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COMPLEX GEOMETRIC ASYMPTOTICS FOR
NONLINEAR SYSTEMS ON COMPLEX VARIETIES
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Dedicated to Jean Leray

1. Introduction

The method of geometric asymptotics was introduced to investigate semi-
classical asymptotic solutions of the wave and Schrédinger equations in the pres-
ence of caustics (that is, focal surfaces of the corresponding geodesic flow). For
example, this was done in [23] to explain the whispering gallery phenomenon
of acoustics. This method developed into one of the main arcas of research in
geometric analysis by Leray, Hormander, Guillemin and Sternberg, Kostant, We-
instein, Arnold, Duistermaat, Souriau and many others. (For details about the
method of geometric asymptotics see [22], [12], [13], [33], [20], (26], [21], [25]).

Methods of complex analysis have been applied to the theory of Feynman
path integrals and its relation to the semiclassical theory. Tn particular, McLaugh-
lin [31] introduced the idea of using path integrals with complex time to obtain
WKB barrier penetration.

In (3], [4] and [9], angle representations and complex geometric asymptotics
for nonlinear problems are investigated using multi-valued functions of several
complex variables on the moduli of Jacobi varieties. This is a new approach
to the study of geometric asymptotics that naturally fits into the scheme of
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algebraic-geometric methods for nonlinear problems including the sine-Gordon
and nonlinear Schrodinger equations. It is shown that the construction of such
complex solutions gives new insight into the investigation of many phenomena
basic to geometric asymptotics such as the index of a curve lying in a Lagrangian
submanifold of a cotangent hundle. This index is related to the Maslov class,
which is an obstruction to the trausversality of two Lagrangian submanifolds.
(This class has become a part of the theory of secondary characteristic classes
and Chern-Simons classes [17]). This approach results in a particular form of
the quantum conditions on the moduli of n-dimensional Jacobi varieties, which
leads to the introduction of semiclassical geometric phases; see Berry [15]. At the
same time, there is a new additional phase in the averaged shift of the quantum
conditions after transporting a system along certain closed curves in the space
of parameters, which can be linked to a symplectic representation of the braid
group; for details, see [4] and [9].

In this paper we describe the general method of complex geometric asymp-
totics and illustrate it by constructing semiclassical modes for three types of
systems. The first type concerns families of geodesics on n-dimensional quadrics
and in domains bounded by quadrics in the context of problems of diffraction. We
also construct semiclassical modes for umbilic billiards and for the n-dimensional
complex spherical pendulum. This last example also illustrates the phenomena

of semiclassical monodromy.

2. Geometric asymptotics

An important part of geometric asymptotics is the establishment of a link
between the Schrodinger equation (using the Laplace-Beltrami operator in its
kinetic part plus a potential part, in the usual way) and certain integrable non-
linear Hamiltonian systems. One does this by considering a class of solutions of

the Schrédinger equation of the form

(2.1) U= ZAk(ul, ooy it ) exp(iwSk (a1, - -+ 5 Bn)),
k

where the y variables evolve in time according to the phase flow of an associated

Hamiltonian system

dw .
(22) ﬁ:{I/V,H}, W =(p.1,,/.l,n,P1.,,Pn)
Here {,} are the standard canonical Poisson brackets and H is a Hamiltonian

function of the form kinetic plus potential energy corresponding to the quantum



CoMPLEX GEOMETRIC ASYMPTOTICS 239

Hamiltonian; this Hamiltonian determines a flow on the phase space that we

denote by
(2.3) gt : M™ — M7

which is a 1-parameter group of diffeomorphisms of the phase space manifold
M?"*, We will describe this manifold below and also take it to be a compler

2n-dimensional manifold.

"The function Ay, is the so-called amplitude, which contains all the information
about caustics (that is, the set of focal or conjugate points of the extremal,
or geodesic, field). The function S is called the phase function and one can
show that it is the generating function of the Lagrangian submanifold of the
phase space obtained by transporting an initial Lagrangian submanifold by the
Hamiltonian flow. Here w is a parameter, and in WKB theory, one normally takes
w = 1/h where A is Planck’s constant. Keep in mind that S, can be multiple
valued and that A, while single valued, generally blows up at a caustic. Index
k indicates that Ay and Sj are amplitude and phase on the kth-sheet of the
covering of the Lagrangian submanifold. (For details see below).

To resolve the difficulties posed by singularities and to deal with the mul-
tivaluedness of the phase function S, [23] introduced the method of geometric
asymptotics in the case of 2-dimensional invariant varieties. This method to-
gether with the boundary-layer method [14] was then developed to treat prob-
lems of diffraction. In particular, imaginary rays and the corresponding wave
fields which are defined in shadow domains were described in [24] as part of a
geometric theory of diffraction. (For details about general method of geometric

asymptotics see [20]).

Solutions of the form (2.1) with complex phase functions S and associated
completely integrable systems with complex Hamiltonians H were studied in [3].
Complex geometric asymptotics in shadow domains were constructed in (4] and

[5] in the context of the geometric theory of diffraction.

In particular, these references suggested a method for constructing local semi-
classical solutions (modes) in the form of functions of several complex variables
on the moduli of Jacobian varieties of compact multisheeted Riemann surfaces.
Quantum conditions were defined as conditions of finiteness on the number of
sheets of the Riemann surface. This method enables one to nuse, in the neighbor-

hood of a caustic, a circuit in the complex plane. By gluing together different
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pieces of the solution in this fashion, one can obtain global geometric asymp-
totics. This procedure, together with the transport theorem for integrable prob-
lems on Riemannian manifolds, facilitates the construction of geometric asymp-
totics for a whole class of quasiperiodic solutions of integrable systems on hy-
perelliptic Jacobi varieties (see [3] and [1]). This class includes some of the most
important problems such as the Jacobi problem of geodesics on quadrics and bil-
liards in domains bounded by quadrics, as well as the KdV and Dym-type equa-
tions, the C. Neumann problem for the motion of particles on an n-dimensional
sphere in the field of a quadratic potential and the sine-Gordon and nonlinear
Schrédinger equations. In particular, whispering gallery modes and bouncing
ball modes were constructed in [3] for the Jacobi problem of geodesics in the
n-dimensional case. Similar modes were introduced in the 2- and 3-dimensional
case by (23] to explain the whispering gallery phenomenon of acoustics and to
describe waveguides.

Recall that quasiperiodic solutions of integrable nonlinear equations can be
described in terms of finite dimensional Hamiltonian systems on C?". In these
problems, there is a complete set of first integrals that are obtained, for example,
by the method of generating equations, as explained in (7] and [8]. The method
of generating equations has associated with it a finite dimensional complex phase
spéce C?" and two commuting Hamiltonian flows. One of these gives the spatial
evolution and the other gives the temporal evolution of special classes of solutions
of the original PDE. The level sets of the common first integrals are Riemann
surfaces R. These surfaces have branch points that are parameterized by the
choice of values of the first integrals.

We think of C?" as being the cotangent bundle of C", with configuration
variables pui,...,u, and with canonically conjugate momenta P,...,F,. The

two relevant Hamiltonians on €2 both have the form
1 .. .
(24) H=g" P} +V(m,.. ),

where g7/ is a Riemannian metric on C*. The two Hamiltonians are distinguished
by different choices of the diagonal metric.
These two Hamiltonians have the same set of first integrals, which are of the
form
P} =K(y;), 3J=1....n,
where K is a rational function of ;. Thus, we get two commuting flows on the

symmetric product of n copies of the Riemann surface R defined by

P? = K(p).
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These Riemann surfaces can be regarded as complex Lagrangian submanifolds of
C?". We call this the p-representation of the problem. Recall that a Hamilton-
ian system is linearized when written in action-angle variables on the complex
Jacobian.

For every spatial (stationary) Hamiltonian (2.4) there is a corresponding

stationary Schrédinger equation which has the form
(2.5) VIV,U +w*(E - V)U = 0.

Here w is a parameter as before, and V7 and V; are covariant and contravariant
derivatives defined by the metric tensor g//. Equation (2.5) can he represented

in the equivalent form

i oH(E = V7 = 0.
(2.6) Zm%( ngu )+z (E-V)U =0

We consider geometric asymptotics to be solutions of equation ( 2.5) of the form
(2.1) defined on the covering of the Jacobi variety in the phase space of the inte-
grable problem. Substituting (2.1) into (2.5), (2.6) and equating the coefficients
of w and w?, respectively, one obtains the system

(2.7 VI(AZV;S,) =0 (transport equation),
(2.8) VISiV;S, -V =-E (eikonal equation).

We can interpret the eikonal equation as the Hamilton-Jacobi equation of the
corresponding problem. Solutions can be constructed using synunetry proper-
ties of the Riemann metric, which in turn determines the quantum equation as
was shown in [3]. This method of construction is related to the general method
of separation of variables in Schrédinger operators. As a result, we obtain an
action function S, which is, at the same time, a phase function for the geometric
asymptotics and that can be used to solve the transport equation for the ampli-
tude function A in the form A = Up/v/Ddet J. Here D is the volume element
of the metric and J is the Jacobian of the change of coordinates from the -
representation on the Riemann surface to the angle representation on the Jacobi
variety, that is, on the level set of the first integrals in the phase space of the
corresponding classical problem.

Then modes of the form (2.1) are constructed which link the Schrodinger
operators on Riemannian manifolds with integrable systems corresponding to
the class of metrics mentioned above. The methods of geometric asymptotics
can be used in many problems including the whispering gallery phenomenon of

acoustics and problems in diffraction, as is shown in the next section.
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3. Diffracted modes

In this section we describe the collapsing construction introduced in [3] and
its application to the problem of diffraction by an n-dimensional ellipsoid. This
construction is of interest in a number of situations. For example, it was used

in [7] to study peakon and billiard solutions in a shallow water equation.

The main idea of the collapsing construction is as follows. One first consid-
ers the geodesic flow on a quadric in R"*!. Associated with this flow is some
underlying complex geometry (described in [3] and [8]), first integrals of the mo-
tion, and a complex Hamiltonian. We fix the value of the first integrals and let
ln4+1, the shortest semiaxis (in the case of an ellipsoid and the semiaxis with the
smallest absolute value in the case of a hyperboloid), tend to zero. This yields
corresponding first integrals and Hamiltonians for the geodesic flow in a domain
in R” bounded by a quadric. This quadric develops from the limiting process.
Also, the projections of the trajectories of the geodesic flow into R™ converge (as
sets) to the trajectories of the billiard flow (in the elliptic case) in the domain. In
the hyperbolic case, the trajectories may be regarded as complex billiards, as we
will explain later. We note that the first integrals and Hamiltonian for billiards

inside n-dimensional ellipsoids were obtained in this way; see {3] and [5].

When one fixes the first integrals for these geodesic flows, a special family
of geodesics is picked out. Its envelope is, by definition, a caustic. As we will
see, the amplitude of the associated semiclassical mode will blow up at each
point of the caustic. We will use complexification of the problem to resolve these

singularities and to extend the semiclassical mode into the shadow domain.

In Figure 1 we show families of geodesics (again with a fixed choice of first
integral) obtained after collapsing a 2-dimensional ellipsoid (in (a) and (b)) and
a 2-dimensional hyperboloid (in (¢) and {d)). In (d) the solid straight lines are
geodesics, but the dashed curved line is simply a schematic curve to indicate the
behavior of a semiclassical mode called the diffraction mode, described below.
The caustics are shown as dashed ellipses. For the elliptic case, (a) and (b) are
distinguished by different choices of families of geodesics. In (a) the geodesics are
quasiperiodic while in (b) they are umbilic, which is the particular family (choice
of first integrals) whose (degenerate) caustic is the straight line segment between
the foci, or just the two foci themselves, depending on how one interprets the
notion of caustic. (See [10] and [8] for further details). The geodesics in (c) are
called sliding geodesics. Each one of the families of geodesics gives rise to an
interesting complex mode. For example, the mode associated with quasiperiodic
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() (d)

FiGURE 1. (a) shows a member of one of the families of clliptic billiards,
(b) shows a member of the family of umbilic billiards, (c) shows one of
the families of geodesics for sliding modes and (d) shows schematically a
semiclassical mode for diffraction.
elliptic billiards ((a) of the figure) generates whispering gallery modes and sliding

geodesics (c) produce luminous surfaces.

In what follows we apply the above construction to the geodesic flow on
hyperboloids. The main difference with the elliptic case is that after collapsing
the semiaxis with the smallest absolute value to zero, one obtains geodesics
(straightlines) in the domain outside an n-dimensional ellipsoid, together with
complex geodesics in the so-called shadow domain (the region B in (d)). In the
shadow domain the momenta P; are purely imaginary.

The first integrals and Hamiltonian for geodesics in the domain outside the
(n — 1)-dimensional ellipsoid have the form

2n—1
(3-1) Pi==,|Lo [ (i ~mi), j=1,...,n
k=1
and
" P2 Lol er (5 — mu
(3.2) sz j 0 IThs 1 oty (14 A).

j=1 Hr;é](ﬂj - Il’f')

The quantities p; = p;(x) are functions of the variable z and the diagonal metric

tensor has the expression
1

(3.3) g’ = Mo 1)
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and the potential energy is given by

13

Lo I—Iiil,k¢ko(ﬂj — bi)

(3.4) V=-
; Hr;éj (1j — pr)
Now let (pj,j = 1,...,n) vary along cycles on the Riemann surface
2n-1
W2 = L, H (5 — my)
k=1

over the cuts with end points at m, and let u, vary over an infinite cut from
Mon_1 t0 —00. We call domains on the real axis other than cuts of the Riemann
surface shadow domains. For example, after collapsing the hyperboloid by means
of the limiting process m3 — 0, and making the choice of parameters and first
integrals given by

my < mg <0 < mg < my,

one obtains the interval |my,0[ as one of the shadow domains; this corresponds
to domain B in Figure 1(d). Recall that the Hamiltonian system is defined on
the complex Jacobian. In the real case, a projection onto a real subtorus is
considered. In this situation, an extension back into the complex domain can be
easily done. The variables I°; become purely imaginary in the shadow domains
and therefore give rise to an exponentially decreasing factor in the expression for
the semiclassical mode.

Applying the method of geometric asymptotics, as described above, one ob-

tains a diffracted mode that has the following form:

n+1 n } —1/4

(3.5) U=ty Y. [H [T (ks —ma)

k=(ky,... ,kn) “l1=11#j0 3=1

X exp (‘lzrl- - igDn - ‘LUDl + ’itz).
The mode (3.5) can be constructed independently in each domain. These do-
mains for the two dimensional case are labeled C and B in Figure 1(d). Here

Dy is a vector of Maslov indices, 1)y is given by

b
Dy = (—l)r"Tn(TTI.", Iln) + k’nTn(mnyo); Tn(aib) = / Pndﬂna

and D, is the real part of the phase function S.
In the shadow domain B, the amplitude A of the mode [/ has an exponentially
decreasing factor as #, the parameter along the geodesic, increases, for the reasons
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indicated above. One glues together solutions from the domains C and B in the
neighborhood of a caustic (the dashed ellipse shown in Figure 1(d)) by going
along a half circuit in the complex plane. This procedure procluces a phase shift
of w/4. After going into the shadow domain B, the mode can be reflected several
times on the boundary of the ellipsoid E before returning into the exterior domain
C and leaving the ellipsoid; in the course of this, it is possible for the mode to go
several times around the ellipsoid. In the shadow domain B, the amplitude of
the mode is exponentially decreasing and, correspondingly, the mode is loosing
energy; presumably the loss of energy due to this exponential decay in the shadow
domain is accounted for by radiation in the exterior domain. We keep track of
the number of reflections on the boundary of the quadric and number of tangent

points with caustics by introducing indices k& and Maslov indices 7.

4. Umbilic modes

In [10] complex angle representations and Hamiltonian systems were obtained
for a family of singular umbilic geodesics on quadrics. These systems have Hamil-
tonians of exponential type. Recently this singular geodesic flow was shown in
[7] and [8] to generate a new class of soliton-like solutions of nonlinear Dym-type
equations.

The collapsing construction l,; — 0, where 1,41 is the shortest semiaxis of
the n-dimensional ellipsoid, applied to the family of umbilic geodesics leads to
a special type of umbilic billiards in domains bounded by (n - 1)-dimensional
ellipsoids. The Hamiltonians for these billiards have thie form

“s MR — Lo TTac sty (15 — B1)

“n H=2 Tty — 1) |

=1

where
(4.2) Mp) =+vp—a.

A complete set of first integrals for this system is as follows:

- log(p; —bi)  log Ly
(4.3) P; = ( n ‘
! k:l,zk;éjo M(pj) M(py)

Complex modes based on these billiards are different from both the whispering
gallery modes and the bouncing ball modes ohtained in [23]. [3] and [5] and are

similar to the soliton modes described in [9]. In the 2-dimensional case theyv can
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be represented as follows:

U = Up(Lo(p1 - b) (2 — )2 ((n1 — Is) (2 — 1))/

217 [ log(p; —
. g(p; — b) IOELO)
X exXpiw E / ( + du;l.
[._,-=1 w N\ M) M(u))

Here iy and p, are varying along cycles over the cuts [0,b] and [b,[3] on the

corresponding Riemann surfaces defined by the form of first integrals described
above. An interesting thing about these modes is that they are self-focusing,
namely they asymptotically approach the mode associated with the geodesic

through the two foci of the ellipse.

5. The N-dimensional spherical pendulum

The Hamiltonian of the n-dimensional spherical pendulum in Cartesian co-

ordinates ); and their conjugate momenta P; has the form:

(5.1) ('i P? - (%PQ]) ) + Qua-

Here the acceleration due to gravity is taken to be unity. We also constrain the
length of @ to be one. The same Hamiltonian in the n-dimensional spherical

coordinates can be expressed in the following “nested” form

1 n ) n 1
5.2 H=—) P} ————— | + Rcosb,;
(5-2) 21?.2;:—; ”-'(kgl (.smoj)z)+ cos

ie.,
1 1 1 2 1
(53) H=5m ((sin 0.)? (P,," T inta)? (Pe""2 * (sin 0,,_2)2

1 1 1
v —_— P2 P2 . »

The change of coordinates

zj = (cos0;)?,

Pzzj(l—zj)z]- 21)21‘ j= 1, ,Tl—l,
zn = cosf,,

]’22"(1 —2%) = P,',Z",

(5.4)

results in the Hamiltonian

nl n-1
(5.5) H—2EP 1- z])z]( H 1_2)1_. 2 (1—22) + za,

k=j+1
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where (z;, P;,) and (6;, Py;) are pairs of conjugate variables.
The nested structure of the Hamiltonian (5.3) shows that one has the follow-

ing first integrals for the n-dimensional pendulum:

(B =g,
2
2 Jh — 2
927 (5in 6,)? Bz,
(56) 1 2 2 = 32
bn-1 " (5in0,_,)2 n—ly
Y p2 +A + cosl, = 32
\ 2 O (Sin 011,)2 " "

Here 3; are constants along solutions of the corresponding Hamiltonian system.
Let

Ki(z)=pB;(1-2) - A2_,, i=2...,n~1,

and

Kn(2) = 28] - 2)(1 - 2%) - 67_.,.

In what follows we extend our system into the complex domain by considering
ﬂf to be complex numbers and let the variables z; be defined on the associated

Riemann surfaces:

32
'ére,:wf=7(lﬂl—zl)v
Ks(z
(5.7) J %:Wg i #EZ)?
Rp_1: Wf—l = :1"(—11*_(-2::3)2

We call the Hamiltonian system with Hamiltonian (5.5) and first integrals (5.6)
on the Riemann surfaces (5.7) a complex n-dimensional spherical pendulum.

To make things concrete, we shall apply the general construction of geometric
asymptotics to the case of the 2-dimensional spherical pendulnm. (See [11] for
further information.) In this case the action function S can be represented in

terms of angle variables (@, az) as follows:

2 zadzy

2 _—
29/ M(z)

(5.8) S=-po] - By -



248 M. S. ALBER — J. E. MARSDEN

The last two terms correspond to the holomorphic and meromorphic parts of the
action function. The holomorphic part is proportional to the angle variable of
the classical problem. The amplitude A can be found after calculating D and J.
We find that

1
Y (e

8(1,’ — 2,32
azj \/AJ(Zg)Z](l—Zl).
This results in the following form of the function U:

(5.11) U= Y. Am/ﬂ(M(zQ)rmexp[inskj(zj)],

and

detJ ! =

k=(k1,k2)
where
o« [a
(5.12) Sk (z1) = ‘/;? m dz1 + kT
and

2 / M (=) Tom
(5.13) Sk2(22) = _/;g (T—_—zf—)i dzg + koTy + —2—,

where r, is the Maslov index and

2
Tl = f % liZ] )
— F4
(5.14) u A
22d22 2 d22

_ 942 dzg e it S
3= 20 ”Z{z () 2f:{2 N TRV

The amplitude A has singularities at the branch points z; = m;, my, m3 of the

Riemann surface W2 = M(z). Each time a trajectory approaches one of these
singularities, we continue in the complex time and go around a small circle in
complex plane, enclosing the singularity. This results in a phase shift (£i3) of
the phase function S:, which is common in geometric asymptotics. The indices
ki and k3 keep track of the number of oriented circuits for z; and 2z, around Iy
and l;. The complex mode (see (5.11)) is defined on the covering space of the
complex Jacobi variety. In the real case, it is defined on the covering space of a
real subtorus. Keeping this in mind, quantum conditions of Bohr-Sommerfeld-
Keller type can be imposed as conditions on the number of sheets of the covering

space of the corresponding Riemann surface for each coordinate 2;:
{ wk1T1 = 27I'N1,

(515) 22[1‘2 + wkyTo = 27 Ns.
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Here N;, N3 are integer quantum numbers. The quantum conditions (5.15) in-
clude a monodromy part after transport along a closed loop in the space of
parameters (; and 3;). This semiclassical monodromy consists of a classical
part as well as a contribution from complex monodromy and the Maslov phase.

Classical monodromy may be explained briefly as follows. We consider two
different cases, namely the case —1 < 82 < 1 and 2 > 1. In the first case, one
considers a cycle l; over the cut [—1, 7] and in the second case, one considers a
cycle Iy over the cut [—1,1]. There is a closed curve in the space of parameters
that leads one from one case to the other. Evidently, there is a difference in the
values of the third integral in the expression for 7% between the two cases that
is given by the residue of the integrand at 2y = 1.

Complex monodromy is present if the roots m; and my of the basic polyno-
mial M (z) approach each other. This singularity can be resolved by interchang-
ing these two roots in the complex plane so as to avoid a real singularity. This
leads to the change of orientation of the cycle I3, and in the general case can be
described by the generator of the symplectic representation of the braid group.
It results in an additional shift in the quantum conditions.

The third type of shift in the quantum conditions comes from the integral
representation for the Maslov class.

The complex mode (5.11), which corresponds to a particular choice of pa-
rameters in (5.15), is similar to an acoustic mode that occurs in the whispering
gallery phenomenon described in Keller and Rubinow [23] and Alber [3], [5].

The n-dimensional system can be treated in a similar way. The complex

mode U has the form

A0V2.B‘2---ﬂn

k=unz,.; oy (G Ea(z2) K () (1= 2)(1 = 20)2. (1 = 2, )7 2)174

X exp [z’w 2": Skj(Zj)J .

i=1

U=

which yields the following quantum conditions:
wk1T1 = 27TN1,

™
T2+ whkaTy = 27N,
(5.16) 572 242 2

grn + wk,T,, = 27 N,.

Since the form of T, j = 2,... ,n - 1, is different from both T} and T, one gets

additional new types of monodromy in the n-dimensional case.
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