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1. Introduction

In the last two decades, the classical Arrow and Debreu result [3] on the
existence of Walrasian equilibria has been generalized in many directions. Mas-
Colell [35] has first shown that the existence of an equilibrium can be established
without assuming preferences to be total or transitive. Next, by using an ex-
istence theorem of maximal elements, Gale and Mas-Colell [20] gave a proof of
the existence of a competitive equilibrium without ordered preferences. By using
Kakutani’s fixed point theorem, Shafer and Sonnenschein [43] proved a power-
ful result on the “Arrow and Debreu Lemma” for abstract economies in which
preferences may not be total or transitive but have open graphs. Meanwhile,
Borglin and Keiding [8] proved a new existence theorem for a compact abstract
economy with K F-majorized preference correspondences. Following their ideas,
there have been a number of generalizations of the existence of equilibria for
compact abstract economies (see e.g. Aliprantis et al. [1], Border [7], Chang [11],
Debreu [13], Ding et al. [15]-[16], Flam [18], Florenzano [19], Hildenbrand and
Sonnenschein [25], Kajii [27], Keiding [28], Mehta and Tarafdar [37], Shafer [42],
Khan and Yannelis [29], Mas-Colell and Zame [36], Tian [53], Tan and Yuan
[48]-[49], Tarafdar [51], Tarafdar and Mehta [52], Tulcea [54]-[55] etc.). These
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theorems generalized most known equilibrium existence theorems on compact
generalized games due to Borglin and Keiding [8], Shafer and Sonnenschein [43],
Toussaint [54] and Yannelis and Prabhakar [58].

On the other hand, Debreu discussed the uncertainty of behavior of an eco-
nomic activity in Chapter 7 of his book [12]. Since then, a series of papers con-
cerning the uncertainty of behavior of economic actions have been published. For
example, Hildenbrand [23] considered an economy in which the preferences are
random correspondences; Bewley [6] studied the existence of equilibrium in ab-
stract economies with a measure space of agents and with an infinite-dimensional
strategy space; Kim et al. [30] also proved the existence of equilibria in abstract
economies with a measure space of agents and with an infinite-dimensional strat-
egy space by random fixed point theorems.

In this paper, the existence theorems of non-compact random equilibria in
which the preference correspondences are L-majorized and constraint correspon-
dences are upper semicontinuous are first obtained. As applications, we give
the existence theorems for non-compact random quasi-variational inequalities,
which in turn imply several existence theorems for non-compact generalized ran-
dom quasi-variational inequalities. These results not only generalize the results
of Tan [50] and Zhang [59], but also are the stochastic versions of corresponding
results in the literature (see e.g. [1]-[13], [16]-[22], [25]-[33], [35]-[46], [47]-[49],
[51]-[56] and [58]).

2. Preliminaries

The set of all real numbers is denoted by R and the set of natural numbers
is denoted by N. If X is a set, we shall denote by 2% the family of all subsets of
X. Let A be a subset of a topological space X. We shall denote by intx (A) the
interior of A in X and by clx (A) the closure of A in X. If A is a subset of a vector
space, we shall denote by co A the convex hull of A. If A is a non-empty subset
of a topological vector space E and S,T : A — 2F are correspondences, then
coT, TNS : A — 2F are the correspondences defined by (coT)(x) = coT(x)
and (TN S)(x) = T(x) N S(z) for each x € A, respectively. If X and Y are
topological spaces and (£2,¥) is a measurable space, and T : Q@ x X — 2V is
a correspondence, the graph of T, denoted by GraphT, is the set {(w,z,y) €
QOx X XY :y€T(w,x)} and the correspondence T : Q x X — 2Y is defined
by T(w,z) = {y € Y : (z,y) € clxxy GraphT(w, -)}, where for each fixed
w€ QGraphT(w, -) = {(z,y) € X xY :y € T(w,2)} and cl T : @ x X — 2V
is defined by clT'(w,z) = cly (T (w, z)) for each (w,x) € Q x X. It is easy to see
that clT(w,z) C T(w, ) for each (w,z) € Q x X.

If X and Y are two sets, A C X xY, and F : X — 2Y, then (1) the
domain of F', denoted by Dom F', is the set {x € X : F(z) # 0}; (2) the
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projection of A into X, denoted by Proj x A, is the set {x € X : there exists
some y € Y such that (z,y) € A}; moreover, if both X and Y are topological
spaces, (3) F' is said to be lower (respectively, upper) semicontinuous if for each
closed (respectively, open) subset C of Y, the set {z € X : F(z) C C} is closed
(respectively, open) in X, (4) z € X is a mazimal element of F if F(z) = () and
(5) F is said to be compact if for each & € X, there exists a neighborhood V,, of
x in X such that F(V,) =
Dom F' = Proj x Graph F.

wey, F(z') is relatively compact in Y. Note that

Let X be a subset of a topological vector space E. X is said to have property
(K) (see [56]) if for each compact subset B of X, the convex hull co B of B is
also relatively compact in X.

Let X be a topological space, Y be a non-empty subset of a vector space
E,0:X — E be a (single-valued) map and ¢ : X — 2¥ be a correspondence.
Then (1) ¢ is said to be of class Ly if for every x € X, co¢(z) C Y and
O(x) & cop(x) and for each y € Y, ¢7(y) = {x € X : y € ¢(x)} is open in
X; (2) a correspondence ¢, : X — 2V is said to be an Lg-majorant of ¢ at
x € X if there exists an open neighborhood N, of z in X such that (a) for each
z € Ny, ¢(z) C ¢z(2) and 0(2) & cogy(z), (b) for each z € X, cogy(z) C Y
and (c) for each y € Y, ¢, 1(y) is open in X; (3) ¢ is Lg-majorized if for each
x € X with ¢(z) # 0, there exists an Lyp-majorant of ¢ at z in X. We shall
only deal with either the case (I) X = Y and is a non-empty convex subset of
a topological vector space and 6 = Iy, the identity map on X (in this case, the
above notions coincide with the corresponding notions introduced in [58]), or the
case (IT) X = [[,c; Xi and § = 7; : X — X is the projection of X onto X;
and X; =Y is a non-empty convex subset of a topological vector space. In both
cases (I) and (IT), we shall write L in place of Ly.

A measurable space (2,X) is a pair where 2 is a set and ¥ is a o-algebra
of subsets of Q. If X is a set, A C X, and D is a non-empty family of subsets
of X, we shall denote by D N A the family {DN A : D € D} and by ox(D)
the smallest o-algebra on X generated by D. If X is a topological space with
topology 7x, we shall use B(X) to denote ox(7x), the Borel g-algebra on X if
there is no ambiguity on the topology 7x. If (22, X) and (®,T') are two measurable
spaces, then ¥ ® I' denotes the smallest o-algebra on €2 x ® which contains all
the sets A x B, where A € ¥, B €T, ie, 2@ = oqxe(X x I'). We note
that the Borel o-algebra B(X; x X3) contains B(X;) ® B(X2) in general. A
map [ : Q — & is said to be (X,T") measurable (or simply, measurable) if for
each BeT, f71Y(B)={zeQ,f(x) € B} € 3. Let X be a topological space
and F : (Q,%) — 2% be a map. F is said to be measurable (respectively,
weakly measurable) if F~1(B) = {w € Q : F(w)N B # 0} € X for each closed
(respectively, open) subset B of X. The map F is said to have a measurable
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graph if Graph F := {(w,y) € Qx X : y € F(w)} € ¥ ® B(X). A function
f:Q — X is a measurable selection of F' if f is a measurable function such that
fw) € F(w) for all w € Q.

If (2,%) and (®,T") are measurable spaces, Y is a topological space, then
amap F : Q x ® — 2Y is called (jointly) measurable (respectively, weakly
measurable) if for every closed (respectively, open) subset B of Y, F~1(B) =
{(w,2) €A x P : Fw,z) N B # 0} € X ®T. In the case ® = X, a topological
space, it is understood that I' is the Borel o-algebra B(X).

A topological space X is (i) a Polish space if F' is separable and metrizable
by a complete metric; (ii) a Suslin (respectively, Polish) space if X is a Haus-
dorff topological space and the continuous image of a Polish space. A Suslin
(respectively, Polish) subset in a topological space is a subset which is a Suslin
(respectively, Polish) space. Suslin sets play very important roles in measur-
able selection theory. We remark that if X; and X5 are Suslin spaces, then
B(X1 x X5) = B(X1) ® B(X3) (see e.g. [40, p. 113]).

Denote by J and F the sets of infinite and finite sequences of positive in-
tegers respectively. Let G be a family of sets and F' : F — G be a map. For
each 0 = (0;,)2, € J and n € N, we shall denote (01,...,0,) by o|n; then
Uses Moy F(oln) is said to be obtained from G by the Suslin operation. Now
if every set obtained from G in this way is also in G, then G is called a Suslin
family (see e.g. [34], [41], [57] etc.).

Note that, if i is an outer measure on a measurable space (2, X), then ¥ is
a Suslin family (see [41, p. 50]). In particular, if (2, %) is a complete measurable
space, then ¥ is a Suslin family (for more details, see [57, p. 864]). It also implies
that the o-algebra ¥ of Lebesgue measurable subsets of [0,1] is a Suslin family.

Let X and Y be topological spaces, (€2,3) be a measurable space and F :
Q' x X — 2Y be amap. Then (a) F is a random operator if for each fixed x € X,
the map F(-,z) : Q — 2Y is a measurable map; (b) F is random lower semi-
continuous (respectively, random upper semicontinuous, random continuous) if
F is a random operator and for each fixed w € Q, F(w, -) : X — 2V is lower
semicontinuous (respectively, upper semicontinuous, continuous) and (c) a mea-
surable (single-valued) map v : Q@ — X is said to be a random mazimal element
of the correspondence F' if F(w,9(w)) =0 for all w € Q.

Let (€2, ¥) be a measurable space, X be a topological space and F': 2 x X —
2% be a map. The (single-valued) map ¢ :  — X is said to be (i) a deterministic
fized point of F' if p(w) € F(w, p(w)) for all w €  and (ii) a random fized point
of F if ¢ is a measurable map and p(w) € F(w, p(w)) for all w € Q. It should be
noted here that some authors define a random fixed point of F' to be a measurable
map ¢ such that p(w) € F(w,p(w)) for almost every w € Q (see e.g. [38], [39]
and the references therein).
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Let I be any set of players and (£2, ) be a measurable space. For each i € I,
let its strategy set X; be a non-empty subset of a topological vector space. Let
X = [l;e; Xi. Foreach i € I, let P, : @ x X — 2X: be a correspondence
which is irreflexive, i.e. x; € P;(w,x) for each (w,z) € 2 x X. Following the
terminology of Gale and Mas-Colell [21] in the deterministic case, the collection
I = (Q, X, P;)icsr will be called a random qualitative game. A measurable map
1  — X is said to be a random equilibrium of the random qualitative game T’
if Pj(w,¢(w))=0forallie I and all w € Q.

A random generalized game (or a random abstract economy) is a collection
' = (; X;; A;, Bi; Pi)ier where I is a (finite or infinite) set of players (agents)
such that for each i € I, X; is a non-empty subset of a topological vector space
and A;, B; : Q2 x X — 2% are random constraint correspondences where X =
[lic; Xi, and P : Q x X — 2Xi is a preference correspondence (which are
interpreted as for each player (or agent) i € I, the associated constraint and
preference correspondences A;, B; and P; have stochastic actions). A random
equilibrium of T' is a (single-valued) measurable map 2 — X such that for each
icl, m(Y(w)) € Bi(w,h(w)) and A;(w, ¥ (w)) N Pi(w,¥(w)) = 0 for all w € Q.
Here, m; is the projection from X onto X;. If z € X, we shall also write z;
in place of m;(x) if there is no ambiguity. We remark that if A;, B; and P; of
the random generalized game I' = (Q; X;; A;, By; Pi)ier are independent of the
variable w € €, i.e., A;(w, -) = Ai(+), Bi(w, -) = B;(+) and P;(w, -) = P;(-) for
all w € Q, and if B;(Z) = clx, Bi(Z) for each € X (which is the case when B;
has a closed graph in X x Xj;; in particular, when cl B; is upper semicontinuous
with closed values), then our definition of an equilibrium point coincides with
that of Ding et al. [16] in deterministic case; and if, in addition, A; = B; for
each ¢ € I, our definition of an equilibrium point coincides with the standard
definition in deterministic case, e.g., in Borglin and Keiding [8], Tulcea [55] and
Yannelis and Prabhakar [58].

We now recall two results which will be needed in this paper. The following
is due to Leese [34, pp. 408-409]:

THEOREM A. Let (Q,%) be a measurable space, ¥ be a Suslin family, X be
a Suslin space and F : (,%) — 2%\ {0} be a mapping such that Graph F €
Y ® B(X). Then there exists a sequence {¢n : n = 1,2,...} of measurable
selectors of F' such that for each w € Q, the set {pp(w) :m =1,2,...} is dense
in F(w).

The following is Theorem 5.3 of Tan and Yuan [49]:

THEOREM B. Let T' = (X;; Ay, Bi; Pi)icr be an abstract economy such that
X =[l;c; Xi is paracompact. Suppose the following conditions are satisfied:
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(a) foreachi € I, X; is a non-empty closed convez subset of a locally convex
Hausdorff topological vector space E; and X; has property (K);
(b) for eachi € I, B; is compact and upper semicontinuous with non-empty
compact convez values and A;(x) C B;(x) for each x € X;
(c) for each i€ I, P; is lower semicontinuous and L-magjorized;
(d) for eachi€ I, B ={z € X : (AN P;)(z) # 0} is open in X;
(e) there exist a non-empty compact convex subset Xy of X and a non-
empty compact subset K of X such that for each y € X \ K there is an
x € co(Xo U {y}) with z; € co(A;(y) N P;(y)) for alli e I.
Then there exists T € K such that T; € B;(T) and A;(T) N P;(T) = 0 for each
1€ 1.

3. Random equilibria in locally convex spaces

By Theorems A and B, we have the following existence theorem for random
equilibria of random generalized games:

THEOREM 3.1. Let (Q2,X) be a measurable space, ¥ be a Suslin family and
' = (9 X;; Ai, Bi; Py)ier be a random generalized game such that I is countable
and Dom(A; N P;) € ¥ ® B(X) for each i € I. Suppose that the following
conditions are satisfied:

(i) for each i € I, X; is a non-empty convexr Polish subset of a locally
convezr Hausdorff topological vector space E;;

(ii) for each i € I and for each fired w € , B;(w, -) is compact and upper
semicontinuous with non-empty compact conver values, and for each
(w,2) € Ax X, Aj(w,z) C Bi(w,x);

(iii) for eachi € I and for each fizedw € Q, P;(w, -) is lower semicontinuous
and L-majorized;

(iv) foreachi €I andw € Q, E'(w) = {r € X : A;j(w,z) N P;j(w,x) # 0} is
open in X ;

(v) for each given w € Q, there exist a non-empty compact subset K(w)
of X and a non-empty compact convex subset Xo(w) of X such that
for each y € X \ K(w), there is an x € co(Xo(w) U {y}) with x; €
co(A;(w,y) N Pi(w,y)) for alli e I; and

(vi) the mapping B : Q x X — 2% defined by B(w,z) = [[;c; Bi(w,z) for
each (w,z) € Q x X has a measurable graph, i.e., GraphB € ¥ ®
(X x X).

Then I has a random equilibrium.

PROOF. Define ¥ : Q — 2X*X by U(w) = {(z,7) € X x X : Aj(w,z) N
Pi(w,z) =0 and x € B(w,z) for all i € I'} for each w € Q. Then ¥(w) # 0 for
each w € Q by assumptions (i)—(v) and Theorem B. Let A = {(z,z) : x € X}.
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Then Graph ¥ = (((2x X)\ (U,c;(Dom(A4;NF;)))) x X)N(Graph B) N (2 x A).
By hypotheses, Dom(A4; N P;) € ¥ ® B(X;) for each ¢ € I and Graph B € ¥ ®
B(X x X), so that | J;.; Dom(4;NP;) € ¥®@B(X;) since I is countable. Therefore
Graph ¥ € ¥ ® B(X x X). Hence ¥ satisfies all conditions of Theorem A. By
Theorem A, there exists a measurable selection 1’ of ¥, where ¢’ :  — X x X.
But then there exists ¢ : Q — X such that ¢'(w) = (Y(w), ¥ (w)) for all w € Q.
Now if D is a closed subset of X, then D x D is a closed subset of X x X; as
pHD) ={w e N:Pw) € D} ={w e Q: ¢/ (w) € Dx D} €3, it follows
that 1 is also measurable. Moreover, we have A;(w,¥(w))N Pi(w, ¥ (w)) = 0 and
i (Y(w)) € Bi(w,¥(w)) for all w € Q and all i € 1. O

REMARK. We note that if B; has a measurable graph for each i € I, then it is
easy to see that the mapping B : Q@x X — 2% defined by B(w, ) = [Lic; Bi(w, z)
for each (w,z) € Q x X, by the same argument of Lemma 2.4 of Castaing [9, p.
96], also has a measurable graph. Thus, we have the following corollary:

COROLLARY 3.2. Let (2,%) be a measurable space with ¥ a Suslin family
and G = (; Xy; Ai; Pi)ier be a random abstract economy and let X = [];c; Xi.
Suppose that I is countable and the following conditions are satisfied for each
iel:

(a) X; is a non-empty compact convex Polish subset of a locally convex
Hausdorff topological vector space F;;

(b) A; : Q x X — 2% 4s such that for each fived w € Q, A;(w, -) is upper
semicontinuous with non-empty compact conver values and Graph A; €
Y@ B(X x X;);

(¢) Pi:Qx X — 2% is such that for each fired w € Q, P(w, -) is lower
semicontinuous and L-majorized and Dom(A; N P;) € ¥ ® B(X);

(d) for each w € Q, E'(w) = {x € X : Aj(w,z) N Pj(w,x) # 0} is open
m X.

Then G has a random equilibrium.

By taking A; = B; = X, for all i € I in Theorem 3.1 and noting that the
domain of a lower semicontinuous correspondence is open, we have the following

existence theorem for a random qualitative game:

THEOREM 3.3. Let (2,%) be a measurable space, ¥ be a Suslin family and
I'=(Q,X;, B)icr be a random qualitative game such that I is a countable and
Dom P, € ¥ ® B(X) for each i € I. Suppose that the following conditions are
satisfied:

(i) for each i € I, X; is a non-empty compact convex Polish subset of a
locally convexr Hausdorff topological vector space E;;
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(i) for eachi € I and for each fizedw € Q, P;(w, ) is lower semicontinuous
and L-majorized.

Then T' has a random equilibrium.

4. Non-compact random quasi-variational inequalities

In this section, by our existence theorem for random equilibria of random
generalized games, namely, Theorem 3.1, some existence theorems for random
quasi-variational inequalities and generalized random quasi-variational inequali-
ties are given. Our results not only generalize the results of Tan [50] and Zhang
[59], but also they are the stochastic versions of corresponding results in the
literature (see e.g. [4]-[5], [14], [46], [59]-[60] and the references therein).

Here we emphasize that our arguments for the existence of solutions for
random quasi-variational inequalities are different from the approaches used in
[50] and [59].

THEOREM 4.1. Let (Q, %) be a measurable space with ¥ a Suslin family, and
let I be countable. For each i € I, suppose that the following conditions are
satisfied:

(a) X; is a non-empty convex Polish subset of a locally convex Hausdorff
topological vector space;

(b) for each fized w € Q, Aij(w,-) : X = [[,e; Xi — 2% is compact
and upper semicontinuous with non-empty compact convex values, and
Graph 4; € ¥ ® B(X x X;);

(¢) ¥ : O x X x X; > RU{—00,+00} is such that:

()1 z +— Yi(w, x,y) is lower semicontinuous on X for each fized (w,y) €
Qx X;;

(¢)2 ; & co{y € X; : Yi(w,z,y) > 0} for each fized (w,x) € Q x X;

(c)s for each fized w € Q, the set {z € X : a;(w,x) > 0} is open in X,
where a; : 2 x X — RU {—o0,+oo} is defined by
@i(w, T) = SUP,, e A, (w,2) Yi(w, T, yi) for each (w,z) € A x X;

(d) {(w,2) € A x X : aj(w,z) >0} € L@ B(X);

(e) for each given w € €, there exist a non-empty compact conver subset
Xo(w) of X and a non-empty compact subset K(w) of X such that
for each y € X \ K(w) there exists x € co(Xo(w) U {y}) with x; €
co(4;(w,y) N{z € X; : ¥;(w,y, z) > 0}).

Then there exists a measurable map ¢ : Q@ — X such that for each i € I,
Ti(¢(w)) € Ai(w, d(w)) and

sup  i(w, p(w),y) <0
VEA(,6())

for all w e Q.
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PROOF. For each i € I, define P; : Q x X — 2% by setting P;(w,r) =
{y € Xi : ¢i(w,z,y) > 0} for each (w,z) € @ x X. We shall show that
G = (; X;; A;; P)er satisfies all hypotheses of Theorem 3.1 with A; = B;
for all ¢ € I.

Suppose i € I and w € . By (c)1, for each fixed y € X;, (Pi(w, )" (y)
={z € X : ¢j(w,z,y) > 0} is open in X and by (¢)2, ; & co P;(w, ) for each
x € X. This shows that P;(w, -) is lower semicontinuous and is of class L and
hence is L-majorized. By the definition of «;, we note that {z € X : A;(w,z) N
Pi(w,z) # 0} ={zr € X : ay(w,z) > 0} so that {z € X : A;(w,z) N P;(w,z) # 0}
is open in X by (c)3. By (d), we have Dom(4; N P;) € ¥ ® B(X). By (b),
Graph A; € ¥ ® B(X x X), so that the mapping A : @ x X — X defined by
A(w,z) = [[;c; Ai(w, z) for each (w,z) € @ x X has a measurable graph (see e.g.
the argument of Castaing [9, p. 96]). Therefore G = (Q; X;; A;; Pi)ier satisfies
all hypothesis of Theorem 3.1 with A; = B; for each ¢ € I. By Theorem 3.1,
there exists a measurable map ¢ : @ — X such that for each i € I, m;(p(w)) €
Aij(w, p(w)) and A;(w, p(w)) N Pi(w, p(w)) = O for all w € Q, ie., m(pw)) €
Ai(w, d(w)) and SUPye 4, (w,p(w)) Yi(w, d(w),y) <0 for all w € . O

By letting I = {1} in Theorem 4.1, we have the following existence result for

random quasi-variational inequalities:

THEOREM 4.2. Let (2,%) be a measurable space with ¥ a Suslin family.
Suppose that the following conditions are satisfied:

(a) X is a non-empty convex Polish subset of a locally conver Hausdorff
topological vector space;

(b) for each fized w € Q, A(w, -) : X — 2% is compact and upper semi-
continuous with non-empty compact and convex values, and Graph A €
Y®B(X x X);

(¢) ¥:2x X xX —>RU{—00,+00} is such that:

(¢)1 2 — Y(w,x,y) is lower semicontinuous on X for each fized (w,y) €
QO x X;

(¢)2 x & coly € X : Y(w, z,y) > 0} for each fizred (w,z) € A x X;

(c)s for each fizred w € Q, the set {z € X : a(w,x) > 0} is open in X,
where a : Q@ x X — RU{—o00,+00} is defined by
(W, T) = SUPye a0y Y(W, 2, y) for each (w,z) € A x X;

(d) {(w,z) € A x X : a(w,z) >0} € B B(X);

(e) for each given w € ), there exist a non-empty compact convex subset
Xo(w) of X and a non-empty compact subset K(w) of X such that
for each y € X \ K(w) there exists x € co(Xo(w) U {y}) with = €
co(A(w,y)N{z € X : Y(w,y,z) > 0}).
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Then there exists a measurable map ¢ : @ — X such that ¢(w) € A(w, p(w)) and

sup  P(w,d(w),y) <0
YEA(w,d(w))

for all w e Q.

As a consequence of Theorem 4.2 and Theorem 4.2(c) of [57], we have the
following random fixed point theorem:

COROLLARY 4.3. Let (,X) be a measurable space with ¥ a Suslin family,
X be a non-empty compact convex Polish subset of a locally convexr Hausdorff
topological vector space and A : Q x X — 2% be measurable. If for each w € ,
A(w, -) is upper semicontinuous with non-empty compact convex values, then A
has a random fized point.

For more details about random fixed point theorems, we refer the reader to
[47] and the references therein.

5. Generalized random quasi-variational inequalities

In this section, by applying results in Section 4, we shall consider the following
generalized random variational inequality problems (x) and (k).

Let (€2, %) be a measurable space, X be a non-empty compact convex subset
of a locally convex Hausdorff topological vector space £ and E* be the dual
space of E. Suppose the correspondences F : @ x X — 2X T :Q x X — 2F°
and the function f: Q2 x X x X — RU {—o00,+o0} are given. We want to find
a measurable map ¥ : 2 — X which satisfies the following generalized random
quasi-variational inequalities:

b(w) € Fw,¢(w))
(%) {

sup [ sup  Re(u,¢(w) —y) + fw, ¢(w),y)] <0
VEF (w1 (w)) uET (w,1(w))

for all w € . We also want to find two measurable maps 9 : & — X and
¢ : Q — E* such that
{ Y(w) € Flw,9(w)) and ¢w) € T(w,9(w)),
Re(p(w), (W) —y) + f(w, ¢(w),y) <0

for all y € F(w,¢(w)) and for all w € Q.
Now we recall some definitions (see e.g. [60]). Let X be a convex subset of

()

a topological vector space E. A function ¢(x,y) : X x X — RU{—00, 400} is
said to be

(1) y-diagonally quasi-convex (respectively, y-diagonally quasi-concave) in y,
for short, v-DQCX (respectively, v~-DQCV) in y, if for each A € F(X) and each

y € co(4), v < maxgea (y, x) (respectively, v = infrea ¢ (y, ));



EQUILIBRIA OF RANDOM GAMES 69

(2) v-diagonally convex (respectively, y-diagonally concave) in y, for short,
~v-DCX (respectively, v-DCV) in y, if for each A € F(X) and each y € co(4)
with y = > Niys (A > 0and >0, A\ = 1), we have v < > A (y, vi)
(respectively, v > > Nb(y, vs))-

Let X and Y be two non-empty convex subsets of . We also recall that
a function ¢ : X x Y — RU {—o00, 400} is quasi-conver (respectively, quasi-
concave) in y if for each fixed z € X, for each A € F(Y) and each y € co(4),
Y(z,y) < max,eca(x, z) (respectively, ¥ (z,y) > min,c 4 ¥(x, 2)).

It is easy to see that (i) if ¥ (z,y) is v-DCX (respectively, 7-DCV) in y, then
Y(x,y) is v-DQCX (respectively, v-DQCV) in y and (ii) if ¢; : X xY — R
is 7-DCX (respectively, 7-DCV) in y for each i = 1,2,... ,m, then ¢(z,y) =
St ai(z)y(z,y) is also -DCX (respectively, v-DCV) in y, where a; : X — R
with a;(z) > 0 and > " a;(z) = 1 for each x € X and (iii) the function
P(z,y) : X x X - RU{—00,400} is 0-DQCV in y if and only if z & co({y €
X :¢(x,y) > 0}) for each z € X.

First we consider the following existence theorem for solutions of problem
(*) for which monotonicity is needed.

THEOREM 5.1. Let (2,X) be a measurable space with ¥ a Suslin family and
X be a non-empty convex Polish subset of a locally convexr Hausdorff topological
vector space E. Suppose that the following conditions are satisfied:

(i) F:Qx X — 2% is such that for each fired w € Q, F(w, -) is compact
and upper semicontinuous with non-empty compact convex values, and
Graph F € ¥ ® B(X x X);

(i) T:Qx X — 25" is such that for each fited w € Q, T(w, -) is monotone
(i.e., Re{u —v,y —x) > 0 for all u € T(w,y) and v € T(w,x) and for
all x,y € X) with non-empty values and for each one-dimensional flat
L C E,T(w, )|Lnx is lower semicontinuous from the relative topology
of X into the weak*-topology o(E*, E) of E*;

(i) f: O x X xX — RU{—00,+00} is such that for each fized (w,y) €
Ax X, x— f(w,x,y) is lower semicontinuous on X and for each fized
(w,2) € A x X,y — f(w,z,y) is concave and f(w,z,z) = 0 for each
(w,z) € QA x X;

(iv) for each fized w € Q, the set

feeX: swp [ swp Reluz—y)+flway) >0}
YEF (w,x) ueT (w,y)
15 open in X ;

(v) the set {(w, ) € Q@x X 1 SUDPy e (w2 [SUPyeT(w,y) Re(U, 2—y) + f(w, 7, )]
>0} € ¥ @ B(X);
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(vi) for each given w € 2, there exist a non-empty compact conver subset
Xo(w) of X and a non-empty compact subset K(w) of X such that
for each x € X \ K(w) there ezists y € co(Xo(w) U {z}) with y €
co(F(w,z) N{z € X : supyer(u,») Re(u, @ — 2) + fw,z,2) > 0}).

Then there exists a measurable map ¢ : Q — X such that p(w) € F(w, p(w)) and

sup  Re(u, ¢(w) —y) + f(w, (w),y) <0
UET(w,d(w))

for all y € F(w,p(w)) and w € Q2.

PROOF. Define a function ¢ : @ x X x X — RU {—o00,+00} by

Y(w,z,y) = sup Re(u,x —y)+ f(w,z,9)
uweT (w,y)

for each (w,z,y) € @x X x X. Then by (iii), z — 9 (w, z,y) is lower semicontinu-
ous on X for each (w,y) € 2 x X. For each w € , since T'(w, -) is monotone, by
(i), it is easy to prove that ¥(w, z,y) is 0-DCV in y by Proposition 3.2 of Zhou
and Chen [60]. The conditions (i)—(vi) imply that all hypotheses of Theorem 4.2
are satisfied. By Theorem 4.2, there exists a measurable map ¢ : 0 — X such
that ¢(w) € F(w, ¢(w)) and

(1) sup sup  [Re(u, ¢(w) —y) + f(w, p(w),y)] <0
YEF (w,6(w)) uET (w,y)

for all w € Q.
We shall now modify the proof of Theorem 3 of Tan [46] to prove that

sup sup - [Re(u, ¢(w) —y) + f(w, ¢(w),y)] <0
YEF (w,6(w)) uET (w,6(w))

for each w € Q.
Fix an w € Q. Let © € F(w, ¢(w)) be arbitrarily given and let

z(w) = tr + (1 - t)g(w) = ¢(w) — H(d(w) — z)

for t € [0,1]. As F(w, ¢(w)) is convex, we have z;(w) € F(w,¢(w)) for t € [0, 1].
Therefore by (1) we have

sup  [Re(u, p(w) — 2z (w)) + f(w, ¢(w), 2 (w))] <0
UET (w,2z¢ (w))

for all t € [0,1].
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Since for each x € X, y — f(w,z,y) is concave and f(w,xz,z) = 0, it follows
that for ¢ € (0, 1],
t- { sup [Re<u7 ¢(w) - $>] + f(w7 ¢(w)a IZZ)}

weT (w,z (w))

< sup t-[Re(u, ¢(w) — o)) + flw, d(w), tz + (1 = t)¢(w))

weT (w,zt (w))

= sup  Re(u, ¢(w) — 2t(w)) + f(w, d(w), ze(w)) <0,

weT (w,z¢ (w))

which implies that for ¢ € (0, 1],
@) sup Re(u, pw) — 2) + f(w, (), 2) <0.

u€T (w,zt (w))

Let zp € T(w, ¢p(w)) be arbitrarily fixed. For each € > 0, let
U,, ={z € E* : |Re(zp — 2, p(w) — z)| < e}

Then U,, is a o(E*, E)-neighborhood of zy. Since T(w, -)|rnx is lower semi-
continuous, where L := {z(w) : T € [0,1]}, and U,, N T(w, p(w)) # O, there
exists a neighborhood N(¢(w)) of ¢(w) in L such that if z € N(¢(w)), then
T(w, d(w)) NU, # B. But then there exists § € (0, 1] such that z;(w) € N(p(w))
for all t € (0,9). Fix any t € (0,9) and u € T(w,z(w)) N U,,. We have
|[Re(zo—u, p(w)—x)| < €. This implies that Re(zg, ¢(w)—z) < Re(u, p(w)—x)+e.
Therefore Re(zg, ¢p(w)—x)+ f (w, p(w), ) < Re{u, p(w)—z)+ f(w ¢(w),x)—|—€ <e
by (2). Since € > 0 is arbitrary, Re(zo,d(w) — z) + f(w,p(w),z) < 0. As
20 € T(w, p(w)) is arbitrary,
sup  Re(z,¢(w) —2) + f(w, p(w),2) <0

2€T (w,¢(w))

for all x € F(w, p(w)). O

THEOREM 5.2. Let (2,X) be a measurable space with ¥ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally conver Hausdorff
topological vector space E. Assume that F : Q x X — 2% is such that for each
w € Q, Flw, -) is continuous with non-empty compact and convex values and
Graph F € Y@ B(X x X), and T : Q x X — 2F" s such that for each given
w € Q, T(w, ) is monotone with non-empty values and is lower semicontinuous
from the relative topology of X to the strong topology of E*. Suppose that
(i) F: Ox X x X - RU{—00,400} is such that for each given w € €,
(z,y) — flw,z,y) is lower semicontinuous and for each fized (w,x) €
QAx X,y f(w,z,y) is concave and f(w,z,z) = 0 for each (w,x) €
Qx X;
(ii) the set {(w,x) € QXX : SUDye p(w ) SUPueT(w,y) [RE(U, —y) + f(w, 2, y)]
>0} € ¥® B(X);
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(iii) for each w € R, there exist a non-empty compact convex subset Xo(w)
of X and a non-empty compact subset K(w) of X such that for each
x € X\ K(w) there exists y € co(Xo(w) U {z}) with y € co(F(w,z) N
{# € X :super(u,») Re(u, z — 2) + fw,z,2) > 0}).
Then there exists a measurable map ¢ : & — X such that p(w) € F(w, p(w)) and

sup [ sup Re<ua d)(w) - y> + f(w7 ¢(w)7 y)] S 0
YEF (w,¢(w)) ueT (w,p(w))

for all w € Q.

PRrOOF. By Theorem 5.1, we need only show that for each given w € €, the
set
Y(w):={zxeX: sup [ sup Rel{u,z—y)+ f(w,z,y)] >0}
yeF (w,z) ueT (w,y)
is open in X.

Since X is bounded and f(w, -, -) is lower semicontinuous, the function
(u,z,y) — Re(u,x —y) + f(w, z,y) is lower semicontinuous from E* x X x X to
R for each fixed w € Q. Therefore (z,y) — sup,er(y ) [Re(w, v—y)+ f(w, z,y)] is
also lower semicontinuous by lower semicontinuity of 7'(w, - ) and Proposition III-
19 of Aubin and Ekeland [5, p. 118]. Since F(w, -) is lower semicontinuous, z
SUPy e F(w,2) SUPueT(w,y) [Re(t, 7 — y) + f(w, 2, y)] is again lower semicontinuous
for each fixed w € §2. Thus the set

Sw)y={reX: sup sup [Re(u,z —y) + f(w,z,y)] > 0}
yeF (w,z) ueT (w,y)

is open in X. O

Now we will consider the existence of solutions for the problems (x) and ()
without assuming monotonicity as in Theorems 5.1 and 5.2.

THEOREM 5.3. Let (2,X) be a measurable space with ¥ a Suslin family and
X be a non-empty convex Polish subset of a locally convex Hausdorff topological
vector space E. Suppose that:

(i) F: Qx X — 2% is such that for each w € Q, F(w, -) is compact
and upper semicontinuous with non-empty compact convex values, and
Graph F € ¥ @ B(X x X);

(i) T : Q@ x X — 27 is such that z — inf,cp(, . Relu,z —y) is lower
semicontinuous for each (w,y) € Q x X;

(iii) f: Q2 x X x X — R is such that for each fized (w,y) € A x X, x
flw,z,y) is lower semicontinuous on X and for each fized (w,x) €
Ox X,y f(w,z,y) is 0-diagonally concave;
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(iv) for each given w € Q, the set

{reX: sup [ inf Relu,z—y)+ flw,z,y)] >0}
yeF (w,x) uw€T (w,z)

s open in X ;

(V) the set {(w7 l‘) €ENxXX: SUPye F(w,x) inquT(w,a:) [Re<u7 x—y)+f(w, €T, y)]
>0} € %@ B(X);

(vi) for each w € Q, there exist a non-empty compact convex subset Xo(w)
of X and a non-empty compact subset K(w) of X such that for each
x € X\ K(w) there exists y € co(Xo(w) U {z}) with y € co(F(w,z) N
{# € X :supyer(u,») Re(u, z — 2) + fw,z,2) > 0}).

Then there exists a measurable map ¢ : & — X such that p(w) € F(w, p(w)) and

sl Rl ) =)+ e ) <0

for all y € F(w,p(w)) and w € Q.

Suppose that, in addition, (1) for each fized (w,z) € Ax X, y — f(w,x,y) is
lower semicontinuous and concave and f is measurable; (2) there exists a non-
empty Polish subset E} of E* such that T(Q x X) C E§, T is measurable with
non-empty strongly compact convez values and (3) F is measurable.

Then there exists a measurable function p : & — E* such that p(w) €
T(w, ¢(w)) and
sup ~ {Re(p(w), ¢(w) — ) + f(w,¢(w),y)} <0
YEF (w,0(w))

for all w € Q.

PROOF. Define ¢ : Q x X x X — RU{—00, 400} by

Y(w,r,y) = inf Re(u,z—y)+ f(w,2,y),
ueT (w,x)

for each (w,z,y) € @ x X x X. Then by (ii), (iii) and (iv) we have:

(1) for each fixed (w,y) € Q& x X, z — (w,z,y) is lower semicontinuous
on X and z & co{y € X : ¢Y(w,x,y) > 0}) for each (w,z) € Q x X;
(2) for each w € €, the set {z € X : sup,cp(,q) Y(w,2,y) > 0} is open
in X.
Therefore F' and 1 satisfy all conditions of Theorem 4.2. By Theorem 4.2 there
exists a measurable map ¢ : Q — X such that ¢(w) € F(w, ¢p(w)) and

[Re<u7 ¢(w) - y> + f(wv ¢(w)v y)] <0

sup inf
YEF (w,p(w)) YET (w,¢(w))

for all w € Q.
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If, in addition, the conditions (1), (2) and (3) hold, we shall find another mea-
surable map p : 2 — E* such that p(w) € T'(w, #(w)) and sup ¢ p(w, 4 () [Re(p(w),
P(w) —y) + flw, p(w),y)] <0 for each w € .

Fix an w € Q. Define f1 : F(w, ¢(w)) x T'(w, d(w)) — R by

fi(y,w) = Re(u, ¢(w) = y) + f(w, ¢(w), y)

for each (y,u) € F(w, ¢(w)) X T(w, d(w)). Then for each y € F(w,p(w)), u —
f1(y,u) is lower semicontinuous and convex and for each fixed u € T(w, p(w)),
y — fi(y,u) is concave. By Kneser’s minimax theorem [33],

inf sup  [Re(u, p(w) —y) + f(w, p(w), y)]
w€T(w,0(w)) ye F(w,p(w))

= sup inf [Re<u, ¢(w) — y> + f(w7 d(w), y)] <0.
YEF (w,¢(w)) YET (w,0(w))

Since T'(w, ¢(w)) is compact, there exists ug € T'(w, ¢(w)) such that

sSup [R€<’LL0, ¢(w) - y> + f(w’ (;5((4))7 y)} <0.
yEF(w,¢0(w))

Now let ®,T; : Q — 2% be defined by
O(w)={veT(w,¢w)): sup [Reu,¢(w)—y)+ flw,d(w),y)] <0},
YEF(w,¢(w))
T (w) = T(w, p(w))

for each w € Q. Note that ®(w) # 0 for all w € Q. Since T' and ¢ are measurable,
T, is also measurable by Lemma 3 in [39, p. 55].
Define g1 : 2 x X x X x E§f — R by

91(%9573/, ’LL) = Re(u,x - y> + f(wmc,y)

for each (w,z,y,u) € @ x X x X x Ef. Then g; is measurable. Also define
g2: 2 x X x Ef — R by

g2(w7 Y, U) = Re<ua ¢(w) - y> + f(wv ¢(w)7 y)
for each (w,y,u) € Qx X x E}. Now define Fy : Q — 2% by Fy(w) = F(w, ¢(w))

for each w € Q. Since ¢ is measurable and F' is also measurable, go and Fj are
measurable by Lemma 3 in [39, p. 55] again.
Now define g3 : Q@ x Ef — R by

gs(w,u) = sup  gao(w,y,u) =  sup [Re(u, d(w) —y) + f(w, d(w), y)]
YEF(w,6(w)) VEF(@,6())

for each (w,u) € Q x Ej. We shall prove that g3 is a measurable function.
Since Fj is measurable, by Theorem A, there exists a countable family of

measurable maps p, :  — X such that Fj(w) = cl{pp(w) : n = 1,2,...} for

each w € Q. Since ¢ is measurable, for each fixed (u,y) € E* x X, the map
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w +— Re(u, ¢p(w) — y) is measurable. Note that the map (u,y) — Re(u, d(w) —y)
is continuous, so that the map (w,u,y) — Re(u,p(w) — y) is measurable by
Theorem I11.14 of Castaing and Valadier [10, p. 70]. For each n € N, the function
gl Q x E* — R defined by

n(w,u) = Re(u, ¢(w) = pn(w)) + f(w, 9(w), pn(w))

for each (w,u) € 2 x E*, is measurable. Therefore for each n € N, the map
(w,u) — Re(u, p(w) — pp(w)) + f(w, p(w), pr(w)) is also measurable. Since for
each (w,z) € A x X, y — f(w,z,y) is lower semicontinuous, it follows that for
each r € R,

{(w,u) € A x E* : g3(w,u) < r}

o

ﬂ{(w,u) EQXE*: g (w,u) <r}eX®B(EY).

n=1
Therefore the function gs is measurable so that the set My = {(w,u) € Q x Ej :
g3(w,u) <0} € X®@B(E*). Hence Graph ® = (GraphT1)N M, € @ B(Ef). By
Theorem A, there exists a measurable map p : Q — E{ such that p(w) € ®(w) for
each w € €. By the definition of ®, the measurable map p satisfies the following;:

(8) { d(w) € F(w,p(w)) and p(w) € T(w, d(w)),
SUPyc F(w,p(w)) [Re(p(W), d(w) — y) + f(w, p(w),y)] < 0.
O

Note that if X is bounded and the mapping T : Q@ x X — 25" is such that for
each w € Q, T'(w, -) is upper semicontinuous with non-empty strongly compact
values, then by Lemma 2 of Kim and Tan in [32, p. 140] or Theorem 1 of Aubin
in [4, p. 67], the condition (ii) of Theorem 5.3 is satisfied. Thus Theorem 5.3
is a stochastic version of Theorem 3 of Shih and Tan in [44, p. 340]. Recall
that for a topological vector space E, the strong topology on its dual space E*
is generated by the family {U(B;e) : B is a non-empty bounded subset of E
and £ > 0} as a base for the neighborhood system at zero, where U(B;e) :=
{f € E* : sup,ep [Re(f,z)| < e}

Now if we impose the upper semicontinuity condition on the correspondence
T, then we have the following:

THEOREM 5.4. Let (2,X) be a measurable space with ¥ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally conver Hausdorff
topological vector space E. Suppose that

(i) F:Qx X — 2% is random compact and continuous with non-empty
compact convex values;



76 K. K. Tan X. Z. YUAN

(i) T:Qx X — 2" is such that for each given w € Q, T(w, -) is compact
and upper semicontinuous with non-empty strongly compact and convex
values;

(iii) f: Qx X x X — R is such that (a) for each fized (w,y) € Q x X,
z— f(w,x,y) is lower semicontinuous on X ; (b) for each fized (w,x) €
QAx X,y f(w,z,y) is 0-diagonally concave;

(iv) the set {(w,z) € QXX : SUPy¢ p(u 2) INfuer(w,x) [Re(u, —y) + f(w, 2, y)]
>0} € ¥ B(X).

(v) for each w € Q, there exist a non-empty compact convex subset Xo(w)
of X and a non-empty compact subset K(w) of X such that for each
x € X\ K(w) there exists y € co(Xo(w) U {z}) with y € co(F(w,z) N
{z € X i superp(o,.) Re(u, 2 — 2) + f(w,z,2) > 0}).

Then

(a) for each fixred w € Q, the set

{reX: sup [ inf Relu,z—y)+ f(w,z,y)] >0}
yeF (w,z) u€T (w,)
s open in X ;
(b) Graph F € ¥ ® B(X x X);
(c) there exists a measurable map ¢ : Q — X such that (w) € F(w, p(w))
and

ueT(iSEb(w)) Re(u, p(w) —y) + f(w,d(w),y) <0

for ally € F(w,¢p(w)) and w € Q2.

PRrROOF. (a) Fix w € Q. Since X is a compact subset of the locally convex
Hausdorff topological vector space E, and E* is equipped with the strong topo-
logy, the function ¢; : E* x X x X — RU {—o00, +00} defined by 1 (u,z,y) =
Re(u,z — y) for each (u,z,y) € E* x X x X is continuous. Since T(w, ) :
X — 2F7 is upper semicontinuous with non-empty strongly compact values, by
Theorem 1 of Aubin [4, p. 67], the function 99 : X x X — RU{—o00, +00} defined
by o (x,y) = inf,cp(w,2) Re(u, z—y) is also lower semicontinuous. Thus (z,y) —
inf,cpw,2) Re(u, z —y) + f(w, z,y) is lower semicontinuous by (iii). As F(w, -) :
X — 2% is lower semicontinuous with non-empty values, by Proposition I11I-19
in [5, p. 118], the map z +— SUPyc p(w,z) IMfueT (w,2) [Re{u,z — y) + f(w,z,y)] is
also lower semicontinuous from X to R U {—o0,+oo} for each fixed w € Q, so
that the set

Yw)y={reX: sup inf [Re(u,z —y) + f(w,z,y)] > 0}

yEF (w,z) w€T (w,z)

is open in X.
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(b) Since F is random continuous with closed values, by Theorem 3.5 in [26,
p. 57], we have Graph F € ¥ @ B(X x X).
(c) Since all hypotheses of Theorem 5.3 are satisfied, the conclusion follows.[]

If both correspondences T and F' are measurable, we have the following:

THEOREM 5.5. Let (2,X) be a measurable space with ¥ a Suslin family and
X be a non-empty bounded convex Polish subset of a locally conver Hausdorff
topological vector space E. Suppose that

(i) F:QxX — 2% is measurable such that for each w € Q, F(w, -) is
compact and continuous with non-empty compact convex values;

(i) T : Q x X — 28" is measurable such that for each w € Q, T(w, -)
is compact and upper semicontinuous with non-empty strongly compact
convex values;

(iil) f:Qx X x X — R is measurable such that (a) for each fixed (w,y) €
Ax X, z+— f(w,z,y) is lower semicontinuous on X; (b) for each fized
(w,z) € Ax X, f(w,z,2) =0 and y — f(w,z,y) is lower semicontinu-
ous and concave;

(iv) there exists a mnon-empty Polish subset E§ of E* such that T(2 x X)
C E; and

(v) for each w € Q, there exist a non-empty compact convexr subset Xo(w)
of X and a non-empty compact subset K(w) of X such that for each
x € X\ K(w) there exists y € co(Xo(w) U {z}) with y € co(F(w,z) N
{z € X 1 supyerp(u,.) Re(u, 2 — 2) + f(w,,2) > 0}).

Then there exist measurable maps ¢ : Q@ — X and p : Q@ — E* such that
p(w) € F(w, p(w)), plw) € T(w, p(w)) and
sup  {Re(p(w), p(w) —y) + f(w, p(w),y)} <0
YEF (w,0(w))

for all w e Q.
ProOOF. By Theorems 5.3 and 5.4, it remains to prove that

{(w,2) eQx X : sup inf [Re(u,z —y) + f(w,z,y)] >0} € ¥ ® B(X).
yEF (w,z) UET (w,x)

Since T and F' are measurable, by Theorem 4.2(e) of Wagner [57], there exist
two countable families of measurable maps p, : 2@ x X — X and ¢, : Qx X — E*
such that F(w,z) = cl{pp(w,z) : n=1,2,...} and T(w,z) = cl{gn(w,z) : n =
1,2,...} for each (w,z) € O x X.

We define a mapping gp : B* x X x X — RU {—00,+00} by go(u,z,y) =
Re(u, z — y) for each (u,z,y) € E* x X x X. Then g is continuous so that g;
is measurable. Therefore the function gj : @ x E* x X x X — RU {—00, 00}
defined by ¢{(w, u,z,y) = Re{u,z — y) + f(w,x,y) is also measurable for each
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(w,u,z,y) € @ x B* x X x X since f is measurable. Fix n € N, note that p,, :
QOx X — X is measurable and f is measurable. Thus for each j € N, the function
g7 2 x X — RU{—o00, oo} defined by g7 (w, z) = Re(gj(w, z), x — pn(w, x)) +
flw,z,pn(w,x)) is also measurable by Lemma 3 in [39, p. 55]. Therefore the
mapping g, : 2 x X — RU{—00,+oo} defined by g,(w,z) = infjen g7 (w, z) =
inf;en{Re(g;(w, z),x — pn(w,z)) + f(w,x,pp(w,x))} is measurable. Note that
the mapping g : @ x X — R U {—o00, 400} defined by g(w,z) = sup,,cy gn(w, x)
for each (w,x) €  x X is also measurable. Since for each (w,x) € 2 x X, the
mapping y — f(w,x,y) is lower semicontinuous, we have
{(w,2) €A x X : sup inf [Re(u,z —y) + f(w,z,y)] > 0}

YEF (w,a) vET (w,2)
={(w,z) €A x X : ilelggi'lellgl[Re@j(w’x)’x — pn(w,2)) + f(w, z, pp(w, x))] > 0}
={(w,2) : g(w,x) >0} € ¥ @ B(X).

Therefore
{(w,z) € A x X : sup inf [Re(u,z —y) + f(w,z,y)] >0} € ¥ ® B(X).
yEF (w,z) weT (w,x)

O

Let X in Theorem 5.5 be compact. Then we have:

COROLLARY 5.6. Let (2,%) be a measurable space with ¥ a Suslin family
and X be a non-empty compact convex subset of a Banach space E whose dual
space E* is separable. Suppose that

(i) F:Qx X — 2% is measurable such that for each w € Q, F(w, -) is
continuous with non-empty compact convex values;
(i) T : Q@ x X — 25" is measurable such that for each w € Q, T(w, -)
18 upper semicontinuous with non-empty strongly compact and conver
values;
(iil) f:Qx X x X — R is measurable such that (a) for each fized (w,y) €
Ax X,z f(w,z,y) is lower semicontinuous on X; (b) for each fized
(w,z2) € A x X, f(w,z,z) =0 and y — f(w,z,y) is lower semicontinu-
ous and concave.
Then there exist measurable maps ¢ : Q@ — X and p : Q@ — E* such that
¢(w) € F(w,p(w)), p(w) € T(w, dp(w)) and

sup  {Re(p(w), ¢(w) —y) + f(w,9(w),y)} <0
YyEF (w,0(w))

for all w e Q.

Let f =0 in Corollary 5.6. Then we have the following:
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COROLLARY 5.7. Let (Q2,%) be a measurable space with ¥ a Suslin family
and X be a non-empty compact convexr subset of a Banach space E whose dual
space E* is separable. Suppose that

(i) F:QxX — 2% is measurable such that for each w € Q, F(w, -) is
continuous with non-empty compact convexr values;
(i) T : Q x X — 25 is measurable such that for each w € Q, T(w, -) is

upper semicontinuous with non-empty strongly compact convex values.

Then there exist measurable maps ¢ : Q@ — X and p : Q@ — E* such that
P(w) € F(w,9(w)), pw) € T(w,dp(w)) and
sup  Re{p(w), ¢(w) —y) <0
YEF (w,¢(w))

for all w e Q.

Theorem 5.4 is also a non-compact stochastic version of Theorem 4 of Shih
and Tan in [44, p. 341] (and its improvements due to Kim [31, Theorem] and to
Shih and Tan [45, Theorem 2, p. 69-70] (with M = 0)).

Theorem 5.4 generalizes Theorem of Tan [50, p. 326] in the following ways:
(1) the set X need not be compact; (2) the correspondence T is upper semicon-
tinuous instead of being continuous and (3) the function f need not be random
continuous. In the case F(z) = X and T(z) = 0 for each € X, Theorem
5.4 also improves Theorem 9.2.3 of Zhang [59, p. 304] with weaker continu-
ity and measurability conditions. We also remark that our arguments used in
proving the existence of solutions for generalized random quasi-variational in-
equalities in this section are different from those used by Tan [50] and Zhang
[59], etc.

Quasi-variational inequalities and generalized quasi-variational inequalities
have many applications in mathematical economics, game theory and optimiza-
tion and other applied sciences (see e.g. [4], [5] and [6]). For sure, random quasi-
variational inequalities and generalized random quasi-variational inequalities will
also have many applications in random mathematical economics, random game
theory and related fields.
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