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Tensor products of direct sums 

Bogdan  C. Grecu and R a y m o n d  A. Ryan  

A b s t r a c t .  A similar formula to the one established by Ansemil and Floret for symmetr ic  

tensor products  of direct sums is proved for al ternat ing and Jacobian tensor  products.  It is then 

applied to stable spaces where a number  of isomorphisms between spaces of tensors or multil inear 

forms are unveiled. A connection between these problems and irreducible group representat ions is 

made. 

P r e l i m i n a r i e s  

The  n-fold tensor p roduc t  of n vector spaces {Ei}i~_~ is defined recursively as 

EI@...~F~,n-IGDEn (EI@...GE,n-1)C~En. 

Let E and F be normed spaces. A norm # on E@F is said to  be a reasonable 
crossnorm if 

(1) #(x@y)<[]x][ []y][ for every x~E  and yEF; 
(2) the linear functional  ~| on E |  is bounded  and ]l~| I1~11 I1r for 

every ~ C E *  and "~dF*. 

The  projective and the injective norms 7r and a satisfy these conditions and 

it can be shown tha t  a norm # on E@F is a reasonable crossnorm if and only if 
e(u)<p(u)<Tc(u) for every uCE@F (see [2] and [6] for details). 

A uniform crossnorm is an assignment to each pair E and F of Banach spaces of 
a reasonable crossnorm on E|  which behaves well with respect to the format ion of 

tensor p roduc t  of operators,  in the sense tha t  if S: E--+X and T: F ~ Y  are bounded  

linear operators  and the spaces E|  and X |  are endowed with the assigned 

norms, then  S@T: E |174  defined by S|174 Sx| is bounded  and 
I[S~TH<_IISII IITII. 

If  for all normed spaces {Ei}~_l and all k with l < k < n ,  the norm # satisfies 
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then we say that  # induces a tensor topology. The projective and the injective 
norms rc and c satisfy this property. Tensors topologies are defined in the wider 
context of locally convex spaces, as explained in [1]. 

We say that  a tensor topology r is symmetric  if the mapping 

Xl(~. . . (~Xn l } (Xl@...(~Xrz) a :xa (1 ) (~ . . .@xo- (n )  

extended by linearity to the whole of @~ E, is continuous for every a in S~, where 
S~ is the group of permutat ions of the set {1, 2 , . . . ,n} .  In particular, if > is a 
symmetric  uniform crossnorm, i.e. >(x~(1) |174174174 ) for every 
in S . ,  then the topology induced by > is a symmetr ic  tensor topology. 

A locally convex space E is stable if E is topologically isomorphic to its square 
E@E E 2. Dfaz and Dineen [3], working with a stable locally convex space E,  
proved that  there exists an isomorphism between the spaces of continuous n-linear 
forms s and symmetric  n-linear forms s  (see also [4]). Later,  Ansemil 
and Floret [1] dealt with the predual problem. First they establish a general formula 
for the symmetric  n-fold tensor product of a direct stun of spaces: 

k=O 

and then they use it for stable spaces to show that  for all tensor topologies, the 
full n-fbld tensor product of a stable space E is isomorphic to its symmetric  n-fold 
tensor product.  

In this note we prove similar formulas for the alternating n-fold tensor product,  
analyse in detail the 3-fold tensor product and deduce a formula for the Jacobian 
tensor product.  We apply these results to stable spaces, obtaining a number  of iso- 
morphisms. Finally we make a connection between these problems and irreducible 
group representations. 

1. A l t e r n a t i n g  t e n s o r s  

The antisymmetrisat ion operator  A: @n E_+@,~E is defined as 

1 A(xl@...@xn)-=-2s @a ...@aXn = ~. ~ X(Oz)Xa(1)@...@Xa(r~,) 
aCS. 

for elementary tensors and extended by linearity to tile whole of @,r~ E, with X(a) 
~ E  denoting the sign of a permutat ion a. The range of A, that  we denote by @~ , is 
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called the alternating n-fold tensor product  of E. We want to show that  a similar 
result to that  of Ansemil and Floret holds for the alternating tensor product,  that  

is if the vector space E is the direct sum of two subspaces F1 and F2 then 

n k n k 

k=O 

The proof in [1], which uses the fact that  the n-fold symmetric  tensor product  is 
the linear span of the vectors @~ x = @ 2  x, with x in E, is no longer valid, since 
@~ x = 0  for all x. 

k n--k Clearly, as k ranges from 0 to n, all of (@a F1) |  F'2) are subspaces of 
@ ~ E  and their sum is direct in @n E. 

The elements of r a ) e ( |  are not alternating tensors, but can be 

antisymmetrised. Thus, if xl | . . . .  | xk and xk+l | | x~ are elements of |  F1 

and |  F2, respectively, then 

A( (2Cl @a...@aXk)@(Xk+l @a...@aXn) ) 

= A ~!(~- k)! ~ x(~)x(0)X~(a/~.. .~<~)|  , 

where r ranges over Sk and 0 over the set of all permutat ions of { k + l ,  ..., n}. Let 
(rL)) be the element of S~ defined by 

j" r ( i ) ,  l < i < k ,  

\ o(i), k+ l  < i < n .  

I t  is easy to see that  X(ra)  X(r)X(a). Fix now r and L)- As cr ranges over Sn, so 
does ~(rQ). Therefore 

A ( ( x z  @a. . - (~a  xk  ) @ ('~'k-b 1 (~a- . -@a Xn ))  

1 1 

o-CSn T,O 

| x~(~-e)(k+z) | ... | x~(~e)(,~ ) 

1 1 

-r,~ o~CSn 

__ 1 ~ Xl @a...@a2?,n 
k!(n-k)[ ~,o 

:25"l @a...@aX n. 
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Now let us try to "decompose" elementary tensors in @2 E. We use the nota- 
tion of [1]: 

Sn k = {r] e S n : r/l{1 ..... k} and f/l{k+l ...... } are increasing} 

and 

T~ = { f :  f :  {1, 2, ... , n} --> {1,2}}, 

T . ~ = { f : f c T ~  and c a r d f  1(1) h}. 

If P1 and P2 are the projections of E onto/71 and F.2 we can write 

Xl @a...@aXn = (PlXl ~-P2Xl ) @a... @a (Plxn @P2xn) 

I~f(1)2Cl@a'"@aPf(rz)xn=~ ~ Pf(1)Xl@a'"@aJ~f(n) xn" 
fcT,~ k o fcT)  

For f in T,~ let f 1(1)={i l , . . . , ik} with il<_i2<_...<i~ and f -1(2)={ik+l  ,...,i,~} 
with ik+l _<..._<G. Then the permutation r! with rl(1)=iz for l < l < n  is an element 
of S~. On the other hand, for every r I in S~, we can define a function f :  {1, ..., n } ~  
{1, 2} such that  / - l (1 ) -{ r j (1 ) ,  ..., rl(k)} and f a (2) -{r l (k+1) ,  ..., rl(n)}, so there 
is a one-to-one correspondence between S~ and T~. Thus 

Xl(~a...@aX n = • ~-~ ~(?])PlXrl(1)@a...@alPlxri(l~)@ag2X~7(k+l)@a...@aP2x77(n ) 

k o ~es~ 

Q (P2z,~(k+l) | | P2Z~(,))) 

= A ( ~  ~ X(f,)/~,(7{~/~) ' ~-~,(T)X(~)P1297~I(1)@...@PIX.r~l(k) 
k=o r~E S~ r,o 

QP2xo,7(~+l) |174 

where T and ~ range over the set of all permutations of {7/(1),..., r](k)} and of 
{r](k+l), . . . ,r /(n)}, respectively, for every fixed r] in S.~. Certainly (T~)~] is an 
element of &~ and 

= 
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Conversely, if ~ is an element of Sn, let r I be the permutation in S'.~ such that 
{r~(1), ..., r~(/~:)}: {~(1), ..., ~(k)} and {r/(k+l),  ..., r l (n)}--{v(k+l) ,  ..., or(n)}. If we 
put r(r](1)):-o(l) for l < l < k  and O01(j))=cr(j) for k + t < _ j < n  then r and a are 
permutations of {~?(1), ..., ,](k)} and {r/(k+ 1), ..., rj(n)}, respectively, and or :  (r<)),?. 
We can then write 

| Pzcco(k+ l ) |174 ) 

% 

) = A  n kP1 | & (x l |  .. . .  | . 
k=O k 

Now define Q~: 0~" E-~ ( |  F~) | 174  F2) by Qk = (~) ( |  p1) O ( |  As 
is easily seen from the calculations above 

~cs~ 

therefore Q~ maps |  g into ((~" F 1 ) | 1 7 4  -k F2). We are now ready to prove 
the announced result. 

T h e o r e m  1. 

mappin9 
Let E be a vector space such, that E=F~ O I%. Then the linear 

n n n - k  

k=O 

d~,~ee b.v Q(~)=| Q~(~) for all ~. in |  S is an i ,omorphi ,~ ,  its i~,~er, e b ~ g  
n k n - k  the restriction of the antisymraetrisation operator A to @k=0( |  F1)O( |  F2). 

Proof. Since for elementary tensors we have 

:~a| Q#.(xi| ,~ 
\ k = O  

we obtain 

for every u in @2 E. 
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n k n - k  
To prove that  QA is the identity on ~ k = 0 ( @ ~  F1) |  F2), let w~ be 

k n - k  elements of (@~ F1) |  F2). Because of the linearity; it is enough to work 
with elementary t.ensors w~. Fix a value between 0 ~nd n and call it I. Let wt = 

(xl | | xz) | (Xl+l | | x~). Then 

/c=O 

[ ,..~ n-k ,, 

k=O 
n 1 

k=O ~S,~  

If k < l then {cr(k + 1) .... , a (n) } contains at least one natural  number 3" with l < j  < l 
and thus P~x~(1 ) |174 | |174 = 0  since P.exj =0.  In the 
same way, all the terms corresponding to k>l will vanish and so 

1 
@ ( d ( t u l ) ) ~ - ( 7 ~ ) ~ , 1  Z /~'(0")/DlXO'(1)@'"@IDI"2J~176 

~Sn 

It  is clear now- that  the terms of the sum will be 0 unless {a(1), ..., a(/)} = {1 .... , l} 

and {~(l+1) ,  ..., ~ ( n ) } = { l + l ,  ..., n}, in which case ~r=(r0) with r and O permuta-  
tions of {1, ..., l} and {/+1,  ... ,n} respectively. Thus 

n 1 
{~( A(~]21) ) ~- ( ~ ) 7~. ~ ~(T)X(a)XT(1) @'"@X'r(l) @27 0(lzcl ) @'" @Xo(n) 

n 1 

: ( 1 ) 7,  . . . .  
m~/) l 

and so, by linearity 

O A we = "wt 
-- t=O 

for all wl in ((~)~Fz) |  F~) and all 0 < l < n .  
phism. 

Therefore Q is an isomor- 
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Remark. By induction the result can be extended for a finite direct sum of 

subspaces: 
n db.  

@ a  ~ : @ x.-.Zj_l\'.....z a ~j " 
kl §247 

0<k.~ <n 

2. J a c o b i a n  t e n s o r s  

The space E @ E  is the direct sum of EJ| and E| an element x |  of 
E @ E  being expressed uniquely as a sum of elements of E |  and E|  

x@y = x |  x@,~y. 

When the order of the tensor product increases, more components of an elementary 
tensor will come into play. When n = 3  we have to deal with a third component,  

d ( x | 1 7 4  such that  

x@y|  z = x| y| z + x ( ~ y @ a  z + J (x@y@ z). 

Thus 

J ( x Q y @ z )  ~(2x@yGz y @ z @ x - z @ x @ y )  

and it is easy to see that  J is a projection which satisfies the identity 

J ( x O y @ z ) + g ( y @ z @ x ) + J ( z O x O y ) - 0  

for which reason we call the element J ( x Q y |  the Jacobian component of x@y@z 
and the space j ( @ 3  F )  the subspace of Jaeobian tensors. We will occasionally 
denote J ( x |  by x O d y |  and j ( @ 3  E) by @~ E. We can then write 

Our goal is to find a formula for @~(F~|  Unlike the case for the symmetric  
and antisymmetric tensors, if ~ is a permutat ion of {x,y, z} there is no way of 
expressing the relation between x @ g y |  z and ~(x) | ~(y) @g~(z) without using 
other terms involving at least one more permutation.  It  is then expected that  we 
will encounter some difficulties and that  the fornmla will not be as "uniform" as for 

the symmetric  or alternating case. 
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Let us write xl = P l x  and x2=P2x  for an element x in E.  We have 

x @ a y @ j z  : x l  @aYl @JZl 

-~-Xl ~ J Y l  ~ j z 2  + x l  QJY2 ~JZ l  +x2 QJy l  QJ zl 

+ x l  Qjy2  | z2 +x2 |  | +x2 |  | zl 

+ x 2 ~ j y 2 Q j z 2 .  

Now we notice that  each of the terms on the second line in the formula above is the 
Jacobian tensor product  of two elements of F1 and one element of F2 and~ using 
the Jaeobian formula, their sum can be expressed as 

J ( x l  | | - z l  |  ~Y2 + x2 | | -Y2  | | ). 

Consider the projection Q~: ~ 3  E--+ (El |174  defined by 

Q?(x(~y(~z) : x l  (~yl c~Z2 Zl (~Xl (~y2 . 

It  is easy to see that  

Q ~ ( x | 1 7 4  z) = xl  | |  zl |  | 

The same thing is true for Qb: @3 E--+(FI~F~)|  defined by 

( x  = o x 2  o y 2  

and thus 

J ( x l  | |  |  | + x2 | |  -Y2  | | ) 

: 

where ( xOy~;z ) (3 'L2)=zOx|  

In the same way, working with the projections Q~ and Q2 5 of ~ 3  E onto F1 
(F2| defined by 

Q~ ( x ~ j y G j z )  : x l  ~y2 (~z2 - yl ~z2  (~x2, 

Qb ( x ~  gyG yz)  : zl Qx2~y2  - Yl ~z2 ~x2~ 

we obtain 

x~ Q~Y2 ~ z ~  +x~ |  ~ j  z2 +x2 QJY2 ~jZl 

- J ( x ~ | 1 7 4 1 7 4  z~|174  

: J(Q~(X(~Jy~jZ) Jr [Qb (x~jy~jz)] (2,3,1)) 
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with (x|174 (2'a'1) =y|174 
Defining Qo(x|174 |174 and Qa(x|174174174 and noticing 

that 

we have 

Qo(x|174 =x l |174  

Qa(x| sy| J z) = x2 | jy2| j z2, 

: c Q j y Q j z  ~- Qo(x|174 
+ J ( Qi j y |  j + j y o  j z)l 

+Qa(x~gy|  

Let QI=Q~ +(Q~)r 3,1,~) and Q2=Q~ +(Q~)r 

T h e o r e m  2. Let E be a vector space such that E=F10F2. Then the linear 
mapping 

3 2 3 

3 defined by Q ( u ) = ~ = 0  Qk(u) for all u in @~ E, is an isomorphism, its inverse 
being the restr of the projection J to 

Proof. Since we have JOo(xQjy |174174  and YQa(x |174 
Qa(x|174 it follows that  

JQ( ) = u 

for all u in ~ 3  E. 

It  remains to show that  Q J  is the identity on 

Because of the linearity, it is enough to work with elementary tensors. 
Pick an element wo=x| in (~3 F1. Clearly Jwo=wo and Qo(Jwo)=wo. 

Since the projection of E on F2 appears in the formulas for Q1, Q2 and Qa, we obtain 
Ql(Jwo)=Q2(Jwo)=Qa(Jwo)=O which means that  Q(Jwo)=wo. 
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Take now wl=zc|174 in (FI@F1)| Clearly Q o ( J w l ) - O  since z l=0 .  The 

expressions of Q2 and Q3 contain at least two projections on F2 and so Q 2 ( J w l ) -  
Q3(Jw~)-0 .  Then 

a X QI(J( oyQ )) = 

-- xl | @z2 - z l  ~ z l  | § | Qzl -Y2 | |  = r  = wl 

a n d  so 

In the same way it can be shown that Q(J(w2))=w2 and Q(g(w3) ) =W 3 for all 

elements w2 in FIO(F2OF2) and w3 in @ 3 F  2. Therefore Q J  is the identity. [] 

3. Topological  results 

Both of the theorems proved so far state the existence of algebraic isomor- 

phisms. When working with a topological structure on E we would like these 
isomorphisms to be topological as well. 

Suppose E is a normed space. Let us analyse first the antisymmetric tensors. 
The isomorphism Q is the sum of Q~'s, where 

g~ 
= P l ) .  

In order for the antisymmetrisation operator A to be continuous we need to work 

with a norm # on (~)~ F~ for which the mapping u~+~t ~ is continuous for every cr in 

S~, a condition satisfied by symmetric tensor norms. We also need the continuity 

of @~ P1 and @~ ~ P2, so we would like tensor products of continuous operators 

to remain continuous. Thus # should be a uniform cross-norm. Finally, we want 
to be able to associate the factors of an n-fold tensor product in any way we want, 

therefore we require that the norm # induces a tensor topology. It is clear now that 

once these conditions are satisfied, all of the spaces ( @ ~ , ~ F 1 ) |  are 
continuously embedded into |  and so the inverse of Q, which is the restriction 
of A to the direct sum of these spaces, is also continuous. The same remarks remain 
valid when working with locally convex spaces. 

T h e o r e m  3. Let E be a locally convex space s~ach that E = F I Q F 2 .  Then 

n 

Q z ~ FI T 
T , a  , a  , 

k - - O  

for every symmetric tensor topology r. 

Let us apply now this result to stable spaces. Dfaz and Dineen [3] showed 

that the spaces of continuous n-linear forms and symmetric continuous n-linear 
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forms on a stable space E are isomorphic. Using their ideas, Ansernil and Floret [1] 
extended this result to the predual of those two spaces, respectively the n-fold and 
the symmetric n-fbld tensor products endowed with the projective topology. They 
also showed that  the isomorphism holds for all the symmetric tensor topologies. 
The proof of the next corollary follows that  in [1], but we give it for the sake of 
completeness. 

C o r o l l a r y  1. Let E be a stable locally convex space. Then, for all symmetric 
tensor" topologies ~ a ~  all positive i ,~ t~ys  n, the spaces | E a~d |  E a,'e 
isomorphic. 

Proof. We are going to prove it by induction. The result is clear for n =  1 since 
both spaces are, in this case, equal to E. Let us write E=Fl i~F2  with both F1 and 
F2 isomorphic to E and denote @~,a E by Gk and @~ E by Hk. Assume Gk.~-H~ 
for all k < n. 

Since we are working with a tensor topology, 

-- ( ( |  = 
By the previous theorem, 

(| )) = @O(@T,aFI)@T(@%a F'2 @ ( @ ~ , a  F2) 
k=l 

Let V be the topological complement of I n  in I ~ .  Then 

I n  G = ~ V  ~ G I , |  2 ~  2 

Let us denote by/2~ (~E) the space of alternating n-linear forms, namely those 
forms B that  satisfy 

for all cr in S.~, and endow it with the topology of uniform convergence on bounded 
subsets of E.  Let us note that  for a norrned space E we deal with the usual "sup" 
norm in both Z;~(~E) and /2(~E). When working with the projective topology 7r, 
the dual of @~,a E is Z;~(nE) and by duality we have the following result. 

C o r o l l a r y  2. For a stable locally convex space E and all positive integers n, 
the spaces s  and s  are isomorphic. 
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Moving on to Jacobian tensors and working with normed or locally convex 
spaces, it is easy to see, by analysing the expression of the algebraic isomorphism 

in Theorem 2 that ,  in order to obtain a topological isomorphism, the topology we 
work with must meet the same requirements as in the case of the alternating tensors 
that  we have just dealt with. In other words, we need to work with a symmetric  
tensor topology, in which case the following s ta tement  holds. 

T h e o r e m  4. Let E be a locally convex space such that E- -F1  | F~. Then 

@2,jE~ (@3%j/~1) @ ((/~I@TF1) @7/~,2)2@ ( f  1 @T(F,2@TIW,2))2@(@2,j~,2 ) 
for  every symmetr ic  tensor topology T. 

If E is a stable locally convex space then so is @3 E, where ~- is a tensor 

topology. Writing E = F I |  with F1 and F2 isomorphic to E,  from the preceding 
corollary we obtain 

3 m~ (@.,jE)@(@~E)4@(@T, jE) : k...j%j / 

and so the preceding result and the proof of Corollary ] give the following corollary. 

C o r o l l a r y  3. Let E be a stable locally convex space. Then, for  all symmetr ic  

tensor topologies the spaces |  E a, d are isomorphic. 

The dual result will involve the space L;j(3E) of Jacobian 3-linear forms, namely 
those which satisfy 

B(x,  y, z ) + B ( y ,  z, x ) + B ( z ,  x, y) : 0 

for all x, y and z in E,  endowed with the topology of uniform convergence on 
bounded subsets of E. Since s  is the dual of |  E, by duality we obtain 
the next result. 

C o r o l l a r y  4. For a stable locally convex space E the spaces s  and s  
are isomorphic. 

4. F u r t h e r  i deas  

Let E be a vector space. As has been mentioned before 

EGE: (E~E)~(EOaE). 

Having a formula for both  symmetric  and alternating tensor products of direct 
sums, it has been proved that  when E is a stable locally convex space and we work 
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with a symmetric  tensor topology, both  E |  E and E| E are isomorphic to E| 

The same thing remains true for the 3-fold tensor product of a locally convex 
space E,  again, the result coming from the fact that  

and that  we have a formula for symmetric,  ant isymmetric and Jacobian tensor 

products of direct sums. 

It is interesting now to notice a connection between these facts and the irre- 
ducible representations of the symmetric  groups of different orders (see [5] for details 
on representations). When n = 2 ,  the symmetric  group $2 has just two such repre- 
sentations, the trivial one, corresponding to symmetric  tensors and the alternating 
one (corresponding to alternating tensors). Moving on to n = 3 ,  a new irreducible 
representation comes into play, the s tandard one, corresponding to the Jacobian 
tensors. Analysing the character table of $3, where, on the top row, 1 represents 
the identity permutat ion,  (12) the transpositions and (123) the 2-cycles, 

s3 1 (12)(123) 
trivial 1 1 1 

alternating 1 - 1 1 

st andard 2 0 - 1 

we see the way the correspondence is given; for instance x@jy@yz will contain 
twice the identity x|174 none of the transpositions y|174 x|174 or z|174 
and the negatives of the 2-cycles y|174 and z|174 

Now, the greater the value of n, the more irreducible representations (in fact 

the number of partit ions of n) Sn will have (5 for n = 4 ,  7 for n = 5 ,  11 for n = 6 ,  
etc.) and to each such representation a subspace of @n E will be associated. Since 
there exist formulas for symmetric  and alternating n-tensors of direct sums for any 
degree n, it would be interesting to investigate whether such formulas can be found 
for other types of tensors corresponding to other representations than the trivial 

and the alternating one, as is the case with the s tandard representation when n = 3 .  
Could these formulas be so "uniform" so that  for a stable space E,  each of these 
subspaces of @~ E are isomorphic to @n E itself, as is the case for n = 2  and n = 3 ?  
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