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MEASURE-PRESERVING DIFFEOMORPHISMS
WITH AN ARBITRARY SPECTRAL MULTIPLICITY

F. BLANCHARD! — M. LEMANCZYK2

Dedicated to the memory of Karol Borsuk

1. Introduction

One of the most important problems (still open) in ergodic theory is to decide
whether or not any ergodic finite entropy transformation has a smooth model (e.g.
[24], p. 186, [4], Problem 2.16, p. 56; see also [17]). In this paper we continue a
program initiated in [14] and [15] to present smooth versions of some complicated
measure-theoretic constructions in ergodic theory. This time we focus on the con-
struction of analytic diffeomorphisms whose maximal spectral multiplicity is equal
to a given natural number n.

Assume that 7 : (Y,C,v) — (Y,C,v) is an ergodic measure-preserving automor-
phism of a standard Borel space. It induces a unitary operator U, : L3(Y,v) —
L%(Y,v), where U, f = f or. The spectral properties of U are called the spec-
tral properties of 7 (see Appendix in [23]). Denote Z(f) = span{fr* : k ¢ Z}
for f € L?(Y,v). We say that a number m € N U {oo} belongs to the set of
essential values E(r) if there exist fi,..., fm € L*(Y,v) with Z(f;) L Z(J;) for
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i # §,4,5 = 1,...,m and such that the measures oy, (oy is called the spectral
measure of f;),i =1,...,m on T determined by

51.(p) = fT Pdos,(2) = (UPS fi), pEZ

are all equivalent and moreover there is no f € L*(Y,v) whose spectral measure is
equivalent to oy and Z(f) L Z(f;),i = 1,...,m. The greatest element in E(7) is
then called the maximal spectral multiplicity (msm) of .

Constructions of 7 with the msm equal to n are already known and presented
in [7], [25], [26], [27]. The history of the spectral multiplicity problem in ergodic
theory till 1983 is described in [25] (see also [1], [5], (6], [10], [13], [16], [18], [19],
[21]). However, none of the constructions of an ergodic automorphism with a given
msm is smooth, that is a construction in which 7 is a diffeomorphism on a finite
dimensional compact manifold and g is a smooth measure. Such examples have
necessarily zero entropy and we recall that the horocycle flow on a two-dimensional
orientable surface of constant negative curvature which has zero entropy has infinite
msm ([22]). In the present paper we construct analytic diffeomorphisms on finite
dimensional tori, ergodic with respect to Lebesgue measure, having given msm. For
n = 1 a simple example is delivered by any irrational rotation; if we require 7 not
to have pure discrete spectrum an appropriate example is constructed in [15]. In
[2] certain C*™-constructions of 7 with continuous spectrum and msm equal to 1
are delivered. Now, fix n > 2. Our examples will be of the following form:

T =T,, T, : T+l _, prtl

where T : T — T, Tz = z - €**@, with « irrational, ¢ : T — T™ is an analytic
cocycle and

To(z, (w1, ...y wn)) = (T2, 0(2) - (W1, -, Wy))-
Consequently, ¢ = (g1, ..., o), where @; : T — T is analytic and T, : T? — T2
is a measure-theoretic factor of T,. By a result of [12], if there exists 1 < i < n
such that the topological degree of g; is not zero then T,,, and hence T, has infinite
msm. Therefore, in all our constructions, for each j =1,...,n

(Pj(e21riz) — e27ri$j(m),

where $; : R — R is a 1-periodic real analytic map and also fol @;(z)dz = 0. Now,
by a result of M. Herman [11], p. 189, foreach j =1,...,n

57) (£2miz) = (2B ()45, (o) bt By (o =)

tends uniformly to one when r goes to infinity ({g,} is the sequence of denominators
of ). Hence, for each F' € L2(T™*!) we have

Fo(T,)% — F in L*T"*)
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and consequently the maximal spectral type of Ur, is a Dirichlet measure, in par-
ticular it is singular. Therefore, all diffeomorphisms under consideration will have
singular spectrum. The question of whether it is possible to construct an ana-
lytic diffeomorphism on a finite dimensional torus with finite msm and nonsingular
spectrum remains open.

In [26], E.A. Robinson has shown that for a given subset E C N satisfying

(i) 1€E,

(ii) if m,n € F then lem(n,m) € E,
there exists an ergodic 7 such that E(r) = E. In the last section we explain
how the same result can be achieved with 7 an analytic diffeomorphism on a finite
dimensional torus, ergodic with respect to Lebesgue measure. We recall that it is
still an open problem whether a finite subset of natural numbers can be realized as
the set of essential values of an ergodic automorphism (see also [13]).

The paper was written when the second author visited 1’Université Aix-Mar-
seille IT in 1992. He would like to thank Prof. G. Rauzy and Ch. Mauduit for the
most pleasant stay there.

The authors would like to thank W. Kraskiewicz for a discussion on the subject
and the referee for usefull comments.

2. Definitions and notation

Let (Y,C,v) be a standard Borel probabilitv space with a normalized measure
v. Assume that 7 : (Y,C,v) — (Y,C,v) is an automorphism. Let C(7) denote
the centralizer of 7, i.e. the set of all not necessarily invertible measure-preserving
transformations commuting with 7. An automorphism 7 is said to be rigid if there
exists an increasing sequence {n;} such that

1) (VA€C) v(r™AAA) — 0.

Any sequence {n,} for which (1) holds will be called a rigidity time for 7. Equiva-
lently, {n;} is a rigidity time for 7 if and only if

(Vf e L(Y,v)) (U)™f—f in L*(Y,v).

The automorphisms 7 considered in the paper will be generally a special kind of
skew products. Assume that T : (X, B, ¢) — (X, B, p) is an ergodic automorphism
of a standard Borel space. Let G be a compact abelian metric group with Haar
measure m. A measurable function ¢ : X — G will be called a cocycle. For n > 0
we put

o™ (z) = p(@)e(TT)... p(T" 'x).
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A cocycle ¢ determines an automorphism T, (called a G-extension of T) on (X x
G,B, i) by

(2) Ttp(zi g) = (Txag : 90('7"))1

where B is the product ¢ -algebra and g = p X m. A cocycle ¢ is said to be a
coboundary (or a G-coboundary) if it is of the form

p(z) = f(Tz)/f(z)

for a measurable function f : X — G. We say that two cocycles ¢, : X — G
are cohomologous if ¢/ is a coboundary. We will say that ¢ is ergodic if the
automorphism T, is ergodic. The following is classical [3].

3) { ¢ is ergodic if and only if for no character x € G, x#1,

the cocycle x o ¢ is a T — coboundary.

Let T : (X, B, p} — (X, B, ) be an ergodic rotation on a compact monothetic
group X with Haar measure p (i.e. T is assumed to have discrete spectrum). Sup-
pose that ¢ : X — G is an ergodic cocycle.

PROPOSITION 1. (cf. [20]) Every element S of the centralizer of T, is of the
form
S(z,9) = Stu(z,9) = (Sz, f(z)v(9)),
where S € C(T), f: X — G is measurable and v:G — G is a continuous group
automorphism; equivalently f,v satisfy the following functional equation

woSfu(p)=feoT/f.

O
REMARK 1. We will also consider maps @ : X — R™ for n > 1. As before we
will call such a function a cocycle whenever it is measurable. We denote

#"(2) = §lz) + §(Tz) + -+ + H(T" 'z)

for n > 0. O

We will identify the circle T with X = [0,1). Therefore, real functions defined
on the circle will be identified with one-periodic functions defined on R. Let u
denote Lebesgue measure on X. Assume that T : X — X is an irrational rotation,
Tr=z+a (mod 1), z € X. Let

a = [0;a4,as,...]
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be the continued fraction expansion of o. The positive integers a,, are said to be
the partial quotients of a. Put
90=1,¢1=01,0n+1 = Cnt1gn + ¢n-15 Po=0,p1 =1,pnt1 = ani1pn + Pn_1-

The rationals p, /g, are called the convergents of o and the inequality
1
Indn+1

<

o - —

’ Pn
dn

holds. The following formula

Qn+1|IQﬂ.a“ + QnI|Qn+la” =1

is satisfied. Here ||t|| is the distance of a real number ¢ from the set of integers. By
{t} we denote the fractional part of .

Hence, from the continued fraction expansion of @ we obtain, for each n, two
Rokhlin towers &,,£,, whose union coincides with the whole circle. For n even

& = {[0, {gn2}), T[0, {gn}), ..., T@rr1on+an-1)"1[0 {g.0})},

Z;n = {{gn+10},1),... ’Tq"_ll{qn+la}’ 1}
Given a subsequence {n;} of natural numbers we will denote

I = [0,{a2n,+1@2m,0}),  JF =T D2 (0, {goy, )],

t= 1, ey Q20,41 Notice that
@2n5+1
L= J J,
t=1
and
k 1
(4) 7] <

204 +1 20,

3. Coboundaries with values in R®

Let T : (X, B, u) — (X, B, u) be an ergodic automorphism of a standard Borel
space. Let ¢ : X — R be a cocycle.

DEFINITION 1. A set F' C X of positive measure is called a fixing set for @ if
for each natural number n > 1

(5) |g™(z)| <1 whenever z,T"z € F.
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In [14] it has been proved that & is an R-coboundary if and only if & has a
fixing set. Note that if ¢ is given as > ., @(k), @(k) : X — R and each of @(k)
has a fixing set Fj such that if z,TNz € F then @(k)™M)(x) = 0 and besides
if Y psq #(FE) < 1 then F = (5, Fx is a fixing set for {, hence such a @ is a
cobou;ldary. -

COROLLARY 1. Let ¢ : X — R™ be an R™-cocycle, ¢ = (1,...,Pn), where
each g; : X — R is an R-cocycle. Then @ is an R™-coboundary if and only if each
P; has a fizing set. O

4, Algebraic automorphisms of T"

We will be interested in periodic continuous algebraic automorphisms of T",n >
1. Note that given n > 2 there is v : T® — T" such that the period of v is n and
moreover for certain character x : T® — T all the characters

XoXOU,...,xov"

are different. Indeed, it is enough to take
(6) ‘U(Z]_,Zz,...,zn) = (22,23,...,2,”21)

and for instance x(z1, z2,-..,2n) = z122...2%. By v : R®™ —» R” we will denote the
corresponding lifting of v to R™. From now on (till Section 9) by v we denote the
automorphism defined by (6).

For some more information about periodic algebraic automorphisms of T" we
refer to the last section.

5. A class of R"-cocycles having an analytic coboundary modification

We will recall here a notion of an AACCP (almost analytic cocycle construction
procedure) from [15] which is to construct a real 1-periodic cocycle @ : R — R.such
that in its R-cohomology class (for certain «) there is an analytic cocycle.

An AACCP is given by a collection of parameters, say PAR, as follows. We
are given a sequence {My} of natural numbers and an array {(dk,1,...,dk )}
dr: € R satisfying for each &

M,
(7) > dii=0.
=1
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Denote Dy = maxi<i<u, |dk,i;|- Choose a sequence {ex} of positive real numbers
satisfying

oo
(8) > VERMi < +oo,
k=1
(9) ZEk <1,
k=1
(10) < — ko= 1,2
k D%, = L4y

Finally, we are given A > 1 completing the parameters of the AACCP.

We say that this AACCP is realized over an irrational number a with conti-
nued fraction expansion [0; a1, as,...] and convergents p,,/g,, n > 1 if there exists
a strictly increas'ing sequence {n} of natural numbers such that

aZnh+1q2nk 2k
and
Dy || P}
020 +192n;

where {Py} is a sequence of “bump” real trigonometric polynomials, i.e.
() fy P(t)dt=1,

(13) (i) P >0,
(iii) Pi(t) < e for each t € (nx/2,1),

where the 7’s are chosen in such a way that
€k

(14) 4Mk17k <

q2n;

and NV is the degree of Py. Finally, @2, +1 > 1 and

1 1
15 —_— < =7
(15) G20, +142n,, 7

Using the above parameters define a cocycle
o0
F=> 3k
k=1

as follows. In view of (14), (15) (and (4)), in the interval I = [0, {020, +192n, @})
we can choose wg 1,..., Wk n, to be consecutive pairwise disjoint intervals of the
same length contained between 7 and 2m; such that each wy ; consists of say ey



282 F. BLANCHARD — M. LEMANCZYK

consecutive subintervals J¥, where e is an odd number. Let Jfk , be the central
subinterval in wg,; and now define

dei ifz € JE

0 otherwise.

g(k)(z) = {

Note that the $(k)’s have disjoint supports so @ is well defined. We will also write
7 = G(PAR,a). Let my; be determined by JE = T+ JF.
As proved in [15]

(A) The set of a’s over which an AACCP is realized is a G5 and dense subset
of the circle.

(B) If an AACCP is realized over o then there exists an analytic cocycle f :
T — R which is a-cohomologous to .

Suppose that for each j = 1,...,n we have a collection (depending on j7) of
parameters PAR; with the same sequences {€x},{Mi} and A > 1. Suppose that
moreover we have an o for which for every j = 1,...,n we have a realization of
the AACCP with PAR; that is a cocycle §; = $;(PAR;, ) in such a way that
the intervals wg,1,..., Wk, M, and J_fk"_ are common for all j. We will refer to the
arising cocycle @ = ($1,...,%s) : T — R™ as an n-dimensional AACCP realized
over . Thus in an n-dimensional AACCP the only parameters that vary with j
are

{(dj,k,17--',dj,k,Mk}1 .7 = 1""’”'1 kZ 15

where for each j, k

M;
> djgs =0.

i=1

COROLLARY 2. Assume that we are given an n-dimensional AACCP with
PAR;, j =1,...,n. Then there exists a dense Gs set of irrational numbers such
that for each a from this set the the corresponding cocycle ¢ = (&1, .. ., @n): T —
R”, where 3; = p;(PARj,0) (j =1,...,n) has an analytic R™-coboundary modi-
fication, that is there are fi,..., fn : T — R analytic such that for eachj=1,...,n
the cocycle @; is a-cohomologous to fj. O

6. Multiplicity function for group extensions

Suppose that T : (X,B,u) — (X,B,u) is an ergodic rotation on a compact
monothetic group and G is a compact metric abelian group with Haar measure m.
Let ¢ : X — G be an ergodic cocycle. Now, the space L3(X x G, 1) with 1 = pxm
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can be decomposed as
HX x G ) = @ H,,
x€@
where Hy, = {f ® x : f € L¥X, u)}. Note that H, is a Ur,-invariant closed
subspace and that Ur, : Hy — H, is unitarily equivalent to

V(p,T,x : Lz(Xa .u') = LZ(Xa ﬂ)

Vorx(£)() = x(¢(2)f(Tz), zeY.
Suppose now that for each y the operator Vo.1,x has a simple spectrum. Denote
by o, the maximal spectral type of VoI x-
The following facts are proved in [7]:

FAcT 1. If there exists Sy, € C(T,,) that is if ¢S /vy = fT/f then V, 1, and
Vo, T.xov are unitarily equivalent. |

Facrt 2. Let x,v € G be nontrivial and suppose that there exists a rigidity
time m; = my(x,~) for T such that

Jim [ w(™()duta) =5,
i |

(where w = x or ) with 0 < |6,| < 1 and by # 6. Then oy and 0., are mutually
singular. O

The following result is standard.

COROLLARY 3. For each n-dimensional AACCP and every x € T the corre-
sponding unitary operator Vyr, : L*(T) — L*(T) has simple spectrum, i.e. its
msm is equal to 1. O

These two facts and the above corollary give us a plan to construct an n-
dimensional A ACCP with the msm equal to n: we will have to build an n-dimensional
AACCP for which we will be able to solve the functional equation

¢S —vg=9gT —g
and then we will have to prove that if X # yov" for each r then for x and v we

can find a “good” (in the sense of Fact 2) rigidity time {m:}. This will put some
further restrictions on the set of parameters as we will see in the next sections.

REMARK 2. Note also that if we construct ¢ in the above way, then in particular
for each non-trivial character x € T™ we will have a rigidity time {m;} for T such
that

/T X0 (2))du(z) — 6,
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with |6,| < 1. This excludes the possibility of xy being a coboundary and it follows
from (3) that the cocycle ¢ is ergodic.

7. Solving the functional equation ¢S —vp =gT — g

We will work with an n-dimensional AACCP by putting more and more assump-
tions on the subsequence {a2n,+1} (this will not change the residuality of the set
of possible realizations). In this section we require {agn,+1} to satisfy additionally

(16) A2n+1 = Tklk,

where 7 /" co and

1

17 E<—16-2k'

Denote [6{), c®)) = Ti(JF).

4,8 71,8
We will inductively choose non-negative integers k;, w; and positive numbers

&, 1 > 1, so that k; < ki1 and

1
< |Jk|—
wy+1 1
19 < —0,
( ) Q2nk, 16 - 2!

1
(20) ‘12nk, IIkll 2 1- 4_'2_1’

( { the closed intervals By = [v; — 6;/2,v + 61/2],
21) :

k .
v = cs,,,’,)r,” form a decreasing sequence.

Let us start with w; =0, 0 < §; < %|J{cl |, where k; is chosen so that (19) and
(20) hold true. Suppose that we have defined k1,..., ki, wy,...,w, and 81,500,
so that (18), (19), (20) and (21) are satisfied. Since T is strictly ergodic, there
exists a positive integer m such that for every z € [0,1)

(22) {z,Tz,..., T™ 'z} NInt B; # 0.

Select ki1 so that kj; > k; and

1
/@, < g

and
1

Bongy, s | 21— oy
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Now, take = c((,’f;:lljl and according to (22) choose v;4.1 = T¥+1z € Int(B;). Then,
we choose 6,41 satisfying (18) so that Bry1 = [vi41—6141/2, v141 +6141/2] C Int(By).
Notice that |B;| < & so from (21) there exists a unique 8 € [0,1) such that

o0
(23) B e n B;.
=1
Denote S:[0,1) — [0,1), Sz = z + . Put
qznk,—l Qony, —1 G2y, +1
Zu= |J TW), zZa= | U Tpd- 81/2,6% 1 6,/2],
i=q2"k, —wy i=0 s=1
Q2ny, —1 O2ng, +1
Zay=Iy, Zy= |J T U Jki
=0 s=a2nk’+1—rkl
Denote
ank’ -1
= |J T'Ie)\(Z11UZ3UZs; U Zy)).
i=0
It follows from (19) that
wy 1
(Z14) < .
w2 < G2y, — 162

In view of (18)

o 1
YA < L
MZ2) < |JR[ = 162

and (by (19))

1 1
Z < < .
w(Z3,1) < Qomg, 16 - 21
Finally, by (17)
1 1
— <
MZa) < g om S oo
Therefore, by (20)
1 1 1
> —_ — = —_ = u oi%

Assume that an n-dimensional AACCP is given with
My = Trte, T =TkTk, 7%/ 00,

k > 1 and realized over an o satisfying (16). We will not use all parameters of the
AACCP but only those given by the subsequence {k;}. Equivalently, for k # k; we
put

dj,lc,i=0a j=1,...,n, 7:=1,...,Mk.
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Moreover, we require that for each k
(25) ’ﬁ(dl,k,sy dZ,k,81 ey dn,k,s) - (dl,k,s+Fk y dZ,k,s+ﬂa ey dn,k,s+77k)
s=1,2,..., My — 7, — 1 and that in the definition of @(k) we choose the intervals
wy,; S0 that

k _ 1k P —
(26) Je =, i=1. M

In view of (25) and the definition of the cocycle @(k) we will have

e kE_ ~ k
(27) @)y = (k)| Tpsr,
(i.e. the equality of the constant values of the corresponding functions), p =

1,2,...,a2nk+1 —Tr — 1.

THEOREM 1. For the AACCP described above and Sz = x + 3 with 3 defined
by (23) the functional equation

pS—vo=¢gT -yg

has a measurable solution g : T — R™.

PROOF. Since the proof of this theorem is almost the same as the one of Theo-
rem 2 in {14], we will only sketch it. Denote

Y= —9¢ and (k)= o(k)S — vp(k)
and notice that ¢ = Yokt ¥(k). Put F = Ni>1 Fx which has positive measure (for
k # k; the set F}, is the whole circle) in view of (24). Therefore all we need to prove
is that
if z,TVze Fy then %(k)™(z)=0.

This statement is clear if z and TNz belong to the same interval TP J¥, since the
sumn of constant values of $(k) on Iy, is equal to zero and J¥ is the base of a Rokhlin
tower. Therefore the general case can be reduced to the case where z,TVz € S
and Tz,..., TNz € Ugi'a"_l T¢I,,. Now notice that 9 (k) takes possible non-zero
values only on I and T%= ~%k I} and moreover in view of (27) and (23)

(k)| TE,; N Fie = (k)| T2~ JF N Fy,

(the equality of the constant values of the corresponding functions) which completes
the proof. O

As a consequence of Fact 1 and (6) we obtain the following

COROLLARY 4. For the AACCP defined in Theorem 1 the msm is at least n.
O
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8. An n-dimensional AACCP with the msm equal to n

We will put some more restrictions on the A ACCP’s described in Section 7 (and
their realizations). Recall that

A2, +1 = Tklk, Tk =TTk, T}/ 0O.

It is assumed that the only nonzero values of &(k) are on the intervals J~ p =
., My, and (27) holds true. Denote

(28) Mk = Q2n, Tk
Then mpa — 0 mod 1, so {my} is a rigidity time for T'. Set

3 27id 27id i . B
dij = (e vk | e*™nbd) G =1,...,7.

PROPOSITION 2. For each character x € Tn

/T x(™) (z) )du(z)——Z va @e)|

PROOF. Let us start with the obvious observation that

/ x(0™) (@) dy(z) ~ / x(k0™)(2)) du(z)| — 0,
T T

where rp(z) = p(1)(z)(2)(z) ... ¢(k)(z) and p(k)(z) = e*"®k)=) Denote by
€;,p the constant value of ¢(j) on Jg forj>1, p=1,...,a2n;41. Consequently, by
(25), &jr;+p = v(&j,p) and &, = (1,...,1) except for those p which are multiples
of ‘T‘:j. The cocycle ¢ is constant on the levels Ty, T?Iy, ..., T%~ 1], taking the
corresponding values, say, l_)k,g, e ,Zk,qznk , where

d2ny,

(29) H Ek,s = (1,...,1)
=2

(this statement follows from Lemma 3 [14]). We also have

/ x (ko™ (2)) du(z) — f X(60™)(2)) ds(z)| = 0
T

G

where Gy = |J™% "' T*I,,. We claim that

rkl

/X(W(m”)(w))dlt(z)—— Z ZX” (ki Chitr-- T iz )

— 0.

(30)
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Indeed, in view of (29), denoting I = gan, |5/,

Q2n 41Tk

/G X(p™ (@) dp(z) =l Y X(Bhi - Eritr oz, ) +o(1)
k

i=1

Tk
(D x(Eri - Brirr By iz )

+ D X(@hitre * Bhitratl o T E 1) F oo ) H0(1)
i=1
e tp—1
=l Z Z X’Up(Ek,,' “Eki4l et Ek:,z'+$k—1) + 0(1)
i=1 p=0

Tr n—1
23 S
=l E ; E xv"(ek,,; S R R ek,i+$k—1) + 0(1)
i=1 p=0

Tk n—1
1 - _
=tply E - E XVP(€k,i - Chyitr oo ek’i+;k_1) + o(1).
i=1 ~ p=0

But agn, +1lx — 1, so [tgly — %[rk — 0 and consequently

T 1 n—1

telk E —_ E XVP(Ckyi - Crig1-- .- €, ‘i+$k_1)
— n ’
i=1 p=0

Z vap(ekz Chitl B 5 1) — 0

a2'n.k “+1

p-O
Thus
1 re—1 1 n—1
/ X(k‘p(mk)(z)) d[l.(iL') = Z . Z X’Up(ék,i : -ék,i+1 AEERE Ek,i+$k—1) + 0(1)
G Tk =1 ™ p=o
Since the expression &, ; ‘€i+1°- - '€, +F—1 takes the same value for :;"k consecutive
's, we obtain that
rk/rk
| o™ duto) = - 3 B Z x0? (@) + o{1)
k ]—1
_ LI @) + o)
Tr=n ”
J=1 p=0
and the result follows. O

On T" consider the orbit equivalence relation ~;:

x ~ v if there exists s € Z such that xv® =~.
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THEOREM 2. There ezists an n-dimensional AACCP giving rise to ¢ : T — T"
and its realization over T an irrational rotation by o such that

(1) Sexp2rigw € C(T,) for certain Sz = z + B and a measurable g: T—>R”?,
(i) for any pair x,v € T" of nontrivial characters which are not equivalent
there exists a rigidity time m, = mi(x,v) for T satisfying

.[r x(™)) dp — x>

where |6y 4|, |64,x| <1 and 6y, # 6y . In particular T, is ergodic and the msm
of T, is equal to n.

PRroor. For each nontrivial x € Tn put
1 n—1 )
f() = - > xvt() : T - C.
=0

We have that fy is continuous, || fylleo <1 with [.. f, = 0 and if x and v are not
equivalent then f, and f, are orthogonal. Partition
N= U Ny
X,y nontrivial, xoby

in such a way that Ny, = N, is infinite for each pair (x,7). For each y =
(¥1,---,¥n) € R™ we put § = (™1, . e27iwn),

Now, fix x and v what are not equivalent. In view of Proposition 2, all we have
to prove is to show that there exists a choice of parameters dr; €R™ j=1,...,7
for k € Ny, in such a way that

. 1 & _
ey, 7 P ) =
(31) 1 7 —
ooy T 7y T ha) =B
with
(32) x5 |6yx] <1 and &, # 6y 4.

To this end, first, find ¢1,...,y, € R™ such that if we denote

I,
bxy = 5x,'7(y1,---’yq) = Ezfx(yj),
=1

N £
byx = by x (s ¥) = Ezfv(?lj)
Jj=1
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then (32) holds (indeed, such points do exist since if ¢ is large enough and (J;)
are sufficiently “well-distributed” then 6., ,,8y, are close to the corresponding
integrals, hence close to zero; and if for yi,...,yq we have &y ,(7y,-.. Yq) =
Oy (T1s- - - ,yq) then by changing one term, say y:, and replacing it by u; we find
that fx(§1) —f-,(ﬂl) # fx(ﬂl) _f'y(ﬂl)a S0 6-7,x(ﬂla T 7gq) # 6X,')’(ﬂ1a s 7?11), with-
out changing the closeness to zero of the latter two numbers because the functions
under consideration are bounded by 1).
For k € N, , large enough we put

drj=y; for j=1,...,q,
dij+q=dr; for j=sq,5=0,...,[Fk/q] -1,
d; arbitrary for j=[rx/qlg+1,...,Tk — 1,

7r—1
i == Y dije
=1
Then clearly for the corresponding parameters dj ; we obtain (31) and (32). 0

COROLLARY 5. For each natural number n > 1, on the (n + 1)-dimensional
torus there erists an analytic diffeomorphism T, ergodic with respect to Lebesgue
measure, and whose msm is equal to n. m]

9. Essential values of the multiplicity function
for analytic diffeomorphisms

Let E C N be a finite set satisfying
(i) 1eE,
(ii) if m,n € E then lem(n,m) € E.

We will now describe how to define a d-dimensional (the number d depends on E)
AACCP such that for the arising T, we have

E(T,)=E.
Let w: Z% — Z? be an algebraic periodic automorphism. Denote by
E(w) = {k € N : (3z € Z%) card{z, w(z),w?(x),...} = k}.
PROPOSITION 3. The set E(w) enjoys both (i) and (ii).
PROOF. Let A denote the integer-valued matrix associated to w with det(4) =

+1. Suppose that N is the smallest positive integer such that w” = id. Denote by
@ : C¢ — C? the linear isomorphism given by A. Since A is a root of the identity
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matrix, its Jordan form must be diagonal. Thus C¢ = @21:1 P;, where dimP; =1,
say P; = Cp,, P; is @-invariant and the action of @ on P; is the multiplication by
a primitive root of unity of order N; for certain N; dividing N.

It follows from this that if y = Z:;l aip; € Z%\ {0} then the smallest positive
integer N’ such that w™ 'y = x is equal to lem{N; : a; # 0}. Therefore all we have
to prove is that given another v € Z¢\ {0} with v = Zgﬂ bip; we can find two
nonzero integers c,d so that if we denote cy + dy = ZLI e;p; then e; = 0 if and
only if a; = b; = 0. This last statement is however clear; ¢ big enough and d = 1
will do. O

Given n > 1 by R(n) we denote the set of all primitive roots of unity of order

n. Set
Pin)(x)= I[ (z-»p)
PER(n)

Call class C the family of unitary polynomials with coefficients in Z, having cons-
tant coefficient equal to +1. By ¢(n) we denote the Euler function, i.e. the cardi-
nality of the set of positive integers less than n which are coprime with n. Note
that the degree of P(n) is equal to ¢(n).

PROPOSITION 4. ([28], section 8.4) P(n) belongs to class C; furthermore it is
the mintmal polynomial for each p € R(n). O

We will also need the following proposition.

PROPOSITION 5. If a finite set E C N satisfies (i) and (i) then there exist
d > 1 and an algebraic automorphism w : Z% — Z° such that E = E(w).

PROOF. Let m be the maximal element of E that is the lcm of all the elements of
E. Put Pg = [I1cp P(k). We have Pg(t) = t4+ca_ 1t 1+.. . +cp. By Proposition
4, Pg belongs to class C. Denote by A = [a;;]1<; j<a its companion matrix, that is
all entries of A are equal to zero except for 0it1,i = laig =¢_y for i =1,...,d.
Consequently the entries of A4 are integers, det(A) = £1 and let w denote the
associated automorphism of Z¢. As Pg is the characteristic polynomial of A and
Pg has d different roots (all of them being m-th roots of 1), we have A™ = J and
all eigenvalues of A have multiplicity 1, so there exists a base of C4 consisting of
eigenvectors. The eigenvector corresponding to an eigenvalue pe R(k), ke Eis
of course periodic with least period k. Considered as vectors in C¢, the Z4-vectors
(representing characters) are linear combinations of the vectors of the base. This
and the condition (ii) imply that all nontrivial characters have the least periods
belonging to E.
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There remains to prove that whenever k € E we can find a character x such
that card{x,w(x),...} = k. Consider the matrix P(k)(4) = [[,cpu)(4 — pI).
Obviously, a base of eigenvectors of A is also a base of eigenvectors of P(k)(A);
moreover if p is an eigenvector from the base then its eigenvalue for P(k)(A) is 0 if
and only if its eigenvalue for A belongs to R(k). Therefore, ker P(k)(A) is exactly
the subspace of C¢ generated by the eigenvectors corresponding to the eigenvalues
in R(k). Since P(k)(A) has coefficients in Z, its kernel contains a nonzero vector x
with integer coordinates and, as in the proof of Proposition 3, the least period of
x is equal to k. m)

Notice that by small modifications of the proofs of Theorem 1, Proposition 2
and Theorem 2 we can get the conclusions (i) and (ii) of Theorem 2 with v being
an arbitrary periodic automorphism. Now, by (ii) of Theorem 2 we always have
that E(T,) = E(w), where w denotes the corresponding dual automorphism on
Z™. Therefore, by Proposition 5, we have proved the following

COROLLARY 6. If a finite subset E satisfies (i) and (ii) then there ezist d =
d(E) > 2, an irrational rotation T and an analytic cocycle ¢ : T — T? such that
the set of essential values of the multiplicity function of the diffeomorphism T, is
ezactly E. a

REMARK 3. By the method presented in [7] it follows that we can drop the
finitness assumption E. If E is infinite then we will produce maps 7 = T, preserving
Lebesgue measure (and ergodic with respect to it) with E(7) = E where ¢ : T —
T has the property that all its projections ¢ o proj; : T — T are analytic maps
of T.

However, if we fix a finite d > 2 then using our method there is an upper bound
on the cardinality of the sets E we can obtain. This will be seen if we prove that
for each d > 1 there exists N such that for each periodic algebraic automorphism
v of Z¢ with least period n we have n < N.

Indeed, an automorphism v is determined by a d x d matrix A on Z whose
characteristic polynomial P, isin class C. Since A™ = I, all eigenvalues of A are
n-th roots of unity, hence belonging to some R(k) with k|n. Moreover there is a
base of C?% consisting of eigenvectors of A (see the proof of Proposition 3). By
Proposition 4,

(33) all elements of R(k) are eigenvalues of A whenever some p € R(k) is.

Let N = max{lem (n;) : }_p, ¢(n;) = d, 1 < u < d}. (Note that the maximum is
well-defined since given s there are only finitely many r such that ¢(r) = s.) The
matrix A has d eigenvalues and if {ni,... ,n,} (ni|n) denotes the set of degrees of
the eigenvalues of A then by (33) and Proposition 4 the characteristic polynomial of
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A is equal to [T;, P(n;), so ¢(n1) +--- + d(ny) = d. Now, if T;, is an eigenvector
corresponding to an n;-root then z; ; has period n;. Consequently, each z € C¢ is
periodic with the least period not bigger than lem (n;). O
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