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0. Introduction

The main objective of the paper is the derivation of new integral repre-
sentations for fundamental solutions to a class of constant coefficient operators
P(D). They can be considered as a generalization of the classical formulas [11],
[4] on representation of solutions in terms of exponential functions, to cover
the behaviour of solutions at infinity. While the classical existence proofs for
fundamental solutions (see e.g. [5]) consist in avoiding the (complex) character-
istic set char P = {2z € C" : P(z) = 0}, we proceed in the opposite direction.
The formulas derived involve integration over certain (n — 1)-dimensional sets
L¢, “isomorphic” to the positive orthant ﬁﬁ_l, contained in char P, and can
be regarded as n-dimensional Laplace type integrals. The formulas generalize
the classical Leray residue formula [8] to the case where the cycle intersects the
singular set of the integrand. They exhibit new features of the fundamental
solutions which cannot be read off from the classical formulas. The most impor-
tant one, perhaps, is an explicit expression yielding the asymptotic behaviour of
the fundamental solution at infinity which can be regarded as its n-dimensional
Borel resummation at infinity. Another feature is the possibility of deforming
the set L7 within the characteristic set, which exhibits n-dimensional resurgence
phenomena in the spirit of J. Ecalle (see (3], [15], [14]). This in turn leads to the
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258 LerAY RESIDUE FOrRMULA AND PDEs

expectation that the new formulas may be useful in the study of the correspond-
ing non-linear equations, thus leading to a generalization to the case of PDEs of
the recent results on non-linear ODE by Ecalle, Ramis and Braaksma [2].

In the case of two variables the situation is easier and the results are presented
in [14] (the “smooth” version) and in [15] (the “analytic” version). Especially
the book [14] is recommended as a “gentle” introduction to the subject.

The author thanks Nguyen Si Minh for his help in the preparation of the

paper.

1. The problem and results

Let P(z) be a complex polynomial in C*. Denote by E= reg(1/P(i3)) the
regularization of the function iR™ 3 i — 1/P(if3) to a tempered distribution
on R™. The problem consists essentially in establishing a real Laplace inversion
formula for E. Recall that, while the imaginary (= Fourier) inversion formula
consists in expansion in oscillatory functions R 3 s — €%#, 8 € R™, the real
inversion formula is an expansion in exponential terms e™**, o € R%}. The
intermediate case of expansions in e~*? with Red > 0 will be called the Taylor-
Fourier representation (see §7).

Intuitively the situation is very easy: given the Fourier representation of the
fundamental solution E to P,

_ _sg a0
E reg/;Rﬂe P(0)’

one completes iR™ to a cycle (by adding points at infinity) and then deforms
it to a (finite) sum of integrals of the “residue form” of df/P(6) over the sets
Lg as close as possible to the positive orthant R?™! (note that when taking
residues the dimension drops by 1). Clearly in doing so the geometry of the
complex characteristic set of P will enter in a crucial way. The program is
facing, however, serious difficulties: one is that the classical Leray residue theory
(recalled below) does not apply since the cycle iR™ intersects the singular set of
the integrand, another is the lack of suitable estimates at infinity to carry out
the deformation procedure (see §6).

The residue form of Leray can be regarded as a parameter version of the
Cauchy residue formula in the case of a single complex variable. More precisely,
given a regular complex hypersurface S in an open set U C C™ and an n-form w
on U\ S (which may be singular on §) we define an (n — 1)-form resw on S by

the identity
/ w= / resw
7 v

where + is an (n — 1)-cycle on S and ¥ is an n-cycle in U \ S homotopic to the
normal sphere bundle over . Locally if S is given as the zero set of a holomorphic
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function F on U, § = {z € U : F(z) = 0}, then

w
resw = ——.

dF

The principal feature of the residue form resw is that, although defined locally,
it is a (unique) global (n — 1)-form on §.

In the following to underline the asymptotic expansion character of the for-
mulas obtained we shall restrict our attention to the positive orthant R} =
Ry x ... x Ry (with R; = (0,00)) and work in the logarithmic coordinates
s1=—Inzy,... ,8, = —Inz,.

The choice of the positive orthant is completely irrelevant (cf. Remark 1.1)
but simplifies the presentation. Note that in z variables the partial derivatives
8/0sj, j =1,... ,n, become z;8/dz;, j =1,... ,n. We shall denote by £8/dz
the vector 8/0z = (2,8/0z,,... ,£,8/0z,). Hence P(z0/0z) stands for the
operator P(x10/0z,... ,2,0/8z,). We shall study solutions to the equation

(1.1) P( %)u:f

belonging to the scale M, a € R™, of §’-type spaces defined as follows:
Denote by p : R* — R? the diffeomorphism

u(s) =e* =f (e™,...,e7%").
Let a € R™ and define (for details see [14], §4)
M, = M (RL) = {o € C®(R) : (z°*0) o € SR}

where we use the notation z* = z7*...z5, 2 € C", 1 = (1,...,1), and S(R")
denotes the Schwartz space of rapidly decreasing functions. We equip M, with
the natural topology induced from S(R™) and define M, as the topological dual
of M,. It follows from the S'-version of the Schwartz kernel theorem ([14),
Th. 4.3) that 9, is isomorphic in a natural way to M, (R4; M, (RT™1)) (here
a = (a1,a’)), the space of linear continuous functionals on M, with values in
(R,

Observing that u € M, (R} ) if and only if e®*(uo u) € §'(R™), we can define
the M,-Mellin transform of u by the formula

(1.2) Mau = (27)"2F (% (u o p))

where F~! is the inverse Fourier transformation in S'(R™) defined on test func-
tions o € S(R™) by the formula

Flol) = m) ™2 [ evale)as
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Note that if « has support in a bounded set (in R"™) then
Mou(b) = ufz 271,

i.e. coincides with the n-dimensional Mellin transform of u defined in §5.

Now, before proceeding to the formulation of the main theorem we impose
assumptions on the polynomial P(z):

Let P(z) = 3|4/<m @a2* be a complex polynomial in C" and let & € R™.
Set char P = {z € C" : P(z) = 0}.

CONDITION A;. We say that P satisfies condition A; relative to the point
« if there exist a finite number of points B!,... , B* € R such that

k
char PN (& +iR™) C U{z €C":Imz = B}
j=1

CONDITION Aj.} The iterated discriminant roots c®(z,0%)),k = 2,... ,n,

for P (see §2) grow at most linearly:

|*(21,6%)] < Cll(z1,8P)|| for ||(z1,6®)] large.

CONDITION Aj.? The iterated discriminant roots satisfy the following global
Lojasiewicz inequalities: there exist constants C > 0 and p, k > 0 such that

(¢ (21,8") — B(z1,0")] > T (dist((z1, ), {Aa(P)(z1,6") = O}))"
MG, 0

forl,j=1,...,m2, | #J, and

|e§(21,60)] 2 (dist((21,6%), {c}(21,8®)) = 0}))"

_C
ll(21, 6]l
fork=3,...,n—1,7=1,... ,my; finally,

|am, (21,6")} > (dist((z1,6"), {Aa(P)(=,0") = O})".

__C
[|(z1, 6"l

CONDITION A4. The multivalued mapping F (given by (2.3) in §2) is positive
definite in the following sense: for any fixed branch E;, ;. of the function
E = (E,...,E™) there exist v = (v1,vs,... ,0s) € C*"! withRev > 0, % € R
and K > 0 such that for any € € R},

D u(E +Re Bl (21,6") 2 cell(21,6")]F
for R* 3 y > € and ||(21,8")| large, with (21,68") € vR} ! def (iR, v3R4, . ..
e ,UnR+).

1The author thanks Prof. T. Winiarski for pointing out that, subject to a linear change
of variables, this condition is satisfied for any complex polynomial.
2The author is grateful to Prof. S. Lojasiewicz for informing him that this condition is

always satisfied.
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REMARK 1.1. Conditions A;—-A, distinguish the first variable z;. To give
them a more symmetric formulation one may assume that A;—A4 hold for the
polynomial P(¢) = P(A~'¢) and @ = Aa in place of P and ¢, where A4 is a
suitable matrix in GL(n, R).

REMARK 1.2. Since Conditions A; and A4 involve the behaviour of the
iterated discriminant roots at infinity one may replace the polynomial P by its
principal part P (2) = 374 =m 022> and verify those conditions for the iterated
discriminant roots of P,,, which may be easier.

REMARK 1.3. Condition A can be formulated geometrically in terms of
the position of the set char P and the iterated discriminant set {Ay . (2, 8"))
= 0} with respect to the sets {(z1, [|(21,8%)|,0%) : 2z, € C, 8®) ¢ Cr—k}.

ExampLE 1.1. Condition A; is satisfied for the polynomials
m o~
P(n,7) = Z aizi + P(2'),
=1

where P(2') is a polynomial in 2’ = (za,... ,2,) With real coefficients, relative
to the point (&1, 0) for any a; €R.

MAIN THEOREM. Let & € R™ be such that P(2) satisfies Condition A, rel-
ative to & + iR"™. Assume further that P satisfies Conditions Ay, Az and Ay,
Consider the distributional equation

(1.3) P(w-{%)u =f on R}

where f is supported by a polyinterval {t <z < t}, t,t € R7.
Then any solution u of (1.3) in-the space QJI& can be ezpressed as a sum of
multidimensional Laplace integrals:

(1.4) u(z) = Z Z T2z for 0<z <,

e€x, (P) oe{+,—}n1
ay

where T¢ are certain Laplace (n — 1)-currents (cf. §4) supported by ﬁi‘l-type
sets L& C char PN {z : Rez > a}, whose vertices e lie in I (P), the vertex set
of P relative to &. For eache € Y. (P) and o € {+, -}~ the Laplace current
T? can be so chosen that restricted to Int Lt it coincides with a suitable branch
of the (multivalued) residue form res (%ggdo) defined on the regular part of
the set char P.

The proof of the Main Theorem is given in §7.
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2. Iterated discriminants

We recall first the algebraic definition of the discriminant of a polynomial.
Let Q(z) = Y p o axz® with ax € C. The discriminant of Q is the determinant
of the matrix

1 bm
Gm—2 Om—1 1 bm—2 bm-1 bm
. s . . z
ap b]_
ag : b
ap bl

where by, = aixk for k = 1,... ,m. The discriminant of @ (denoted by AQ)
vanishes if and only if Q(z) and dizQ(z) have s common root, i.e. when Q has
multiple roots. The discriminant can also be computed in terms of the roots of
Q. Namely if

(2.1) Q(z)=am(z—c1)...(z—cm)

then AQ = [];,(cj — k).

In the following we shall deal with polynomials in several complex variables,
i.e. the coefficients a; will themselves be polynomials (in some parameter vari-
ables) and consequently the discriminants will also be polynomials (in the pa-
rameters). To prepare for this situation we introduce the following notation:

0 =(0a,...,0,)€C*t, 6" =(6s,...,6,) €C"2
%) = (6x41,...,0,) €C*F

for k =3,...,n—1. Now if P(2,8') is a complex polynomial in (2,,6') € C*
we denote by A;(P)(z,60") the discriminant of P considered as a function of 8
with the remaining variables as parameters.

Analogously to (2.1), if

(22)  P(z1,8) =}, (21,0") (62 — ¢}(21,0")) ... (62 — cFr, (21, 6"))

then
Az (P)(21,0") = [[(c3(21,6") — ci(21,6")).
J<k
We define
As(P)(21,8") = (a2,,(21,6"))*™ ' Aa(P)(21,6")

and call it the complete discriminant of P with respect to 8. It follows that
A(P)(z1,0") is again a polynomial and we can take its complete discriminant
-with respect to #3 to obtain a polynomial 53,2(P)(z1,0(3)). Continuing this
procedure we arrive at polynomials Zk,.,_,g(P)(zl,O(k)) for k = 2,... ,n which
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we call the complete iterated discriminants of P. It may happen that at some
stage k, Zk,___,g(P) is identically zero. This would mean that Ek_l,___ 2(P) had
a multiple polynomial factor of the form (Q(z1,8%~1))! (for some I > 1). Then
instead of this factor we take Q(z1,8%~1)) and repeat the operation of reducing
multiple factors until the discriminant becomes non-trivial. In the following we
shall assume that all discriminants are reduced in the above sense.

Now, given a (reduced) discriminant Az o(P)(z1,8%®) we can write it in
the form

Ay, 2(P)(21,68%)
= ak,, (21,0% D) (B2 — cF (21,052 L (Brqa — cF,, (21,0512,

The functions cf, j = 1,...,7m, are multivalued functions® in the space

——

O(CF \ {Ak1,... 2(21,0%+D) = 0}), and ak, (21,8%+Y) is clearly a polynomial.
We call c} the k-th iterated discriminant roots of P. The set of cf for k =
2,...,n, 5 =1,...,my (with c? given by (2.2)) is called the set of iterated
discriminant roots of P.

Observe that the (n — 1)-th iterated discriminant roots are functions of z;
only. Therefore we introduce the following

DEFINITION 2.1. Let P(z1,6’) be a polynomial in C*. The partial vertez set
of P (with respect to §'), denoted by X, (P), is the set*

5., (P)={0 € C*1:0; = *(z1,E(z1,. .., (21, €(21))...)),

03 =c*(z1,...,¢" z1,¢*(21))...)) -+, 0 = *(21)}.

DEFINITION 2.2. Suppose P satisfies Condition A; relative to a point a €
R™. The vertex set of P relative to 51 is

%, (P) =2} (P)USE (P)

where
k
0 L iDd) o §
251 (P) = U (a1 +iB7) x Xy ip (P), the boundary vertez set,
j=1
ot (P) = U (71 x B, (P)), the inner vertezr set
(23] - .
{z1:An,... 2(P)(z1)=0,Rez1 201}
3To be more precise, all c;‘-’ for j =1,... ,mg form a single multivalued function which we

denote by c*. We shall use the symbol c* instead of c;-" if we do not mean any specific branch
of ck.

4 According to the preceding footnote the set f}zl (P), for a fixed z; € C, should be under-
stood as the set of all points &' obtained by taking all branches of the multivalued functions

d,j=2,...,n
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(Zn,m ,2(P) denotes the complete iterated discriminant of P with respect to all
variables 8').

The term “vertex set” comes from the fact that the points e € T (P) will be

vertices of certain (n — 1)-dimensional “orthants” L. which we introduce below.

Fix e = (e1,... ,en) € Eal(P). This corresponds to a choice ¢,,...,c of

branches of the functions ¢?,... ,c".

Consider the mapping F;, ... ;, defined by

(2.3) (21,0s,...,8,)— (zl,c?2 (;:1,cf?S (z1,- .. ,c?n__ll (21,

e (zn) +0p) +0n_1),...) +63)),... ¢l (21) + )

and let Ze be the orthant

Le=(e1 +Ry) x R%2,
We define
Le=FE;,,. i, (Le)
and call it an R’_f__l—type set with vertex e.
EXAMPLE 2.1. We compute the partial vertex set X, (P) for the Brieskorn-
Pham polynomials P(z1,8') = 27" + 602 +... +6~.

We have
A(P)= 21" + 632 +...+ 07,

Ag,.. 2(P) =2 + 00 + .+ 07,
Ap_a,. 2(P)=21" +67m.
Consequently, ¢*(z1) = ™g/—2]"*. Next we find
An_s,.. 2(P)(21,0n-1,¢"(21)) = 6,1
and hence
" z1,c"(21)) = 0.

Continuing this procedure we find® for z; € C,

2., (P) = {(0,... ,0, "y/—2") e C" 71},

Let & = (a1,0,... ,0) € R™. We shall first check that P satisfies Condition A,
relative to the point a&. Indeed, the equation

P(oy +if,#)=0  forally/ € R"

implies in particular
Im(&l +46,)™ =0,

5Recall that for a fixed ¢ the symbol %/C denotes the set of all complex roots of ¢.
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which has a finite number of roots 8, = B?, j =1,... ,m;. Since Ag, . 2(PY(z1)

my
0 ifa >0,
z:ir(P)={ a1

= z; ' we see that
& {0} ifey <O.

Thus we have

zgl(P) ={(c1 +iB,0,...,0, "t/—(a1 +iBI)™) : j=1,... ,my}.

3. Nilsson type integrals

In this section we investigate analyticity properties with respect to param-
eters of certain integrals of ramified functions. The case of integrals over a
bounded cycle is classical and can be found e.g. in [10, 8, 7, 1]. We extend these
results to the case of an unbounded cycle and establish explicit formulas for the
analytic continuation with respect to the parameter.

Let H(z,6) be a function of z = (21,... ,2;) € C*¥ and 6 € C such that there
exists an algebraic variety Vi in C* of the form Vg = {(2,0) : P(z, 6) = 0},
where P is a non-trivial coxg;_)\le_/x polynomial such that H is holomorphic on the
universal covering space Ck+1\ Vi of CF+1\ V.

THEOREM 3.1. Let H be as above and let a € R. Fiz 2 = (%1, et ,2k) such
that P(2,a +iv) # 0 for v € R. Consider the integral J () defined (formally)
in a neighbourhood of z by the formula

J(z)= [ H(z0)df.
a+iR

Suppose that either
(i) locally uniformly in z € C* we have

|H(z,8)| < C’(z)llm;oIZ for [Im@)| large,
or (ii)
(3.1) H(z,0)=0(l0])  for Ref > a with |0] large,
and locally uniformly in z € C*,

1
(3.1) |H(z,6)|<C (z)w for Reb large positive and Im@ bounded.

Then the function J is well defined in a neighbourhood ofg and extends ana-
lytically® to a multivalued function on CFk \ Vs where V; = {z: AP(z) = 0}.

6Note that the extensions may be different for different initial points 2.
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Moreover, in case (ii) the analytic continuation of J to the set C*\ (V7 +R%)
is given by the integrals

(3.2) T(z) = /F H(z,8)do

where for fized z € C*\ (V7 +RX), I, is a curve in C encircling the set {P(z,6)
=0} + R, and contained in a small tubular neighbourhood of this set.

PROOF. In case (i) the proof is done by deformation of the integration con-
tour as in [10]. In case (ii) the situation is essentially the same but we first note
that

TG = /F H(3,6)d

due to the estimate (3.1).

REMARK 3.1. The curve T'; in (3.2) can be replaced by I'Y obtained by
rotating I, by an angle —7/2 < ¢ < /2. Then the set of 2 for which J(z) is
defined should be changed accordingly.

COROLLARY 3.1. Suppose H(z,0) = F(z,0)/P(z,0) where P is a polynomial
and F is entire and such that condition (ii) in Theorem 3.1 is satisfied. Fiz
z € C* and a € R as in Theorem 3.1. Write P(z,0) = a(2) IT521(6 — ci(2))
and define

I't(2) = {j : Rec;(2) > a}.
Then

J(z) — Z F(za c.'i(z))

FeI+ (%) am(2) I_I;n=1,q¢j(cj (2) — cq(2))
Theorem 3.1(ii) and Remark 4.1 yield
COROLLARY 3.2. If H(z,") € O,y (C\ U}, L;(2)) for some a > 0 where
Li(z) = cj(2) + Ry for j=1,... ,m, c;(2) being all roots of P(z,0) =0, then

J(2) =Y T;(2)1]

=1

with Tj(2) = bj(H(z,")) € Li,(L;) being the difference of the boundary values
of H(z,-) (across L;) in the sense analogous to (4.2).7 In particular, if for every
j=1,...,m the functions

R, 3 v+~ H(z,cj(z) +7v+1ie)

7Observe that, since C\ {J7L; L;(z) is simply connected, H (2, -) is uniquely defined.
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are integrable uniformly in |e| < € and locally uniformly in z then
T;(z) =/ Hy(z,ci(2) +v) dy - / H_(z,¢j(z) +7)dy
Ry Ry
where Hy(2,¢;(2) +7) =lim._o, H(z,c;(2) + v + ic).

4. Laplace distributions and currents.
Generalized analytic functions

The purpose of this section is to provide a short introduction to the the-
ory of Laplace integrals in several variables. A detailed exposition of the one-
dimensional case featuring links with the classical theory of Laplace integrals
can be found in [15]. We begin with the standard case of Laplace distributions
supported by the positive orthant ﬁi

Fix w € R®. We introduce the space of Laplace test functions
(41) L,)(R:)={p e C=[R"): sup |e~*%(8/8a)"p(a)| < 0o

a€R?}
for some a < w and any y € N7}

equipped with the topology of the inductive limit over a < w of the topologies
defined by the sequences of seminorms

Gn(p) = sup e~ 2(8/00)p(0)|  for v € NG.
aERY

The space sz) (R%) of Laplace distributions supported by R? is by definition
the topological dual of L, (ﬁg‘_)

An alternative definition of Laplace distributions refers to the techniques of
hyperfunction theory. For the purpose of this paper we only need the case of
n = 1 which we outline below (the general case is treated in [15]).

Let W be a tubular neighbourhood of R, in C (i.e. W is an open set in C
containing (R4). = {z € C : dist(z,R4) < ¢} for some £ > 0). Let a € R and
set

5(a)(W) ={HeOW): ?21};; @ H(¢)| < 0o for every 6§ > 0
and every closed (in C) tubular subset X of W}.
Next for k£ € R we define
Ot (W \Ry) = {¥ € OW \R,) : sup [~ 5" ¥(a+ i8)] < o0
for every 6 > 0 and every closed tubular subset K of W}.

The spaces 5(a)(W) and 6&)(W \R.) are equipped with natural topologies.
Then by the three line theorem, 5(,,) (W) is closed in (5&) (W \R;) and hence
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the quotient space 5fa)(W \R})/Oa)(W) is Hausdorff. We have the following
result (see [15]).

THEOREM 4.1. There erists a natural topological isomorphism

lim lim OF, (W \Ry)/O (W) =~ L} ,(R}).
lm iy Oy (W \ )/ By (W) = Ly ()

The isomorphism is given as follows: if ¥ € 5&)(W \R,) for some k € R
and k& < w we define, for some € > 0,

42) Tl = Jim [ Werippeda- tim [ va- i

for ¢ € L(p)(R4) with & < 6 < w where § is a smooth extension of ¢ to [—¢, 00).
The inverse mapping is given by the assignment T — [¥], where [¥] denotes the
equivalence class modulo O(,)(C \ Ry) of the function

v L p[est™ C\R
O=mr[o ] rec\R
(this is understood as the value of T on the test function Ry > w — 2’%‘_—;1) for

fixed z € R,.).

Now let f be a smooth diffeomorphism of an open (in R™) neighbourhood
U > R" into a smooth manifold N of dimension n. Let L = f(R77). We then say
that L is an ﬁi—type set. In order to define Laplace distributions on N supported
by L it will be convenient to regard Laplace distributions as n-currents. Recall
[13] that an n-current on a smooth oriented manifold NV is a continuous linear
functional on the space C§° (V) which in local (orientation preserving) coordinate
systems H;, : Uy — N, Hy : Uy — N transforms according to the rule

(4.3) THip] = T™[J(H" o Hy)p o Hy ' o Hy
for € C(HH(Hy(Ur) N Hy(Uz)).

In particular, T is a regular n-current on an open set ¥V C N if there exists a
locally integrable n-form @ on V' such that

Tle] = /<p0 for ¢ € Cg°(N).

Observe that the transformation rule (4.3) agrees then with that for an n-form.
Now suppose N C C™. The space of Laplace test functions (of type w € R")
is defined in practically the same way as in (4.1):

L)L) = {p € C(L) : suple”** X1 0...0 Xpp(z)| < co for some a <w
zeL

and any collection of bounded smooth vector fields
Xi1,..., X, (peN)on N}
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The mapping f considered above is called a Laplace mapping of type (w,d) if
foLwy(RY) ={po f: p € L)(R})} C Lg)(L).

We shall also consider a slightly more general situation where instead of R%}
we take its deformation I’y =T, x ... x I, where ', is a smooth curve in C
starting at zero and coinciding with R v; for large values of the parameter.

REMARK 4.1. Tt can be proved (see [15]) that for ¢ in

Lg(Ry) L (o e O(V) : 36 > 0 50 that sup e =0+92(2)| < 00
zEK

on any proper tubular subset K of an
open tubular set V with Ry C V ¢ C}

the limit in (4.2) coincides with the contour integral T[p] = Jr. U(2)p(2) dz,
where I'e = {2 € C : dist(z,Ry) = €} for sufficiently small ¢ > 0, oriented
clockwise.

The most important property of Laplace distributions is that they can be
evaluated on functions 2 +— z* (for fixed z small enough) thus giving rise to the
so called generalized analytic functions (cf. [15]):

Denote by CW} the universal covering space of C \ {0} and let (C/\\{E})"
be the produbt of n copies of C/\\{E} Let Z be a closed subset of C™ such that
there exist (distinct) ﬁ’j_—type sets Ly, ... , Ly contained in C® such that

b
ZcL¥ U L.
k=0

Define Z;, = ZNL; for k=0,...,b.

DEFINITION 4.1. A function f on {0 < z < p} is called a generalized analytic
function (GAF for short) of type (Z,m), m € Ny, and of convergence multiradius
not less than p € R if there exist Laplace distributions Ty € Lzln p)(Lk) of order
at most m with suppTy C Z; (k =0,...,b) such that f extends to a function
on (CT{-E})" of the form

b e
(4.4) flw) =) Tefw?] forwe (C\{OH", |u|<p
k=0
(here for k = 0,...,b, and fixed w with |w| < p, w* denotes the Laplace test

function Ly 3 z — w* € C).

It follows easily from the properties of Laplace distributions that the GAF
[ of Definition 4.1 is well defined and holomorphic on D(p) = {we (C\ {o}H:
lw| < p}. Further, since the space C("g) (ﬁﬁ) (of restrictions to ﬁf{_ of functions
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in C§°(R™)) is dense in L, (R%), generalized analytic functions possess the
following “analyticity” property which justifies their name.

PROPERTY A. If the function f given by (4.4) is flat of order r for all » € R}
(i.e. if 277 f(x) is bounded near zero for any ¥ < r), then f =0 on ]_~)(p).

A further study of GAF's will be done in §5 by means of the Mellin transfor-
mation.

5. The Mellin and the Cauchy transformation

The analysis of GAF is carried conveniently by means of the Mellin transfor-
mation which we recall below together with its basic properties. The Mellin ker-
nel is defined as z7*" forz € R}, z € C* and 1 = (1,... ,1) € R Recall that
according to the vector notation of Section 1 we have z=*~1 = g7 =~ 1., g 21
ifx=(z1,...,2Zn), 2= (21,-.. ,2). We also write (8) = ||8]| + 1 for 8 € R™.

The Mellin transform of a bounded function f on R%} supported by a cube

I={0<z<r}(r=(r1,...,rn) € RY}) is defined as
Mf(z) = / f@)z*ds  for Rez<0.
1

This definition readily extends to the class of distributions on R% supported by
I and extendible to distributions on R™ (the so called Mellin distributions, cf.
[14]). For such a distribution u we put

Mu(z) = ufz™*71],

which makes sense for 2 € C™ with Re z sufficiently small and defines a holomor-
phic function on that set.

In particular, distributions in the space 9%, (considered in §1) supported by
I are of that type and their Mellin transforms are well defined (and holomorphic)
on {Rez < a}.

We have the following Paley-Wiener type results for the Mellin transforma-

tion.

THEOREM 5.1 (cf. [14], Corollary 9.1). In order that a function F(z) be the
Mellin transform of a distribution u supported by the polyinterval {r, <r <r_}
for some ry,r_ € R}, it is necessary and sufficient that F' be an entire function
on C™ and that for every b € R™, £ > 0 there exist C = C(b,e) and s = s(b) € Ny
such that
C(B)(ryef) ™™  fora <b,

(5.1) |F(a+if)| < { C{B)*(r_e)™* fora>b.

Then for any o € {+,—}" we also have
|F(a+1i8)| < C{B)(ree’)™ ¢ for ca > ob.
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Moreover, u is smooth if and only if (5.1) holds for any s € R.

Before passing to the study of the Mellin transforms of GAFs we must get
acquainted with the Mellin transforms of cut-off functions.

The simplest cut-off function is the characteristic function of an interval (0,7]
where r > 0. We denote it by x,. Its Mellin transform is readily computed:

—z

M(x:)(2) = fo " ldg = Z

Sometimes it is convenient to use smooth cut-off functions. To define them,
fix 7 > 0 and let ¥ = ré for some 0 < § < 1. Take x € C(R,) such that
x(a:)slfor0<x<6andx(:c)=0forx21&ndlet0$x51. Define

for z £0.

x#7r(x) = x{z/r) forz>0.

Clearly x7,» € C®(R4), 0 < x7,r <1, x2r(z) =1for 0 < z <7 and Xir(z)=0
forxz >r.

In a sense X, can be regarded as a limit case of X#r a8 T — r. To underline
this we write x,, = X,

The Mellin transform of x; . resembles, in many respects, that of x,. Namely,
we have

PROPOSITION 5.1 ([14]). The Mellin transform of the cut-off function Xir =

x(z/r) has the following properties:
() My (2) == Mx(2),
(1) My (2) = Z2Grr(2)
where G, € O(C) and for any p € N,

dP G )‘ < Cpllnr)Pr—Rez/{Imz) for Rez <0,
T, UFr\2) S
dzp Cp(lnr)P7=Re2/(Imz) for Rez > 0,

Jor some constant Cy, independent of r,

(iii) for every e > 0 and p,j € N there erists a constant Ce.jp (depending
on x but independent of ) such that for |z| > €,

< Ce jp{lnr)Pr=Rez/(Im 2} for Rez <0,

| Ceip{Inr)PFRez /(Tm 2} for Rez > 0.

dP
dzP

M- (2)

Now we are ready to describe the Mellin transforms of GAFs. Since in
applications in §6 we only need the case of dimension 1 (with parameters) we
restrict our considerations to that dimension. Further, it will be convenient to
assume that the half-lines Ly, k = 0,...,b, in the definition of a GAF are in
standard position, i.e. Ly = (x + Ry for some (o, ... , ¢ € C.

We have the following result:
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THEOREM 5.2. Let u be a generalized analytic function of type (Z,m) and
of convergence radius not less than p > 0. Define

L. = {z € C: dist(z,L) < €} fore>0

where L is as in §4. Then for any cut-off function x5, withr < p,
(i) M(xsru) eztends to a holomorphic function on C\ Z,
(ii) for every € > 0 and j € N there exists a constant C, ; (depending on 6
as 6§ — 0 and on p—1r as v — p) such that for z ¢ L. we have
C.;{lnr)m™r—Rez/(Imz)? for Rez <0,
C.;{lnr)mr—Rez/(Im2)? for Rez >0,

IM(x7ru)(2)] < {

(iii) for everye >0 and z € L,

i Rez

dist(Im 2, {Im (o, ... ,Im (p })™+!

|M(x7ru)(2)] < Ce(lnr)™

(with C. independent of r as v — 0,).
Similarly, for every function x, with r < p,

(i') M(x-u) extends to a holomorphic function on C\ Z,
(ii’) for every e > 0 there ezists a constant C, (independent of r asr — 04)
such that for z ¢ L. we have

m,r.—R.ez
[IM(xrw)(2)| < Ce(lnr) ma

(iii') for every e > 0 and z € L,

,":."—Rez

dist(Im 2, {Im{p, ... ,Im s })™+1"

|M(x-u)(2)] £ Ceflnr)™

(with C; independent of r as T — 04).

Moreover, for 5 = 0,...,b the Laplace distribution T; coincides with the
difference of the boundary values of 5= M(x#,u) (and of 7= M(xru)) across
the line L;, ve.

1
(56.2) Tjlo] == lim (/ M(xzru)(a +if)o(a) da
R

2wt f—Im;
B>Im¢;

_/ M(xi ru)(a — i8)o () da) foro € Lzlnp)(Lj).
R

The converse of Theorem 5.2 is also true; however, we present it separately
since the estimates in (ii) are replaced by much weaker ones which are easier to

verify in applications.
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THEOREM 5.3. A distribution u € D’ ((0,p)) extendidle to zero is a general-
ized analytic function of type Z and of convergence radius not less than p if for
any cut-off function x7, withr < p,

(i) M(x#ru) holomorphic in {Rez < w} (for some w € R) estends to a
holomorphic function on C\ Z,
(ii) there exist s € R and 6 € Ry such that for any & > 0 and any k > 0
there is a constant C.,, (depending on r) such that for z = a+if ¢ L,
C. n(B)5(re™)~@ fora <o,
M(xzru)(a+1 < ’ -
| (X ! )( IB)' { CE’ne(e-FK:)IﬂI(Fe—K.)—a fOT a> 0’
(iii) for some e > 0 there ezists p € Ny such that for any & > 0,
(fe™®)~«

(dist(8, {Im (g, ... , Im G5 }))?

IM(x7ru)(a+i6)| < Cy fora+if el,.

Both theorems are proved in [15]. The proof of the second one relies on the
following Phragmén-LindelSf type theorem which is also shown in [15].

THEOREM 5.4. If F € O(C) and there exist 0 <7 < 7,6 > 0 and s € R
such that for every e > 0,
C:(B)*(rec) for a <0,
C.el0+albl(re—<)==  for o >0,
then there exists s € R such that for every € > 0,
C.(B)%(ref)~*  fora <0,
C.(BY*(re==)"® for a > 0.

IF(a+iﬂ)ls{

|F(a+i8)| < {

REMARK 5.1. One expects 5 = s; however, by examining the proof given in
[15] we only get §= s+ 3 (also for s negative).

Now we pass to the Cauchy transformation. To this end we observe that
the Mellin transform of the cut-off function x; is the Cauchy kernel (—2)7L.
This kernel is not, however, convenient for us since it has poor growth prop-
erties at infinity. On the other hand, it is seen from Proposition 5.1 that the
Mellin transform of the cut-off function x7, has similar analyticity properties
as the Cauchy kernel, and at the same time it is rapidly decreasing as |8 — oco.
Therefore we call G(2) = M(x#r)(2) the modified Cauchy kernel and consider
the corresponding convolution transformation which we call the modified Cauchy
transformation:

CET[2] = %T[G(z —a—iy)] for £Rez > +&

where T € §'(R) and ¢ is a fixed real number.



274 LERAY RESIDUE ForRMULA AND PDEs
We shall also need the following result on the modified Cauchy transformation
with parameters:

THEOREM 5.5. Let T € S'(R™) and fir a € R*. Fiz cut-off functions x €
C)(Ry), x =1 in a neighbourhood of zero and o € M_1(RT™') and define

K(¢) = M(x(z1)o('))(¢)  for ¢ € (C\{0}) x C*,
K'(¢)=M0a(() for ' e Cc™ L
Set
E4(0) =T = Gy

(C—a—1iv)] for £Re(y > +ay, ¢ e C*L,

and

(5.3) C, (¢)=("T); () = 5 TIK'((' =& ~iv) € S'(R)

(2 )"‘
for ¢’ e C™!
(in (5.3), T is regarded as an element of S’ (]R"‘I;S'(R)) under the canonical
isomorphism S'(R™) ~ §'(R"~1; §'(R)); see [14], Th. 4.3). Then
C*T € O({£Re(y > a1} x C*7),
(C'T), € O(C* ;8 (R))

and in the sense of convergence in S'(R™),

(5.4) lim C"T(a+4)~ lim Ct*T(a+i)=(C'T), (a'+i)
a—a a—a
01<;1 a.1>3.1

(here (E’T)&1 (@ +1%) € §'(R*1; S(R)) is regarded as an element of S'(R™)).
PROOF. By translation in { we may assume a = 0. In view of formula (1.2)

we have with w(s) = x(e™*1)a(e™*), /(') = a(e™*),
2m)"2F 1 (e*w(s))(b) for a; <0,
(2m)" 2 F =1 (% (w(s) — w'(s)))(b) for a3 > 0.
Now by the formula for the Fourier transform of convolution,

CT(a+14) = F(e*w(s)FT) for a; < 0,

C*tT(a +i-) = F~1(e®(w(s) — w'(s"))FT)  for a; > 0.

First we prove that the limits in (5.4) exist. Since F and F~! are topological
isomorphisms of § onto S, it is enough to show that for every ¥ € S(R"),

e w(s)(s) — w(s)y(s) in S(R™) as a — 0 with a; <0,
e®(w(s) — w'(s))¥(s) = (w(s) —w'(s))%(s) in SR

as ¢ — 0 with a; > 0.

K(a + ib) ={

(5.5)
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But this is simple in view of the properties of the supports of w(s) and w(s) —
w'(s") and the fact that all derivatives of w and ' are bounded on R” and R*-!,
respectively.
From (5.5) we get
lim CTla+i)— lm CtT(a+i)= F Y (s"YFT) =T+« (b¢0) ® F'~ ')
a’' —0

a’'—0
al —0_ al -’0+

where §(g) is the Dirac delta at zero in the variable s; and F'~! denotes the
inverse Fourier transformation in the variables s' = (s, ... ,s,). Now from (1.2)
we see that

K'(ib’) = (27r)(n—1)/2]_-l—1wl(bl)
and therefore

T % (6(0) ® F_l ’) = (C’T)o(‘l)
which proves (5.4). The proof of the analyticity of C*T and (C' T) is left to
the reader.

. COROLLARY 5.1. Let H be a function holomorphic on an open set U C C™.
Fiz a € R™ and suppose that the function b — H (a + ib), defined for b € R?
such that a+ib € U, extends to a distribution in §' (R™) which we denote by H,.
Further, suppose that there ezists an open set U' C C such that for every (el 1
the function b — Hy, (@' +ib’ ), defined for b’ € R*! such that ((1,a '+ eU,
extends to a distribution H ol in S'(R™"~1) and the distribution-valued function

(5.6) Uls¢g H, . €S8R

is holomorphic on U'. Finally, assume that there exists a reqularization H s 4 €
S'(R; S’(IR"‘I)) of the function by — H, . » €S’ R 1), defined for b1 E R
with a; +iby € U 1 such that H. = = H, under the canonical isomorphism
S'(R; S'(R*1)) ~ &' (R") Then the functzon

~’Cl (C,) N (2 )n—- C1 a! [K,(C i'y,)]’ (CI’C,) €U x Cn_l:

is holomorphic on U x C"71, and for every fized ¢’ € C*! the distribution
C', (¢") € S'(R) is a regularization of the function
ay

A7
—
bl cal +ib1

(¢
defined for by € R such that a; + iby € U'. Moreover, the function

50 = (s for Re(y < ay, ¢' € C*1,
v = E+(C)+E’1(C’) for Re(; > al, el ('eCrl
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extends to a holomorphic function on ({Re(; < a1}UU) xC*! (here CE(C) =
(C:':H&)(() as in Theorem 5.5).

We also need the following result on the classical Cauchy transformation.

THEOREM 5.6. Let C"! > (' — Ty € E(R) (= the space of compactly
supported distributions) be a distribution-valued holomorphic function which is
rapidly decreasing as a function of Im(’, locally uniformly in Re(’, and such
that the orders of T¢: are uniformly bounded. Suppose that T¢ restricted to an
interval (0, Z), Z > 0, is a function Ty (m) for ¢ € C*1, and for j = 0,1 and
some p,l € Ny,

S El_a T € (07 ;;)1

) ‘

m— a/4i- ’Yl)

locally uniformly with respect to a’ € R"™!, where
a [¢3
lollsq = sup ()’ > ) 7@

z€R” la|<l
for o € S(R*"1). Then for 51‘ < a1 < 0 and small by > 0,

IC™ T 4i.(ar +3b1)|lsu <

&IQ%

locally uniformly in @' € R™~!, where p = max(p, 1+p), p = sup¢secn—1 order Ty
and
1 1
C—T ’ == ——T 7
¢() 2 [Cl -1
Finally, we shall make use of the modified Cauchy transformation to derive
the following corollary of Theorem 5.4.

] for ¢ e C" 1, Re(; < 0.

COROLLARY 5.2. Suppose F' is holomorphic in U = {Rez > w} \ L for
some w € R with L = Uzzo(Ck + R, ) where Re{x > w. Further, suppose that
there exists & € R with w < & < Re(x for k =0,... ,b such that the following
estimates hold: there exist 0 < + and @ > 0 such that for any j € N and any
e, k>0,

(5.7) |F(a+iB)! < C;/(BY,

(5.8) |Fa+1i8)| < C’E,New“)'ﬁ'(;e_e)_“ fora>a&, a+if €L
Then for any j € N and any e,k > 0,

|F(a+8)| < Cjen(B) () fora>a, a+if €L,.
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PROOF. Take the modified Cauchy kernel G(z) = Mxs ,(2) with ¥ = r and
define the right and left modified Cauchy transformations

1 [+] o o
CiF&(z) =5r / Fla+i7)G(z—a—iy)dy for £ Rez > +a.
R
Then from (5.7) and Proposition 5.1(iii) we easily find that for any j € N,

[CtFy(a+if)| = C;(B)~Ir~*  fora> &,
IC~F,(a+if)| < C;(B)r—=  fora<a

Now fix & = k and let T' = bd L. be the contour encircling the set L and
oriented in the positive direction. Define

1

()= o /F F(6)G(z — 0) d6.

It is seen that ¥ is independent of & and by choosing % small ¥ can be extended
to a function holomorphic on C\ L. Moreover, as above we find that, for any
j€Nand k,e >0,

Ci{B)y~ir— for o < _&,

oo
et if)l < { Crenlf)I(Fe™)™ fora2 a+ifgLs.

Further, it can be verified by using the Cauchy integral formula and Proposition
5.1(ii) that F(z) = F(z) — ¥(z) extends holomorphically to {Re z > w} and by
the three line theorem it satisfies the estimate

F(a+iB)| < Cien(B)I(Fe=5)® fora>a

(actually, all these facts are standard in the theory of Fourier hyperfunctions,
cf. e.g. [6], [15]). It follows from the above and Theorem 5.5 that the function
F — ¥ with

- C™Fs(2) for Rez < ¢,

F(z) = “ 0

CtFy(2) + F(2) for Rez> o,

satisfies the assumptions of Theorem 5.4. The desired assertion follows therefore
in view of Remark 4.1.

6. The main lemma

This section contains a technical result which is fundamental for the proof of
the Main Theorem given in §7. In the case of two variables the result coincides
essentially with Theorem 17.2 of [15].
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MAIN LEMMA. Let & € R™ and let P(z1,... ,2,) be a complez polynomial
in C" (n > 2) which satisfies Conditions A, Ay and Az. Consider the distribu-
tional equation

P(m%)u =f on R
where f is supported by a compact subset of R}. Then any solution u in the
space M (R}) can be expressed in the form®

(6.1) u(z1)lo(z’)]
= Y T[] for 0<z <81, 0 €CP(F,8])
elenl(zal)

for 6 € Ry and &, 68 € ]R'_f__l sufficiently small, where for any fized o, T [o]
s a Laplace distribution in the variable z;, and

k
(%, ) = @1 +iB) U J{z1 : A, 2(P)(z1) = 0 with Rezy > an}.

=1

PROOF. Let suppf C (£,t) for some %,t € R%}. Let xzr be the cut-off
function as in §5 with r < ¢; and let o € C§°((0,t’)) have support in [¢’,§'] with
some 0 < §' < 6 < t'. Define

G(z) = MX-,'-,T(Zl) for z; € C\ {0},

K'(2') = Ma(Z') for 2’ € C™71,
K(21,72) = G(x1)K'(z')  for z; e C\ {0}, 2/ e C"1,
F(z) = Mf(z) for z € C".

Let (1/P), be a distribution is §'(R") extending the function 8+ 1/ P(a+if)
for @ such that P(a + i) # 0, and such that
* 1
Ma’ul = F(a + ’L) (F)&

We have
M(xzr(z1)o(z'Yu)(2) = € (2)

where

CE(2) = (271r)" (%) '[F(&+i'y)K(z—&—;i'y)] for +Rez; > +a;, 2/ € C* L.

Further, it follows from Corollary 5.1 that for fixed 2’ € C"~! the holomorphic
extension of C~ (-, z') to C coincides for Re2; > &; with C+(z) + C’, (2') where

8Here we regard u as an element of M, (R4 ; m., (Ri_l )); see §1.
ay
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C' , (21) is the holomorphic extension of the function

1 /' K'(2 —)F(x,0)
271'1,)"'_ Re @' =&/ P(Zl, 0’)

(6.2) C.,(#) =

defined initially for z; = &; +if; with § # Bi, j=1,... ,k, and 2’ € C*~1,
In order to find the holomorphic extension of C;, in the variable z; we shall

make use of Theorem 3.1 consecutively with respect to the variables 62,6s,...,6,.
We shall first estimate the function H(z,6') = K'(2 — 6')F(21,6') in the

variables €', locally uniformly in z = (2, 2’). By Theorem 5.1 we have

(6.3)  |F(21,0)] < C(21)(Im@')° max (¢’ "R F-Be€)y  for o/ c Ot

for some s € R, with C(z1) < C{Imz, )t ®*** for Rez; > &;. Again by the
same theorem applied to the smooth function o we have, for any j € N L

(6.4) |K'(8)] < max(§~Re¥ F-Ref'y o 9" c Cnl,

< G

(Im )3

Hence, in particular, for Refy > &y we get

~ Ci(2,0") ( 6\ "%
1 < J\*s : Ya

(e, 00,07 < FP) (2

for any j € N. Since for |6;| large P(z1,8,,60") is bounded from below locally
uniformly in (z1,6”) we hence get

H(z,e') 53‘(2,9”) 5, Red, )
P(z,6) S {Im 65)7 . for Refs > .

Since §; < t2 we see that the assumptions (i) in Theorem 3.1 are satisfied.
Hence and from Corolla.ry 3.1 we see that the function J>(z,6”) defined in a
neighbourhood of a fixed 2 with Im 2 #Bi, j=1,... ,k by

mny H(z10210”)
(6.5) Ta(2,8") = /a P

extends to a multivalued function outside the set {Az(P)(z1,6") = 0} and can
be written explicitly as

(6" = > Qu(z0")
i2€IF (2,6)

where
_ K'(Z = (], (21,0"),0")F (21,2 (21,6"),6")

i2 ’0” —
e ) = o 0 Ty (B (20, 87) — o0, 8)

with
I (2,0") = {j : Rec2(2,0") > a3}.
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Now we want to apply Theorem 3.1 to the function J2(z,6”) with respect
to the variable 5. To this end we have to estimate Q;,. Denoting by H;, its
numerator we find from (6.3) and (6.4) that for Ref3 > a3,

03

= @ g1 (2,01 83\ "%
|Hi (2,0")] < C(2,6%) A, %

* % * ~ ~ * ~ ~
where Ay = 8ty with 8, = max(82, 82,65 1,67 %), t2 = max(la, ta, 23 ' t57).

Hence by Condition Ay we get

A2C63)R,603

R»e@;; P
|H;, (2,0")| < C(, 0(3))Ag’losl (‘:_:) < Oz, 0(3))A§| Im9:|( L

Since the denominator in Q;, vanishes only on the set {As2(P)(%,0®) = 0}
which is discrete in the variable 3 we conclude that for any x > 0,

(66)  1Qi(2,0")] < Culz,6®)ef! mOslz—Rebs  for Refs > a3, 6 ¢ LY

where
L3 = {A35(P)(21,6®) =0} + R,
and
p=Clnd,, 7=(A4563/2)7".

We want to improve (6.6) by applying Corollary 5.1. To this end we must
only check that

| Ja(2, &3 + 103, 6®)| < Cj(2,0)(Bs) ™7

for j € N. This, however, is obvious from (6.3) and (6.4) since for such 63, Ja
is given by (6.5). Now it follows from Corollary 5.1 that for any j € N and any
& k>0,

Cj,s,n (z’ 0(3))

(im 0377 (Fe~%)"Re%  for Refs > a3, 6 ¢ L3

| J2(2,83,6)| <
Noting that r—lef = (Ae®/t3)63, we see that condition (ii) of Theorem 3.1 is
satisfied if 83 < t3/(ASe®) for some & > 0.

By iterating the above procedure n — 2 times we arrive, by Corollary 3.2, at

~ 1
(67) C;l (Z,) = (-2;1'7);_—1 Z Z SgIlO'"
(ig,...,in)€I+(z1)a”€{+,—}"_2

X / . bo'” (Qiz,... 1in (Z]_, Z,, 'Y”)) dfyl’
R

n—
4
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where

(68) Q’iz,... yin (21, zla "Y”)
B K'(z' —0)F (2, ) "
B Qppy (21, 0”) Hj#iz (C'?g (21, 0”) - C? (Zla 0”)) ° Eiz,m o (21’ Y )

with the mapping F; given by

2y-e0 5ln

(21,935 -+ »Tn) P (21, &2, (21, &3 (21, - - P2 (21, € (1) + 1)

Fn-1)y---) +93))s 5 €*(21) + )
and

It (z1) = {(32,... ,in): for j=2,... ,n,Reczz(zl,a(j) +i69) > a,-

for /1 > Im 2 close to Im z;}.

Note that by Condition Ay, I*(z1) is independent of 3.

Our aim now is to apply Corollary 5.1 and Theorem 5.2 in the variable z;. It
follows from Theorem 3.1 that the functions® 5’2 , (2') are holomorphic on (:/-\\-‘71)
where Vp = {z € C: Kn, 2(P)(z1) = 0}. We need to estimate the growth of
C’, (21) as z1 — oo with Rez; > a;. By (6.3), (6.4) and Condition Ay we get
for fixed 2 € C*~! and all v/ € R} 2,

|K'(2' — 6')F(21,8') 0 Es, ... 5. (21,7")

< C(Z’) max(b-/Reo',S’/Ree’)tl— Rez1 (thea 77 Red’ ) 12, ,,1n(Z1,’YH)
n
< 6(zl)ti-Rezl 6//7” H Aflle—C E?=j+1 7}
Jj=2

A
™\

(z')(ﬁyRM(ﬁA,)C“mn'ﬁ( :l_iAlc)

whereforj =2,...,n, A; —5t w1th6 —max(é 6],6]_1,6J )tj=max(ivj,tj,

151_1,tJ ). Now choosmg ¢ e R}~ ~2 50 that 6; HJ lAc <lforj=3,...,nwe
get for Rez; > a; with Mmz — B >e (j=1,...,k) and 2; ¢ (Vp+ﬁ_,_)€0

(g0 > 0O fixed),

(69) |@l(z')|s0(z')g L (o HAI) dy

¢ —Rez;
x( b C) (CUnTIr, A7) Tm 2 |
Hj=2Aj

95;1 (#') depends on the component of the set & + 4(R \ {B,..., B¥}) from which the

s L0 .
initial point 2y is chosen.
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provided the boundary values b, (Q;,.... s, (21,2',7")) are bounded on R’j_‘z.
Otherwise we consider integrals over the polycurve " =T° x...xI'°» where
['9; is a curve in a small tubular neighbourhood of Ry with o; Im z; > 0 starting
at the point —ey.

We next consider the behaviour of C}, (2’) near the half lines 21+ R, starting
at the points 21 € Vp. It follows by combining the inequalities in Condition Az
that in a small tubular neighbourhood of z; + R, we have

1

[(c2,(21,0") — €3(21,6")) 0 Eiy, . i, (21,0")] 2 C(W") —————
2 21-+7 1 o]
Im 2z, — Im z;|¥

with C(w") bounded for w” € R?2 (or w” € " as above avoiding the singular
points). Analogous estimates hold for Rez; > 51 and Im z; close to B;.

Now we consider the behaviour of C*(z1,2’) as Rez; — 400 with 2’ fixed.
Since (1/P), is & tempered distribution of order not exceeding m we obtain by
Theorem 5.11°

ICH(z1,2)| < C sup ™

Z B'yaK(z_ & — i)

la|<m

Sa’t“—Rezl sup (,yl)m
'y'E]R"'l

8 b ox
E a’)’,a,Ma(z—a-—z'y')‘

la’'|<m

< Cl’t"—Rezl for Rez; > &1.

Now by Theorem 5.4 we get the following expression for the holomorphic exten-
sion ¥(z1,2') of C(21,2):

5_(21,2’) for Rez; <51,Z’ EC"_I,
(6.10) \Il(zl,z’) = ~ ~ -
{ Ct(z1,2') +C, (z) for Rez; >a1,2 €C™1.
It follows from the estimates proved above that conditions (i) and (ii) of Theo-
rem 5.3 are satisfied for ¥(-, z’). Condition (iii) is also satisfied except perhaps
for the points &; +iB?. However, in a neighbourhood of such a point C% can be
reduced to the standard Cauchy transformation and the result follows from The-
orem 5.6 (details can be found in [15]). Consequently, by Theorem 5.3, u(-, [o])
is a generalized analytic function in z; and by Theorem 5.2 the Laplace distri-
bution 7 [o] can be computed as the difference of the boundary values (in the
sense of (5.1)) of the function M;‘II\II(zl, -) where Mg’l is the inverse Mellin

transformation in z’.

10Since F is entire the estimates (5.1) also hold for the derivatives of F.
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7. The Fourier-Taylor representation and asymptotic expansions

In this section, by assuming Condition A, we will geometrize the result of §6
and thus prove the Main Theorem formulated in §1.

We have proved in the Main Lemma that any solution u € M, of P(z8/0z)u
= f can, roughly speaking, be represented as a sum over all vertlces e of

[ e 4y
RT™

+

where T¢(+") is a Laplace distribution in z1 (with parameters 4"/). The formula
(6.1) can be regarded as the Taylor expansion of u in z; (with z’ as parameters).

We call such a representation of « the Taylor representation in z, (see [15]). The
case where supp T%(7") C e, +R; is optimal from the e point of view of Taylor (=
asymptotic) representation. The Taylor character of T*(~" )[:c‘f‘] will not change
if (taking advantage of the analyticity and growth properties of T (7) away from
e) we modify the half line e; + Ry, outside a neighbourhood of €1, to a curve
I's! which asymptotlca.lly goes in the direction of a vector v; with Rev; > 0,

and replace T=(y" ) by the Laplace distribution supported by I'! obtained by
analytic continuation of T M.

Observe that we do not admit purely imaginary vectors v, (Rev; = 0) since
then we would have a representation in terms of the oscillatory functions ziﬁ L
This is a Fourier type representation which looses its Taylor character. Accord-
ingly, the intermediate cases corresponding to v; with Rev; > 0, Imwv; # 0 are
called the Fourier- Taylor representations.

Now, we return to formula (6.1). One of its drawbacks is that T* is not a
Laplace distribution in all variables. Indeed, (6.1) only holds for z’ away from
zero. We hope that the situation will improve if we modify the sets L. by
modifying R7! as we have done with R,. Thus assume Condition A, and take
a vertex e € )Jal (P).

In computing the distribution 7 we took the difference of the boundary
values in z; of the function ¥(z,...,z2,) defined by (6. 10). This in turn de-
pended on the function C, ,(2') defined by means of the boundary values in 4",
bor (Q,,... i (2,2',7")) on ]R" ~2. By (6.8) the latter corresponds to a choice of
branches ¢;,,. .. ,¢;, of the iterated discriminant roots. Let U1,V3,... ,Upn be the
vectors corresponding to this choice of the branches, which exist by Condition
A4. We may assume by slightly perturbing those vectors that Rewv; > 0 for
Jj=1,3,...,n. By Remark 3.1 we can modify each ﬁ.;. by the vector v; (as we
did at the beginning of this section) to arrive at

"
T TO3 T
vn—I"vax...XI‘U:.
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The boundary value of Q... i, on I';, is obtained by means of analytic contin-
uation from that on ﬁi‘z. Performing this procedure for all 6” € {+, —}""2 we
obtain

= X Y swno [ b (Qu e, 2,0 a0

(120 in) €I (21) 0" E{+,—}~2 T
Proceeding as in the proof of the Main Lemma we observe that the above inte-
grals satisfy estimates analogous to (6.9). Further, it is seen that the estimates
will remain essentially the same with respect to the variable z; = vy -2;. Thus we
can compute the boundary values with respect to the curve I']! and the result
will be a Laplace distribution at +oco.

We now describe the final effect of what we have done. For every vertex e
and every o = (01,03,...,0,) € {+,—}""! we have found a set '] = I'J! x
%3 x ... x T'gr which is a deformation of R7™! such that for the corresponding
function F;, . ;, the set

Lt = By, (T3)
is such that LE N {(21,8') : ||(z1,0’)|| > r} C vR%™! for r large enough. Next
proceeding as in the proof of the Main Lemma we obtain for every vertex e and
v a distribution CZ~“'3 on I'? which is a Laplace distribution in 2z; € e We also
observe that outside the boundary of I'?, the distribution Te can be chosen to
coincide with the boundary value of the multivalued function

(7.1) Ri,,.. i.(21,7")
F(z,0")
am1 (21,6 )Hk#z(clz(zl,o”) — (21, 9/;))
To estimate the function zZiz.in (2 '7")Ri2,... i, on the set I'] we recall that by
Theorem 5.1,

Ei,... in (z1,7").

|F(21,0')] < C((z,e'))sfl_mzliv’_Reel for Rez > 0,Re® > 0.
Hence for (z1,7") € I'Y large we have by Condition A4 (we may assume E/' = 0)

(72) |.’L‘Ei2 """ in(217 )F o Ezz, v yin (2117”)|
< ClEi,,.. (21, 7") T ReBaarin (5107
. . (=1 ,‘YII)

L Re E?
Lj 2 1N |R
< {7 ) ] (;—’) < O((z1,7/"))e G
j=1 \YJ

if z; <i}e_5*, j=1,...,n, for some € = (€1.... ,&n) € RY.

Now by Condition A3 the denominator in (7.1) is estimated from below
by (dist((z1,7"), F"))” for some v € R, which together with (7.2) leads to the
conclusion that T" is a Laplace distribution with convergence multiradius not
less than £.
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Finally, to obtain the geometric formula (1.4) of §1 we consider 7€ as a
Laplace n-current and define an n-current T on L as the image of Tg under
the mapping E. Then outside the boundary of LE, T¢ coincides with a branch of
the Leray residue form res (g(%%dﬂ) which in local coordinates (z1,6") is given
by

F(z, c?g (21,0"))
Omy (21 ) 0”) Hk;éiz (cgg (Zla 0”) - ci (21, 0”)) )

8. Examples

The example presented below gives the main motivation for the paper. The
theoretical background presented above serves to provide formal justification for
the developments in this section.

Let A, = 82/0s? + ...+ 8%/0s2 be the Laplace operator in R*, n > 2. We
are interested in fundamental solutions of A, i.e. in v satisfying the equation

An’U = 6(0)

v will belong to a certain space of generalized functions and we are interested
in the behaviour of v as (s1,... ,8,) — oco. It will be convenient to change the
variables s; = —Inz,,...,8, = —Inz, and consider instead the equation

n a )2
> \@i5g; ) va=da
= ( Oz;
where uy € sm’ for fixed & € R™. For & = 0, uq will be the standard fundamental
solutlon of An in logarithmic coordinates,
-1

ug(z) = m__—ll((ln 1‘1)2 +...+ (ln:vn)z)(z_")/z for z € Ri,

while for & # 0 no explicit formulas for (5 (z) are available, due to the lack of
spherical symmetry.
Let P(z) = };_, 2 and n > 2. Fix a = (a1,0) € R* and consider the
equation
P(ay +iby,iy/) =0  with v e R"L.
This is equivalent to the system
E=L+7+...+9%,  ab =0.

Hence we observe that if b, # 0 we have P(a; + ib1,iy') # 0 for all 4/ € R*~1.
According to the general theory we are interested in the analyticity (and
ramification) properties of the integral

1 K'(Z-0) .,
J(Z) o (27!"!:)”_1 /Rn 1 P(z1,0’) d0
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where K'(2') = M'c(z’) is the Mellin transform in z’ = (23, ... , 2,) of a function
k' € C(RT ™). Let 4/C be the branch of the square root function holomorphic
on C\ Ry, ie. defined by

C\Ry ¢ s [(265A75¢
where 0 < Arg( < 2x. Thus if we write
c2(%1,0") = \/—z% —-02—...—62,
where 6" = (6s,... ,8,), we get

P(z1,02,0”) = (02 — 62(21,0”))(02 + 02(21,0")).

Fix z; = a; + ib; with by #0 and ¢” € R"~2. We first compute the integral

1 K'(z3 — 03,2 — 0")
2mi & (02 — c2(21,0")) (02 + c2(2,0"))

Due to the growth estimates for K’ the integral reduces to the residue terms in
62. To compute the residues we must first learn when Recy > 0. To this end
note that Re+/¢ > 0 if and only if 0 < Arg¢ < =, ie. if and only if Im¢ > 0.
On the other hand, for ( = —22 — 62 — ... — 62 with 9" € {R"2, we have
Im¢ = —a1b;. Thus we get

K'(2o+c ,911 ’zll_ofl *
CotoaCr 00 =0)  for 41by > 0,

Jz(z, 0") = { ’ 1N L H__plt *
_Hz—;zs?;;?olzsz = ) fOI' albl < 0.

Jo(2,0") = d8,.

Next we introduce the function

c3(21,0®) = \/—zf —-02—...—62

with the branch of the square root chosen as before. We are interested in com-
puting the integrals

®1)  Ji(=69) =

1 / K'(23 % ca(21,0"),2" — 6") dds.
2mi Jig 20/= (63 — ca(z1, 0@))(05 + c3(21, 8D))

This time we do not have only simple poles at +c3(21,8®) but ramification
points. Due to the estimates for K’ the integral (8.1) can be reduced (cf. the
Painlevé theorem) to the integrals over +c3(z;,8®)) + R, of the difference of
the boundary values (the jumps) of the integrand across those lines. Of course
as in the case of J; we must see when Recz > 0. But the situation is the same
as with ¢;. Next to compute the jumps we observe that for { = v € R, we have
v/ = /7, the usual square root on R;. On the other hand, for ¢ = ve?™ we

have \/{ = —/7. Since

(82) e2(21, Fes(21,09)) + 73, 09)) = /Ty /£203(21,09)) —
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we thus get for z; = a; + ib1 with 51 > 0,

2J3(z,60) =
/ K'(22 + ca(z1, —c3(21,09) + 73, 0%)), 23 + ca(21, (3)) 3,28 — 9(3))
R, ca(z1, —ca(21,6®) + 3, 6()
K'(22 — ea(z1, —c3(21,6) +73,69), 23 + ¢3(21,0®) — 43,23 — 4) d
R, ca (21, —ca(21,03) 4 73,0)

dys

+

if albl >0, and

2J5(z,6®) =
_/ K'(z2 — ca(z1,¢3(21,0®) + 73, 69), 23 — c3(21,0®) — 43, 23 — 93 p
Ry

ca(z1,c3(21,0®) + 43,61) 3
[ K'(z2+ca(z1,0a(21,69) + 73, 0%), 23 — c3(21,6P)) — 3, 203 — 9(3))
Ry c2(z1, ca(21,0®) + v3,03) dvys
if a;b; < 0.

The expressions for a; < 0 are completely analogous. Now by using (8.2) we
find by induction (since ¢,(2;1) = 421) the expression for J(z) = J,(z). To this

end define
p7(c) = Vv 2c + 7,

and let o = (03,... ,0n) € {+, _}n—Z‘

We get
1 K'(E4)
J(z) =< dys...
(Z) 2( Z )/n 2 ggpY3 0. oo'np"/n(izl) Y3 d’Y’na
T3ye.. 30y
ZEy =(2:mt+o3pPo...00,p"(iz1),
z3+o4p™o.. 0070 (121) —V3y. .. s 20 021 — Yn),
for a;by > 0, and
1 K'(E.)
J(z) = -5 / ——dvs ... dYn,
2 (as,-Z;an) R}~? 03p73 0... 0 0npT"(—iz1) ? T
E_= (22 —03p™0...00,0™(—1i21),
z3—04p™o0... 00np™(—i21) — Y3y .., 20 — 21 — Yn),

for a;1b; < 0. In particular, for n = 3, we get

1 KI /2 5 — , j —

(8.3)  Ja(z1,22,23) = _/ Gy t By LR %) dys

2 Jr, VI3V2iz1 — 73

4 l/ K'(2z2 — \/73v/2i2) — ¥3,23 +iz1 — 73) dy
2 Ja, N e
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for albl > 0, and

1 K'(29 — —2iz1 — Y3, 23 — 121 —
(8.4) J3(z1,z2,23)=__/ (22 — V13V % {3 iz3 —73) dvs
2 Jr, V3V —2iz1 — 73
1 / K’(22 + \/’%\/—27521 — Y3, 23 — 121 — ’)’3) d’y
=5 3
Ry

2 VI3V —2iz — 73

for albl < 0.

For n = 4 we have

dry3 dryy,

1 K'(Ty4)
(8.5) Ja(z1,22,23,24) = Z 5 =
soos 2 IR S [0 2 VB = —

Ty = (22 + 03\/’%\/042\/’ﬁ 2iz1 — Y4 — V3,
23 + 04/YaV/ 2121 — Y4, 24 + 121 — ’74),

for a1b; > 0, and

dyz dva,

! K'(T_)
(8-6) J4(21,Z2,Z3,z4) = _5 Z
R R N T e TR

T = (22 - 03\/’)’3\/042\/’% —2iz1 — Y4 — 3,
23 — O4y/Ya/ —2iz1 — Y4, 24 — 121 — ’74),

for a,b, < 0.

Observe that the function given by (8.3) is holomorphic in (a neighbourhood
of) the set Rez; > a1, sgn&l Imz > 0. Putting z; = o + i8 we find that
2iz1 + v = —28 + v + 1o does not vanish on that set. Indeed, if a1 > 0 then
a>a > 0, and if a1 < 0 then we must have 8 < 0 hence -28+v > 0.
By symmetry the function given by (8.4) is holomorphic in the set Rez > a4,
sgn a1 Imz; < 0. The same statements (respectively) are true for Jy. Actually,
after performing the indicated integrations the two functions extend from their
domains of holomorphy to the whole complex plane with a ramification point at
71 = 0, but we do not need this result.

Recalling now the general theory, we are interested in the jump (in z;) of the
function
5’(z1,z') for Rez; < a1,

Ct(z1,2') + J(z1,2') for Rez; > a1,

U(z,2') = {
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where C* is the modified Cauchy transformation. By applying Lemma 17.1 of
[15] we find that if a # 0 the jump, in our case, is equal to

~ sgna K'(Q
T = 1 011 —Gl) Z /n_2 o3 ( ) . ) d’)’3d’}’n,

(02,0 Tn) P2 0. 0onpTn(oziay
Ity

D= (22+03p"0...00,0™(02i01),

z3+04p™ 0...00,p" (09i01) — V3,... , 2n + Opicy — ),

with Y being the Heaviside function. This in turn leads to the following asymp-
totic expansion of Uy

sgndy al —030130 00 p"™ (o2iy)
(8 7) 2 Z —2 3 % 1
R-n. U3p' 0...00,p0 "(0’27:0(1)

(0'21

xx3—a4p"4o.--°anp"’" (o2i02)+7s . w;onia1+’yn

da1 d")/3 . e d’)’n.

For n = 3 it assumes the form

[e) a1 73(2“11—’73) —ice1+ys
(88) sgn (11 (/ / o da1 d’)’3
Vs(2icr —73)

00 a1 '73(2'“11 ~7a) —'La1+'ya
/ / da dys

\/ (2ic; — 3)

"/3( 2i0y — 73) 7.0(1 +v3
/ / T2 da1 d’}’g
21/011

’73( 2i0 ’TJ) Qo +y3
T3
/ / doy d'y3).
\/ ¥3(—2ia; — 3)

For n = 4 we get

sen El 02\/’73(042\/’74(022101 —Y4)—74)
(8.9) 5
\/’)’3 (0424/74(022i01 — 74) — 73)

02,03,04
o34/va(02ie1 —v4) 20217,

Z3 Iy da1 d’)’g d’)’4 .

Observe that the formula given by (8.7) also makes sensel! for a; = 0 (we
put sgn0 = 1). It can be proved that the function (8.7) for a; = 0 coincides
(up to a constant factor) with the standard fundamental solution for the Laplace
operator in logarithmic variables, i.e. with ug(z).

It is seen that (8.7) provides an asymptotic expansion only in I, since o >
a;. All other exponents have real part zero. However, by the analyticity of the
functions in the exponents it is possible to rotate the variables Q1,Y3s - ,Yn

11 After a suitable regularization of the integrals at 0.
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(in the respective complex planes) so that the real parts of all functions in the
exponents will grow to +o0o as the corresponding variables become large positive.
We describe this phenomenon in detail for n = 3 and a1 = 0. For the first integral
in (8.8) we perform the rotation

1+4 .
5 %1, Y3 3.

Q1 —
2

We obtain an integral of the form

0o poo (1+ar/2_—v/1B—(Q+id)vser (1-i)ay/2+ivs
(8.10) regf / aa| a2 == = 3
o Jo V71— (L+dso

Observe that for o € Ry, v € R;. (see figure below)

doy drys.

7+ 7/4 < Arg (v — (1 +i)ya) < 2.

Imz

Hence
Re /77 — (1 +i)7e = ((7* —1a)® + (v2)*)}/* cos
where /2 4+ 7/8 < @ < m, and cos @ is negative for such 6. Consequently, the
real parts of the exponents of z1, z2, 3 have the following growth property:
For any r > 0, if @; > r and ~y3 > r then

Re(l+i)a:1/227/2,  Re—y/73 — (1+d)ys0n 2 r(—cos(n/2 +7/8)),

Re((1 - 4)a1/2 +in3) 2 7/2,
which shows that the representation (8.10) is a Taylor-Fourier expansion.
Similarly, after the rotation

1+
2

oy — o1, Y3 —iYs,
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the second integral in (8.8) becomes
z§1+i)a1 /2m2\/w§+(1+i)13a1$§1—i)a1 /2—iv3

o0 oo
(8.11) reg/ / - doyy drys.
0 Jo Vi3 + I+ e

Now we note that for a,v € Ry,

0 < Arg(v? + (L +i)ay) < /4,

hence

Re /72 + (1 +day = (77 + a7)® + (a)) /4 cos @
where 0 < @ < 7/8. Then we have cosf > cosm/8 > 0, which as above leads to
the conclusion that (8.11) is a Taylor-Fourier expansion.

Next, we perform the rotation
1—1
2
in the third integral in (8.8) bringing it thus to the form

00 poo x(l—i)al/21_\/‘732—(1—1:)’7301z(1+i)a1/2——i73
(8.12) reg/ / 1 2 o =3 da drys.
o Jo V7 — (1 =4)ya

We have for o,y € R,

Qp — 1, Y3 —i731

0 < Arg(v* — (1 —i)ay) < 7/2+7/4,

hence
Re /72 — (1 —i)va = (72 — 72) + (y0)?)/4 cos §
where 0 < 6 < 7/4 + /8. Now cos@ > cos(n/4 + 7/8) > 0, which proves the
Taylor-Fourier character of the expansion (8.12).
Finally, we consider the fourth integral in (8.8). By symmetry we put

1—3 .
oy — 3 ar, Y3 3.
We get
513 0  poo zgl—i)al/Zz_; 'Y§+(1“i)’73ﬂ1zg1+i)a1/2+i73
R R & = et

This time we have for o,y € Ry,
21 — /4 < Arg (* + (1 — i)ya) < 2, 0< Arg 2z < 7/8,

hence

Rev/7? + (1 —i)ye = (12 +92)* + (va)®)V4 cos @
where 7 < § < 7 —7/8. Clearly —cos8 > — cos(m — 7/8) > 0, which shows that
the fourth integral also has a Taylor-Fourier character.
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Summing up we conclude that the function wuo(z) for n = 3 is a GAF of
convergence multiradius not less than (1,1,1). By iterating the above reasoning
the same result can be proved in any dimension n.

Clearly the result is valid for uy for o= (51, 0) with a1 € R. Returning to
the variables s by the formula z; = e™*,... ,z, = e~ °" we obtain Laplace inte-
gral representations for the corresponding fundamental solutions v, to A, which
are valid for s € R%. The choice of the positive orthant R is completely in-
significant and after a suitable rotation of the variables (a1,7") we can make the
representation convergent in any fixed set A(R"), where A is a rotation matrix.
At this point we can also get rid of the restriction on a. Indeed, fix arbitrarily
& € R™ and let A be an orientation preserving real rotation matrix such that
A(&) = (||&ll,0, ... ,0). Then in view of the duality (s, A~'8) = ((A~1)trs,0) we
get vy =v, (&)((A‘l)“y), which leads to the case already discussed.

9. Comments and open problems

1. The partial vertex set =, (P) was defined in an algebraic way. It should,
however, have a geometric meaning related to the stratification of the alge-
braic set char P = {P(z,6') = 0}.

2. The same applies to the relative vertex set Zal (P). This time also the set
char P N (& + iR") should be relevant.

3. As observed in §§7 and 8 there is much freedom in choosing the ITR’j_—l-type
sets L.. It seems natural to expect that L. should be elements of certain
homology groups with bounds introduced by the stratifications of char P and
char PN (& + iR™).

4. Tt would be desirable to free oneself of the technical condition A;. Indeed, a
geometric proof of the Main Theorem should be possible.

5. It is interesting to investigate the hyperbolic counterparts of the phenomena
observed in §7 for elliptic polynomials.

6. Investigate the geometric character of the ramified form R given locally by
(7.1) which generalizes the Leray residue form.

]
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