptions on f, and f* in theorem 5.2 and 5.4 could therefore be

replaced by, for instance, the assumption that for all x € [a, b]

oG

dt
f(f*Ho(x) &<
and

. r dt
lim 2R? / (f = Hj)(=) i g(x) ,

R

where g iv a finite and locally integrable function.

Using this observation it is now an easy matter to deduce theorem 7.1.

If we set y = B~! we can write

] fd
RyePa—n) =y | G P
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Let ¢ be the tempered distribution whose Fourier transform is — ly| f(y)
Then the Fourier transform of d/di(f = P~) equals

A A d A A A A
2 0Py = 2 (fre) =g Pro= (9 )"

Using this we can write (7.2) as

li P (@)dt =
ey fw* Y@)dt = g(z)

which, after a change of variable, gives

[+

. dt
}:_I)ILR (p * Pi)(z) i g(x) .
R

By means of a partial integration we finally obtain

di
lim 2R? f (p * P (x) 5= g(x) for x €[a,b].
R

R

But, since f € X, we know that
2N
f #ldz = o) (or 3, lplh)] — o)

and hence we can by the observation in the beginning of this proof, use theorem
5.2 or 5.4 to conclude that

p =g ae. in [a,b].
On the other hand,

(@) = — i flt) sign ¢
and thus

daf\~ N R
(2’;) (&) =tft)signt = — ¢

which proves the theorem.

Remark 7.1. It might be worth pointing out that the particular property of
the Poisson kernel that makes the above proof work is that the function (— 2 P)~
belongs to 9.

By an analogous method we can, using theorem 5.3, obtain the following result.
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THrEOREM 7.2. Let n > 2 and let B c R* be an arbitrary open ball. Assume
that f € L*(R™) N LYR™) s finite-valued. If

lim R(f * Pgr(x) — f(x)) = 0 for all x €8,

R+

then f=0 @ B.
As a corollary to theorem 7.1 we can get the result obtained by Andrienko [1]
in the case when ¢ =0.

CoroLLARY 7.1. Let X, f and g be as in theorem 7.1 and denote the Fejér kernel
by D. If

lim R(f % Da(e) — f(z)) = g(z) for all € [a,b] (7.3)

R+

then df/dx = —g¢g i [a,b].

Proof. 1t is sufficient to prove that (7.3) implies (7.2).

Fix z € R and assume that f(z) = 0 which can be done without loss of
generality. Set w(¢) :f(t)ei”‘ + f(— t)e =,

We can then write :

1 N 1
f * Pglz) = P / (e Fe™dt = e [ p(t)dt f (u — E) e " du =
— (1] t/R
o uR ©

where, by assumption, Q(u) = g(z) % + o(u™?) as u— c© and where [@] is
bounded. By means of a simple change of variable we now immediately obtain
our corollary.

We finish this section by remarking that lemma 3.2 could be formulated as a
pointwise saturation theorem. The method of proof of the lemma does in fact give
the following result, which is similar to a theorem proved by H. S. Shapiro {6, p. 27]
(in the case when 7 = 1) under stronger assumptions on f.

THEOREM 7.3. Suppose that H is a positive radial function on R™ which satisfies

(i) /I—Idx:l,
R™

(ii) fde = o(R%) as R -> .

|x{=R
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If f is a bounded continuous function on R™ for which

lim R(f « Hylz) — f@)) = g(z) (7.4)

R>oo

at each point = € R®, where ¢ is finite and locally integrable, then Af = g.

Proof. From condition (ii) it follows that it is sufficient to prove the theorem
in the case when f (and hence also ¢g) has compact support.
By solving the equation

2K n— 10K

AR = + = 5 =4
we get a function
K(x):frl‘"der(y)dy
[l jelzr

satisfying AK = H — 6 and (7.4) can be written
lim (f * AKg)(x) = g(=) .

R
The argument used in the proof of lemma 3.2 now gives the result.
Note. After the completion of the manuscript the author was informed that
prof. H. Berens recently has obtained theorem 7.1 by a different but related
argument [2].
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