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Let F(u;z,y) : R x R?2 — R? be a real analytic mapping defined in a neigh-
bourhood of the origin such that £(0;0,0) = (0,0). Set F¥(z,y) = F(u;z,y) :
R? — R?, where p € R. Clearly F°(0,0) = (0,0). We then say that F* is an
analytic family of vector fields.

In this paper we study the problem of bifurcation of a periodic solution from
the equilibrium at the origin. The most famous fact concerning this problem is
the Hopf bifurcation theorem. There is a lot of versions of this theorem (see [2]
for references). All of them need some assumptions about the way the eigenvalues
cross the imaginary axis. Qur approach is quite different. We investigate two
mappings G, H : (R x R%,0) — (R®,0) defined in terms of F. If 0 € R x R? is
isolated in G~'(0), H~1(0) then we can calculate the local topological degrees
deg(G), deg(H) at 0 € R x R%. Theorem 2.1 says that if deg(G) = deg(H) =1
and if the field F* is internally transversal to every small circle centred at (0, 0)
then for every u # 0 sufficiently close to zero there is a non-trivial periodic
solution of the system (2,y) = F¥(z,y) lying in a small disc centred at (0,0).
Note that the Hopf theorem cannot be applied in this case (see Remark 2.2).

Our proof is based upon some recent results concerning the number of bran-
ches of one-dimensional semianalytic sets, proved by Fukuda et al. [3, 4], Arnold
(1], Wall [8] and by the second author [5, 6]. This is why we have to assume that
F is analytic. It seems that the method presented here generalizes to the case
where F' is a C"-mapping, r < 0o, and satisfies some generic conditions.

(©1994 Juliusz Schauder Center for Nonlinear Studies

369



370 A. LECKI — Z. SZAFRANIEC

The paper is organized as follows. In Section 1 we recall some facts concerning
one-dimensional semianalytic sets. In Section 2 we prove the main theorem.
In Section 3 we present examples of concrete calculations. In that section we
have used a computer program written by the first author for calculating local
topological degrees. One can find its brief description in [5].

1. Preliminaries

Let us introduce the necessary notation. Let w : (R2?,0) — (R,0) be an
analytic function, and let Vw = (8w/0z, 8w/dy) denote the gradient of w. From
now on we assume that w > 0 and Vw # 0 everywhere except at the origin,
and lim w(z,y) = +o0 as ||(z,y)|| — oo. For any ¢ > 0 let D, = {(z,y) € R?:
w(z,y) < €%}, S; = 8D, D, = D U S.. Hence D, is a 2-dimensional manifold
with a boundary S; and (0,0) € D,. Note that the sets D;, € > 0, form an open
neighbourhood base of 0 and the pair (D, S:) is homeomorphic to (5:, S,
where ﬁ: (S resp.) is the closed 2-dimensional disc (circle resp.) of radius e
centred at 0. Let B, = {(u;7,y) E R x R?: p? + 2% + 9% < £2}.

Let 9 be a bounded open set in R™ and let H : & — R™ be continuous.
If H # 0 on 90 then deg(H,(,0) denotes the topological degree of H with
respect to 0 and 2. If H : (R",0) — (R",0) is a continuous mapping having an
isolated zero at the origin then deg(H) denotes the local topological degree at 0,
i.e. deg(H,$,0), where  is a neighbourhood of 0 such that 2N H~1(0) = {0}.

Let F = (F, F5) : (R x R2,0) — (R?%,0) be an analytic mapping defined in
a neighbourhood of the origin. Set F¥(z,y) = F(u;z,y). Thus F* : R? — R?
is a family of vector fields with a parameter u € R. We denote by J(u;z,y) the
Jacobian 8(Fi, F,)/8(z,y) at (u;z,y). From now on we assume that

(1.1) F? has an isolated zero at (0, 0),
(1.2) rank[DF'(0)] < 1, where DF is the derivative matrix of F.

Let X = F~1(0). From (1.1), X N {0} x U = {0} for some neighbourhood
U c R? of the origin. We say that X has an isolated singular point at O if O
is isolated in {(u;z,y) € X : rank[DF(u; z,y)] < 1}. Let g = g(u;x,y) be an
analytic function vanishing at the origin, let A = 8(g, Fi, F2)/8(u, z,y), and let
G=(AF,F) : R xR? — R3. Since rank[DF(0)] < 1 we have A(0) = 0, and
then G(0) = 0. Let H = (uJ, F1, F2) : (R x R?,0) — (R3,0). We have (see [7,
Lemma 1])

PROPOSITION 1.1.

(i) If 0 € R x R? is isolated in either G™1(0) or H1(0) then X has an
isolated singular point at 0, and then X N B, \ {0}, for € small enough,
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is homeomorphic to a finite disjoint union of open segments emanating
from the origin.

(ii) If O is isolated in G—1(0) then O is also isolated in {(u;z,9) € X -
g(u; x,y) = 0}, and then we may assume that g has a constant sign on
each component of X N B, \ {0}.

In the above situation, b will denote the number of components of X NB:\{0},
and by (b resp.) the number of components of X N B, \ {0} on which g is
positive (negative resp.). The numbers b, by, b_ do not depend on ¢ for £ > 0
small enough. Moreover, b= b, +b_.

We have (see [7, Theorem 3))

THEOREM 1.2. Assume that 0 is isolated in G—1(0) and H~'(0). Then b, —
b =2deg(G), b = by +b_ = 2deg(H). In particular, b, = deg(G) + deg(H),
b = deg(H) — deg(G).

The above formula for b was proved by Fukuda et al. [4). A similar formula
was also proved in [3]. The formula for b, — b_ was proved in [6].

Let f : (R?,0) — (R,0) be real analytic, and let Vf = (8f /o, of/6y) :
R? — R2. Clearly, f has an isolated critical point at 0 if and only if 0 is isolated
in Vf~1(0).

PROPOSITION 1.3. Assume that f has an isolated critical point 0. There is
€ > 0 such that f # 0 in D, \ {0} if and only if deg(Vf) =1.

PROOF. Let A_ = {(z,y) e S : f(z,y) < 0}, where ¢ is small. Since f
is analytic, the set {(z,y) € D : f(z,y) < 0} is homeomorphic to the cone
over A_. Since f has an isolated critical point at 0, A_ is either void or St or
is homeomorphic to a finite union of closed segments. According to [1, 8], the
Euler characteristic x(A-) = 1 — deg(VF). Thus A_ is either void or S! if and
only if deg(Vf) = 1.

2. Bifurcation of a periodic solution
Now we can formulate our main result.

THEOREM 2.1. Let F* be an analytic family of vector fields satisfying con-
ditions (L.1) and (1.2). Let F* = (FY,F)), let f = FP8w/dz + F98w/dy, and
let g = OF, [0z + 8F,/8y. Assume that

(i) there is € > 0 such that f <0 (f > 0 resp.) in D, \ {0},
(ii) 0 € R x R? is isolated in H~1(0) and deg(H) = 1,
(iii) either g(0;0,0) is positive (negative resp.) or
(ii') 9(0;0,0) = 0, 0 € R x R? is isolated in G—(0) and deg(G) =
(deg(G) = -1 resp.).



372 A. LECKI — Z. SZAFRANIEC

Then there is § > 0 such that for each u with 0 < |u| < 6, there is a non-
trivial periodic solution of the system (Z,9) = F*(x,y) lying in D..

PROOF. Since 0 is isolated in H~1(0), it follows from Proposition 1.1(i) that
X = F~(0) has an isolated singular point at 0. Hence, from Theorem 1.2, if
¢ > 0 is small enough then X N B, \ {0} is the disjoint union of two connected
components X; U X, emanating from the origin. Clearly, H=(0) = {(u; z,¥) €
X : uJ = 0}, thus we may assume that J # 0 in X N B, \ {0}. So thereis § >0
such that for each p with 0 < |u| < 6,
(1) XnNB\{0} = X;UX; is transversal to {s} x D, and then deg(F*, D, 0)
= Y sign J(p; z,y), where (i;z,y) € XN{g} x D, and the sum consists
of at most two elements.

We have assumed that f < 0 in D, \ {0}. Since f(z,y) is equal to the inner
product of the vectors Vw(z,y) and F%(z,y), for every (z,y) € S. the vector
FO(z,y) is internally transversal to S;. So deg(F° D,0) = 1 and if 6 > 0 is
small and |p| < & then

(2) for every (z,y) € Se the vector F#(x,y) is internally transversal to S.
In particular, if |u| < 6 then

(3) deg(F*#, D.,0) = 1.

From (i), (X N B. \ {0}) N {0} x D, is void and thus from (1), (3) we have

)] if 0 < || < 6 then X N{u} x D, consists of one element (u; z(x), y(x))
such that sign J(u; z(u), y(p)) = 1.

We may assume that X1 = {(i; z(p), y(p)) : =6 < p < 0}, Xp = {(; z(n);
y(p)) : 0 < p < 8}, Let A; = Mi(p), i = 1,2, be the eigenvalues of the derivative
matrix [DF*] at (z(u),y(u)). Hence Ade = J(u;x(u),y(w)) > 0, Ay + A2 =
g(p; z(p), y(u)). If g(0;0,0) is positive then we may assume that A\, + Az is
positive for || < 6. If g(0;0,0) = 0 and deg(G) = 1 then, according to Theorem
1.2, by = 2, b_ = 0, and thus A\, + Ao is positive for 0 < |u| < 6. Hence
Re(\;) > 0, i = 1,2, and therefore, if 0 < |u| < & then the vector field F*
has a unique zero (z(u),y(p)) € D. which repels every orbit starting near it.
From (2), no orbit can leave D, and thus, according to the Poincaré-Bendixson
theorem, there is a non-trivial periodic solution lying in D,. The proof of the
second version of the theorem is similar.

REMARK 2.2. Inspecting the proof shows that we cannot apply the Hopf
theorem in this case because the eigenvalues X;(u) do not cross the imaginary
axis.

COROLLARY 2.3. If a family of analytic vector fields ' =F¥ (F"‘2 Tesp.)
satisfies all assumptions of Theorem 2.1 then for every e > 0 there is § > 0 such
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that for every p with 0 < p < 6§ ( —8 < p2 < 0 resp.) there is a non-trivial
periodic solution of the system (&,y) = F*(z,y) lying in D,.

3. Examples

In order to illustrate the method we present two examples.

ExAMPLE 3.1. Let
Fpz,y) = (—2° + py + p'z, 4° — y° — pz + pty)
and
w=2z2+14°

Then

FO = (28, —¢?), Vw = (2z, 2y),
f=-2z*—24%, g =2u* - 3(z% +¢?).
Clearly f < 0in R?\ {0}. Computer calculations give deg(G) = deg(H) = 1 and

thus, according to Theorem 2.1, non-trivial periodic solutions bifurcate from the
equilibrium at 0.

EXAMPLE 3.2. Let
F(piz,y) = (4° —® + py + Pz + p" + 2°%°, —2° — o — pz + ply — ub — 2%®)
and
w(z,y) = 2°/6 + y*/4.
Then
FO = (4 — 25 + 252, &5 — 5 — ayP),
Vw = (2%,3°),
F=—al0 42102 _ o8 _ g2
H
Vf = (-10z° + 10z°y? — 22y, 22'% — 8y” — 112%y9),
Computer calculations show that 0 is isolated in Vf~1(0) and deg(Vf) = 1.
Since f(z,0) = —z'® < 0, by Proposition 1.3 there is ¢ > 0 such that f < 0 in
D, — {0}. We have
g=—b5z*+ w4+ 5zty? — 5yt + ut —8z%y7.

Computer calculations give deg(H) = 3, so we cannot apply Theorem 2.1. Set
F* = F**, and let G,H be the corresponding mappings. Then deg(G) =
deg(H) = 1, and thus, by Corollary 2.3, non-trivial periodic solutions bifurcate
from the equilibrium for p > 0.
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