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Tensor products of direct sums

Bogdan C. Grecu and Raymond A. Ryan

Abstract. A similar formula to the one established by Ansemil and Floret for symmetric
tensor products of direct sums is proved for alternating and Jacobian tensor products. It is then
applied to stable spaces where a number of isomorphisms between spaces of tensors or multilinear
forms are unveiled. A connection between these problems and irreducible group representations is
made.

Preliminaries

The n-fold tensor product of n vector spaces {E;}7_; is defined recursively as
E1®.QFE, 1QF,=(F1®..0F, 1)®E,.

Let E and F' be normed spaces. A norm g on EQF is said to be a reasonable
crossnorm if

(1) plzoy)<l|lz|||y| for every x€ E and yc I

(2) the linear functional ¢®1 on E®, F is bounded and [[p@v||<|¢| |l for
every o € E* and Y€ F™,

The projective and the injective norms 7 and ¢ satisfy these conditions and
it can be shown that a norm p on EQF is a reasonable crossnorm if and only if
e(u) <p(u)<w(u) for every uc EQF (see [2] and [6] for details).

A uniform crossnorm is an assignment to each pair E and F' of Banach spaces of
a reasonable crossnorm on £® F which behaves well with respect to the formation of
tensor product of operators, in the sense that if S: E— X and 7: F'—Y are bounded
linear operators and the spaces E®QF and X®Y are endowed with the assigned
norms, then S@T: EQF — X ®Y, defined by S@T (z®y)=Sz&Ty, is bounded and
|ssTI<] S]]

If for all normed spaces {E;}1* | and all k with 1<k<n, the norm y satisfies

(F1@u - Er) Ou(Ep1 @p oo ®p Bn) =F1 @y ... @ By,
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then we say that p induces a tensor topology. The projective and the injective
norms 7 and ¢ satisfy this property. Tensors topologies are defined in the wider
context of locally convex spaces, as explained in [1].

We say that a tensor topology 7 is symmetric if the mapping

T1Q..QTp = (210...0%n)7 = Lo(1) @ OTg(n)

extended by linearity to the whole of Q" E, is continuous for every o in S, where
Sy is the group of permutations of the set {1,2,...,n}. In particular, if 4 is a
symmetric uniform crossnorm, i.e. j(Z,(1)®@...QTe(n)) =p(T18...Qxy,) for every o
in S, then the topology induced by p is a symmetric tensor topology.

A locally convex space F is stable if F is topologically isomorphic to its square
E®FE=FE? Diaz and Dineen [3], working with a stable locally convex space E,
proved that there exists an isomorphism between the spaces of continuous n-linear
forms £("F) and symmetric n-linear forms £4("E) (see also [4]). Later, Ansemil
and Floret [1] dealt with the predual problem. First they establish a general formula
for the symmetric n-fold tensor product of a direct sum of spaces:

®:(F1@F2) s é(@f Fl) ® (®:hk F2>

and then they use it for stable spaces to show that for all tensor topologies, the
full n-fold tensor product of a stable space E is isomorphic to its symmetric n-fold
tensor product.

In this note we prove similar formulas for the alternating n-fold tensor product,
analyse in detail the 3-fold tensor product and deduce a formula for the Jacobian
tensor product. We apply these results to stable spaces, obtaining a number of iso-
morphisms. Finally we make a connection between these problems and irreducible
group representations.

1. Alternating tensors

The antisymmetrisation operator A:®" E—®" E is defined as

1
A(T10..0T,) =21 Qg ... Qg Ty = o Z X(@)Zo(1)®... QT a(n)
n €Sy

for elementary tensors and extended by linearity to the whole of ®" E, with x(«)
denoting the sign of a permutation . The range of A, that we denote by @ F, is
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called the alternating n-fold tensor product of E. We want to show that a similar
result to that of Ansemil and Floret holds for the alternating tensor product, that
is if the vector space F is the direct sum of two subspaces Fy and F3 then

®r~D(®1)=(®] ')

The proof in [1], which uses the fact that the n-fold symmetric tensor product is
the linear span of the vectors @" =@ z, with z in E, is no longer valid, since
X 2=0 for all z.

Clearly, as k ranges from 0 to n, all of (®§ Fl)®(®2'—lg F3) are subspaces of
&®" E and their sum is direct in Q" E.

The elements of (®§ F1)®(®Z_k F3) are not alternating tensors, but can be
antisymmetrised. Thus, if 1 ®4...®, 2k and T 11 Q... Qe Ly are elements of ®Z Fi
and ®Z_k F,, respectively, then

A(($1®a...®aﬂfk)®<$k+l ®a-~-®a$n))

1
=A (m ;; X(T)X(0)T (1) D BT r (k) DT (k4 1) ®-~-®$Q(n)) )

where 7 ranges over Sy and g over the set of all permmutations of {k+1,...,n}. Let
(T0) be the element of S, defined by

(i), 1<i<k,
o(i), k+1<i<n.

o) —{

It is easy to see that x(70)=x(r)x{g). Fix now 7 and g. As o ranges over S, so
does o(7g). Therefore

A(($1®a~--®a$k)®(xk+l®a ®axn))

1 1
Tl kl(n—k) Z ZX )X (TO)To(r0)(1)® - BT o (rp)(k

oES,, T0
®%<w (k1) D B To(14)(n)

(- klzn; Y X(0)Ea() - BLa() BT a(k1) O OTa(n)
7,0 a€eS,

1

mz’“@a Sun

=21 Qg .- Qg Tn-
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Now let us try to “decompose” elementary tensors in @ E. We use the nota-
tion of [1]:

SfL ={n€Sn:nlq,. . k and Nl {k+1,.,n} are increasing}
and

To={f:f:{1,2,...,n} = {1,2}},
TF={f:fcT, and card f~1(1)=k}.

If Py and Py are the projections of F onto I} and F5 we can write

xl@a...®axn = (lel +P2m1)®a...®a (Plxn+P2xn)

i3

= Z Pf(l)x1®a-~-®apf(n)xnzz Z Pf(l)x1®a...®an(n)xn.
feTn k=0 feTk

For f in T let f=1(1)={i1,...,ix} with i1 <is<...<ix and f='(2)={igs1, ) %n}
with ix11<...<i,. Then the permutation n with 7(l)=4; for 1<I<n is an element
of S%. On the other hand, for every n in S, we can define a function f: {1,...,n}—

{1,2} such that f=*(1)={n(1),...,n(k)} and f=1(2)={n(k+1),...,n(n)}, so there
is a one-to-one correspondence between S¢ and T%. Thus

x1®a...®axnzz Z X(n)Pla:n(l)®a--~®aplx77(k) ®aP2$n(k+1) ®a...®aP2$n(n)
k=0neSk

:Z Z X(n)A(<P1x'r](l) ®a~~«®aplxn(k))

kE=0necsSk

® (Poy(i+1) ®a - @a PaTy(n) )

:A(Z > X(U)ﬁ;;X(T)X(@)Pwm(l)®...®P1xm(k>

k=0neSk

®P2%n<k+1>®~~®P2%n<n>>a

where 7 and g range over the set of all permutations of {n(1),...,n(k)} and of
{n(k+1),...,n(n)}, respectively, for every fixed n in S¥. Certainly (70)n is an
element of S,, and

x((re)n) =x(m)x(e)x(n)-
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Conversely, if o is an element of Sy, let 77 be the permutation in 5% such that
{(n(V), ... n(k)y={e(),...,olk)} and {n(k+1),...,n(n)}={o(k+1),..,0(n)}. If we
put 7(n(l))=o(l) for 1<I<k and o(n(j))=0(j) for k+1<j<n then T and p are
permutations of {n(1),...,n(k)} and {n(k+1),...,nm(n)}, respectively, and o=(70)7.
We can then write

n

121Rq..-BaTh =A<Z <:>;1,~ Z X(O’)Plxa(l)@.,.@]jlxo(k)

k=0 ' seS,

®P2330(k+1)®...®?2:05(n)>
:A(Zn: (:) (@k Pl) ® (@n_k Pz) (%, ®a...®a$n)).
k=0

Now define Qx: ®" £~ (®" F)o(®" " %) by Qk=(M)(®" P)o(Q" * ). As
is easily seen from the calculations above

Qi1 Razn) = Y X(M)(Piy(1)®a--Ba Prtyqs))

nesk
®(P2~I"}';(k+l) ®&---®@PZ$7;(?’L))7

therefore Qi maps @ K into (®F F)2(®7* F,). We are now ready to prove
the announced result.

Theorem 1. Let E be a vector space such thot E=Fy & F,. Then the lincar

MApPping .,
@ ® E—B(R, )= (R r)
k=0

defined by Q(uw)=B_ Qu(w) for allu in @ E is an isomorphism, its inverse being
the restriction of the antisymmetrisation operator A to @Z:o(@ﬁ Fﬂ@(@?“k Fy).

Proof. Since for elementary tensors we have

n
T1 R Qo ln :A(Z Qk(an@a‘..@aazn))

k=0

we obtain

for every u in Q) E.
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To prove that QA is the identity on @7_(®F FR(RQL ™™ F2), let wy be
elements of (®: Fﬁ@(@)nu}c ). Because of the linearity, it is enough to work

a
with elementary tensors wy. Fix a value between 0 and n and call it I. Let w;=

(2104 ...Qa21) (T 11 R .- RaTr ). Then
Q(A(wr)) :ZQk(A(wz))
k=0

- g n—
= ; <Z> (@k P1>®<® k PQ) ($1®a...®al‘l®agjl+l ®a~'-®a$n)
= (?@)% Z X(U)PNZU(D®.A.®P1:cg(k)®P2xa(kﬂ)®__v®p2xg(n).

k/n!
k=0 &S,

]

If k<l then {o(k+1),...,0{n)} contains at least one natural number j with 1<j<!
and thus P12,(1)@..@P1To() O PaTo(ks1) ®... @ PaZs(ny =0 since Pox;=0. Tn the
same way, all the terms corresponding to £>! will vanish and so

, ny 1
QA(w)) = ( l>5 Z X(O)PLo(1)®... @ P12 (1) ® Peo(151) D .. D PaZ g () -

q

oESR

It is clear now that the terms of the sum will be 0 unless {o(1),...,0())}={1,...,1}
and {a({4+1),...,0(n)}={l+1,...,n}, in which case c=(7¢} with 7 and ¢ permuta-
tions of {1,...,1} and {I+1,...,n} respectively. Thus

ny 1
Q(A(’LU[)) = ( | )ﬁ Z X(T)X(Q);UT(U@“‘@IT@)®xg(l+l)®"'®xg(n)
e

ny 1
= < p ) o (z X(T)fﬂ»ra)@m@%(a)) ® (Z X(9)$g<e+1)®m®%(n>)
T o

1
= (7) ;z—‘ll(-n~l)!(x1®a..@wc;)@(g;lﬂ Ry Do)

=y

and so, by linearity

(o))

1=0 =0

for all w; in (®i Fl)®(®2'£Fg) and all 0<[<n. Therefore Q is an isomor-
phism. J



Tensor products of direct sums 173

Remark. By induction the result can be extended for a finite direct sum of

subspaces:
®.(®r)- & ®.@n)

ki+..+kp=n
0k <n

2. Jacobian tensors

The space F®@F is the direct sum of F®,F and E®,F, an element z®y of
E®FE being expressed uniquely as a sum of elements of F®,F and E®, E:

TRY =R Y+rXyY-

When the order of the tensor product increases, more components of an elementary
tensor will come into play. When n=3 we have to deal with a third component,
J(z®@y®z), such that

x®’y®2=$®Sy®sz+x®ay®a2+=](ff®y®z)

Thus
J(zoy®z) = 1220y yR20T—2R0TQY)

and it is easy to see that J is a projection which satisfies the identity
J(z®0y®Rz)+J(y@z02)+J (2Qx0y) =0

for which reason we call the element J(x®y®z) the Jacobian component of t®@y®z
and the space J (®3 E) the subspace of Jacobian tensors. We will occasionally
denote J(z®@y®z) by £®,y® sz and J(Q® E) by ®§ E. We can then write

® - (®.7)=(®.£)=(®,)

Our goal is to find a formula for ®§(F1 @ F5). Unlike the case for the symmetric
and antisymmetric tensors, if ¢ is a permutation of {,y,z} there is no way of
expressing the relation between @ ;y®;2 and o(z)®;0(y)® 0(2) without using
other terms involving at least one more permutation. It is then expected that we
will encounter some difficulties and that the formula will not be as “uniform” as for
the symmetric or alternating case.
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Let us write x1=P;2 and zo=Psx for an element x in E. We have

TRIYRIZ2=218511 Q52
TRV 2+ QY& 21 +22R5Y107 21
TR YR 22 +T2Q Y1 O 22+ 22RQ5Y2X 721
TZ2RY2® 7 22.

Now we notice that each of the terms on the second line in the formula above is the
Jacobian tensor product of two elements of F; and one element of £y and, using
the Jacobian formula, their sum can be expressed as

J(21®011 Q22 —21 @21 QY2 +Ta QY1 R21 — Y2 21 QL1 ).

Consider the projection Q%: ®® E— (Fi@F,)®F, defined by

RI(rQY®z) =21 QY1 @22 — 21 T DYs.
It is easy to see that

Qi (z® YR 2) =21QY1 Q29— 21 QT QY.

The same thing is true for Q%: ®3 E—(F®F))®F; defined by

Qi (z@y®R2) =y ®2 Oy — 21 OT1 DY
and thus

J(21 @Y1 Q22— 21 @1 QY2+ 22 QY1 @21 —Y2 Q@21 @1 )
= J(Q(e®sy®s2)+ Q) (z05y©,2)]SH),
where (x@y®2)31?) =20z8y.
In the same way, working with the projections Q% and Q% of ®3 E onto F1®
(F,®@Fy), defined by
Qy(rQY@y2) =21R0Y2 @22 — Y1 Q22D T2,
Q5 (z@ YR 2) = 21 ®T2 DY — Y1 @22 QT2

we obtain

T1Q Y2 Q522+ T2 QY1 B 22 + L2 QY2 ® 521
= J(Qg(x®Jy®JZ>+[Qg(1’®Jy®JZ)}(2,3,1))
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with (z®y®2)23 =y@z@1.
Defining Qp(z@y®2)=21 @Y1 Q21 and Q3(z®YR2)=x3QY2 @22 and noticing
that
Qo(a®yy®y2) =21Q 591 @21,
Q3(zRIYR 2) =22R7Y2® 22,

we have

TRJYR 2z = QO(I®Jy®Jz)
+J(QHa®y®y2)+ Q0 (x® y®, 2)] )
+J(Qg($®Jy®Jz)—|—[Qg(g;®Jy®JzH(2,3,1))
+Qs(xRyy®72).

Let Q1=Q1+(Q)®* and Q2=Q5+(Q3)*>V.
Theorem 2. Let E be a vector space such that E=F\ ®Fs. Then the linear
mapping

@, —(Q,F)e(Riererleormer)s(Q) ).

defined by Q(u):@izo Qu(u) for all w in ®i, E, is an isomorphism, its inverse
being the restriction of the projection J to

((X)i Fl) S(FieaR)oR)e(Fio(Fok))?e (®i Fg)’

Proof. Since we have JQo(2®,;y®2)=Qu(2® y®;2) and JQ3(zQ;y®;2)=
Q3(x® YRy 2), it follows that

JQ(u)=u
for all v in @ E.
It remains to show that QJ is the identity on

(® F)e(Remen)?erenemn) e (Q’ k).

Because of the linearity, it is enough to work with elementary tensors.

Pick an element wq=2®jy®;z in ®‘3 Fy. Clearly Jwo=wo and Qq(Jwg)=wo.
Since the projection of E on Fh appears in the formulas for @1, Q2 and @23, we obtain
Q1 (Jwo) =Q2(Jwo)=Q3(Jwe)=0 which means that Q(Jwp)=wp.
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Take now w1 =2Qy®z in (F1 @ F)®F,. Clearly Qo(Jw;)=0 since z;=0. The
expressions of (J; and ()3 contain at least two projections on F» and so Qo Jwq)=
Q3(Jw1)=0. Then

Q1(J(20yR2)) = QHr® Yy 2) +]Q} (¢® Y@, 2)) 3P
=T1QY1Q2—21QT1 VY2 +12QY1 B 21 — Y2 ®21 VT =rRQYR 2z =w]

and so Q(J(wy))=w;.
In the same way it can be shown that Q(J(ws))=ws and Q(J{ws))=w; for all
elements wy in F1 Q(Fo®Fy) and w3 in ®§ Fy. Therefore QJ is the identity. O

3. Topological results

Both of the theorems proved so far state the existence of algebraic isomor-
phisms. When working with a topological structure on E we would like these
isomorphisms to be topological as well.

Suppose E is a normed space. Let us analyse first the antisymmetric tensors.
The isomorphism ) is the sum of Q,’s, where

Qu(21®q...Oqzn) = (Z) ((@k Pl) ® (®n_k P2> oA> (21®...0,).

In order for the antisymmetrisation operator A to be continuous we need to work
with a norm g on @" E for which the mapping ur»u? is continuous for every ¢ in
Sh, a condition satisfied by symmetric tensor norms. We also need the continuity
of ®k Py and ®n7k Py, so we would like tensor products of continuous operators
to remain continuous. Thus g should be a uniform cross-norm. Finally, we want
to be able to associate the factors of an n-fold tensor product in any way we want,
therefore we require that the norm u induces a tensor topology. It is clear now that
once these conditions are satisfied, all of the spaces (®ﬁa Fy®, (®Z;k Fy) are
continuously embedded into @} E and so the inverse of Q, which is the restriction
of A to the direct sum of these spaces, is also continuous. The same remarks remain
valid when working with locally convex spaces.

Theorem 3. Let E be a locally convex space such that E=F,&F,. Then

n n k n—k
Q.. r=B(®,, F)-(®., F)
k=0
for every symmetric tensor topology 7.

Let us apply now this result to stable spaces. Dfaz and Dineen [3] showed
that the spaces of continuous n-linear forms and symimetric continuous n-linear
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forms on a stable space I/ are isomorphic. Using their ideas, Ansemil and Floret [1]
extended this result to the predual of those two spaces, respectively the n-fold and
the symmetric n-fold tensor products endowed with the projective topology. They
also showed that the isomorphism holds for all the symmetric tensor topologies.
The proof of the next corollary follows that in [1], but we give it for the sake of
completeness.

Corollary 1. Let E be a stable locally convexr space. Then, for all symmetric
tensor topologies T and all positive integers n, the spaces ®faE and ®ZE are
1somorphic.

Proof. We are going to prove it by induction. The result is clear for n=1 since
both spaces are, in this case, equal to E. Let us write E=F; @ F, with both F; and
F5 isomorphic to E and denote ®fa E by G and ®’: E by Hy,. Assume G.=H,
for all k<n. ,

Since we are working with a tensor topology,

1=(Q. E)emer)=((Q B)e.n)e((Q £)e.n)

= ((@Ijl E) ®TE)2 = HZ.

By the previous theorem,
n—1
n k n—k n
6= (®', 1) B(®!, ) (R ) o (R, )
N e T,a T,a 7,0
n—1
~Gg (@ Hk®THn_k> ~G?aH" ' '>2G2aH,.
k=1

Let V be the topological complement of G,, in H,,. Then
H,=G,0oV=GlaH,eV =G, 0H: =Gl ~G2oH,=G,. O

Let us denote by £,(™F) the space of alternating n-linear forms, namely those
forms B that satisfy

B(xo1), > Toin)) = x(0)B(x1, ..., Tp)

for all o in Sy, and endow it with the topology of uniform convergence on bounded
subsets of ££. Let us note that for a normed space E we deal with the usual “sup”
norm in both £,("FE) and L("E). When working with the projective topology m,
the dual of @7 , F is L,("E) and by duality we have the following result.

Corollary 2. For a stable locally convex space E and all positive integers n,
the spaces Lo("E) and L("E) are isomorphic.
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Moving on to Jacobian tensors and working with normed or locally convex
spaces, it is easy to see, by analysing the expression of the algebraic isomorphism
in Theorem 2 that, in order to obtain a topological isomorphism, the topology we
work with must meet the same requirements as in the case of the alternating tensors
that we have just dealt with. In other words, we need to work with a symmetric
tensor topology, in which case the following statement holds.

Theorem 4. Let E be a locally convez space such that E=F1@®F,. Then
3 3 3
@, 5=(®, B)o((he- s, BPts e e (8 )

for every symmetric tensor topology 7.

If E is a stable locally convex space then so is ®i E, where 7 is a tensor
topology. Writing F=F;®F; with F; and F isomorphic to E, from the preceding
corollary we obtain

3 3 3 _\4 3 3 2 3
7,J B= (®T,J E) ® (®T E) @ (®T,J E) - (®7‘,J E) @ (®7’ E)
and so the preceding result and the proof of Corollary 1 give the following corollary.

Corollary 3. Let ¥ be a stable locally convex space. Then, for all symmetric
tensor topologies T, the spaces ®iJ E and ®i E are isomorphic.

The dual result will involve the space £ ;(*E) of Jacobian 3-linear forms, namely
those which satisfy

B(z,y,2)+B(y, z,2)+B(z,2,y) =0

for all z, y and 2z in F, endowed with the topology of uniform convergence on
bounded subsets of E. Since £;(3E) is the dual of ®i 7 E, by duality we obtain
the next result.

Corollary 4. For a stable locally convex space E the spaces L ;(3E) and L(PE)
are isomorphic.

4. Further ideas

Let E be a vector space. As has been mentioned before
EQE=(EQ:E)®(E®,F).

Having a formula for both symmetric and alternating tensor products of direct
sums, it has been proved that when F is a stable locally convex space and we work
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with a symmetric tensor topology, both E®; E and EF®, E are isomorphic to EQ E.

The same thing remains true for the 3-fold tensor product of a locally convex
space F, again, the result coming from the fact that

® = (®.£)e(®, £)2(®, )

and that we have a formula for symmetric, antisymmetric and Jacobian tensor
products of direct sums.

It is interesting now to notice a connection between these facts and the irre-
ducible representations of the symmetric groups of different orders (see [5] for details
on representations). When n=2, the symmetric group S» has just two such repre-
sentations, the trivial one, corresponding to symmetric tensors and the alternating
one (corresponding to alternating tensors). Moving on to n=3, a new irreducible
representation comes into play, the standard one, corresponding to the Jacobian
tensors. Analysing the character table of S3, where, on the top row, 1 represents
the identity permutation, (12) the transpositions and (123) the 2-cycles,

S3 11(12) | (123)
trivial 1 1 1
alternating { 1 | —1 1
standard 21 0 -1

we see the way the correspondence is given; for instance x® ;y® sz will contain
twice the identity z®y® 2z, none of the transpositions y®zRz, zR2zQy or zQYRx
and the negatives of the 2-cycles y®2z®x and 2Qr®y.

Now, the greater the value of n, the more irreducible representations (in fact
the number of partitions of n) S, will have (5 for n=4, 7 for n=>5, 11 for n=6,
etc.) and to each such representation a subspace of ®" E will be associated. Since
there exist formulas for symmetric and alternating n-tensors of direct sums for any
degree n, it would be interesting to investigate whether such formulas can be found
for other types of tensors corresponding to other representations than the trivial
and the alternating one, as is the case with the standard representation when n=3.
Could these formulas be so “uniform” so that for a stable space F, each of these
subspaces of ®" E are isomorphic to X" E itself, as is the case for n=2 and n=37
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