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THE YAMABE PROBLEM ON SUBDOMAINS
OF EVEN-DIMENSIONAL SPHERES

Frank Pacard

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

We prove the existence of complete conformally flat metrics of constant pos-
itive scalar curvature on the complement in Sn of a finite number of (n− 2)/2-
dimensional smooth submanifolds, provided n ≥ 4 is even.

1. Introduction and results

The singular Yamabe problem is concerned with the following question:

Question. Given a subset Λ included in the n-dimensional sphere Sn, does
there exist on Sn \ Λ a complete metric with constant positive scalar curvature
which is conformally equivalent to the standard metric of Sn \ Λ ?

This problem has been extensively studied since the pioneering work of
R. Schoen [10], who proved that the answer to the above question is positive
when Λ consists of finitely many points (at least 2). Moreover, in the same
paper, the existence of solutions to the singular Yamabe problem is proven for
some sets Λ whose Hausdorff dimension is not an integer, taking away all hope
to prove any regularity results for the singular set itself. Later on, R. Mazzeo
and N. Smale [7] have proved that the answer is positive in the case where Λ
is a perturbation of a k-dimensional sphere, for any 0 < k < (n − 2)/2. More
recently, R. Mazzeo, D. Pollack and K. Uhlenbeck [5] have studied the moduli
space of solutions to this problem when Λ is a finite set of points. The technique
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they have developed also allowed them to build solutions when Λ consists of a
finite number of dipoles (pairs of points).

Since the work of R. Schoen and S. T. Yau [11], we know that a necessary con-
dition for the singular Yamabe problem to have a solution is that the Hausdorff
dimension of Λ must be less than or equal to (n− 2)/2.

Let us denote by g0 the standard metric on Sn. The conformal Laplacian on
the sphere is given by

(1) L0U ≡ ∆g0U − n(n− 2)
4

U,

where ∆g0 denotes the Laplacian with respect to the metric g0. The singular
Yamabe problem (see for example the book of T. Aubin [1]) reduces to the
existence of positive solutions for the nonlinear equation

(2) −L0U = U (n+2)/(n−2)

on Sn \ Λ, where we require that the metric defined by g ≡ U4/(n−2)g0 is a
complete metric on Sn \ Λ.

The aim of this paper is to prove the following result:

Theorem 1. Assume that n ≥ 4 is even. Given any finite disjoint union Λ
of compact (n − 2)/2-dimensional submanifolds of Sn without boundaries, there
exist on Sn \ Λ infinitely many complete metrics with constant positive scalar
curvature which are conformally equivalent to the standard metric on Sn \ Λ.

This theorem gives a positive answer to the singular Yamabe problem in the
case where Λ is any finite disjoint union of (n−2)/2-dimensional submanifolds of
Sn. This work generalizes our previous work on the same subject [8] in dimension
4 (or in dimension 6) when Λ is a finite number of circles (or 2-spheres when
n = 6). In [8], solutions to the singular Yamabe problem were obtained by a
variational method, starting from an approximate solution.

In the case where n = 6, the result of Theorem 1 was announced without
proof in [9].

2. Outline of the proof

Our proof of the existence of solutions of (2) is very similar to the proof of
R. Mazzeo and N. Smale (see Section 3 of [7]).

Our first aim will be to describe the construction of the approximate solu-
tions. In order to achieve this goal, we will need technical tools that are stated
in Section 3. This will also be the opportunity to introduce, in Section 4, the
weighted Hölder spaces we will work on in the subsequent sections. The con-
struction of the approximate solution itself is carried out in Section 5. After
having rephrased the nonlinear problem as a fixed point problem, the solution is
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obtained by using some contraction mapping argument similar to the one used
in [7]; this is done in Section 8. To be able to do it, we will need some estimates
in weighted Hölder spaces which are derived in Section 6 and we will also need
some estimates for solutions of elliptic equations in weighted Hölder spaces; this
will be the purpose of Section 7.

Let us emphasize the main differences between our work and the work of
R. Mazzeo and N. Smale. The main difference appears in the construction of
the approximate solutions. Our approximate solutions are, in some sense, much
closer to an exact solution than theirs since they allow us to prove the existence
of global solutions to our problem; in contrast with the work of R. Mazzeo and
N. Smale in which, given a singular set, one can only produce local solutions.
Moreover, in the case where the dimension of the singular set Λ is k = (n−2)/2,
it appears that the analysis is much simpler than the one involved in [7], when
the singular set has dimension k < (n− 2)/2. In particular, we do not need the
full theory of singular elliptic operators in weighted Hölder spaces as developed
in [7].

The author is pleased to have here the opportunity to thank J. M. Coron,
R. Mazzeo and N. Smale for the interest they took in the first version of this
work and for many fruitful suggestions. We also want to thank R. McOwen for
pointing out many mistakes in the first version of this paper.

3. Well known properties

We start the proof by recalling some well known properties which will be
needed in the sequel. The equation (2) enjoys the following property, which is
proved for example in [4]:

Proposition 1 ([4]). Assume that (M, g) and (N,h) are two Riemannian
manifolds of dimension n ≥ 3. In addition, assume that there exists a conformal
diffeomorphism f from M to N , i.e. there exists a positive regular function φ

defined on M such that f∗h = φ4/(n−2)g. Set φ̃ = φ◦f−1. If u ∈ C2(M) satisfies
the equation

∆gu−
n− 2

4(n− 1)
Rg(x)u+ F (x, u) = 0,

then U ≡ (u ◦ f−1)/(φ ◦ f−1) is a solution of the equation

∆hU − n− 2
4(n− 1)

Rh(y)U + φ̃(y)−(n+2)/(n−2)F (f−1(y), φ̃(y)U) = 0,

where Rg and Rh are the scalar curvatures of (M, g) and (N,h) respectively.

We will often use this proposition in the case where f is the inverse of π :
Sn \{N} → Rn, the stereographic projection from the north pole N of Sn. Then
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(see [4]) f is a conformal diffeomorphism from Rn into Sn \{N}. Thus, applying
the result of Proposition 1, we obtain

Lemma 1. Define φ(x) ≡ (2/(1 + |x|2))(n−2)/2. Then the formula

(3) U = (u ◦ π)/(φ ◦ π)

establishes a one-to-one correspondence between solutions of

∆δn
ij
u+ F (x, u) = 0 in Ω ⊂ Rn

and solutions of

∆g0U−
n(n− 2)

4
U+φ̃(y)−(n+2)/(n−2)F (f−1(y), φ̃(y)U) = 0 in π−1(Ω) ⊂ Sn.

In this lemma and in the sequel, ∆δn
ij

denotes the Laplacian in Rn. As a
particular case, we may take F (x, u) = u(n+2)/(n−2). Lemma 1 states that the
function U defined by (3) satisfies

(4) ∆g0U − n(n− 2)
4

U + U (n+2)/(n−2) = 0,

whenever u is a solution of

(5) ∆δn
ij
u+ u(n+2)/(n−2) = 0.

Another case of interest will be F (x, u) ≡ g(x). In this case, if we define

(6) F (y) ≡
(

1 + |π(y)|2

2

)(n+2)/2

g(π(y)),

we deduce that the function U given by (3) is a solution of

(7) ∆g0U − n(n− 2)
4

U + F (y) = 0,

whenever u is a solution of

(8) ∆δn
ij
u+ g(x) = 0.

4. The function spaces

Assume that Λ ⊂ Sn satisfies all the assumptions of Theorem 1. Using the
conformal invariance of our problem, we may always perform some rotation and
assume that the north pole of Sn does not belong to Λ. After the stereographic
projection from the north pole, our problem reduces to the resolution in Rn \Λ′

of the equation

(9) −∆δn
ij
u = u(n+2)/(n−2)

(see for example (4) and (5)). Here and in the sequel, Λ′ will denote the stere-
ographic projection of the set Λ. Thus, by assumption, the set Λ′ is a finite
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disjoint union of (n − 2)/2-dimensional compact submanifolds of Rn without
boundaries. We want to look for solutions of this new problem satisfying the
additional condition that u(x) tends fast enough to ∞ as x converges to Λ′ in
order to ensure the completeness of the metric defined by g ≡ u4/(n−2)δij in the
neighborhood of Λ′. In addition, we must require that u(x) tends fast enough to
0 as |x| tends to ∞. To fix ideas, we require that lim|x|→∞ |x|n−2u(x) exists. In
view of (3), which allows us to pass from u to U , the last condition will ensure
that U is bounded near the north pole, and therefore, by classical regularity
theory, U being a solution of (4), will be regular near this point.

Moreover, we may verify that equation (9) is invariant undeer the group of
dilations

R+ 3 ε→ ε(n−2)/2u(εx).

Therefore, up to dilation, we may always assume that Λ′ is included in Bn(1) ⊂
Rn, the unit ball in Rn.

From now on, we assume that Λ and therefore Λ′ are fixed. We denote by
Tσ the union of tubular neighborhoods of the different connected components
of Λ, whose diameters are given by σ > 0. And naturally, T ′σ will denote the
stereographic projection of Tσ in Rn. We assume in the sequel that the pa-
rameter σ > 0 is chosen small enough in order to ensure that all the tubular
neighborhoods of the different connected components of Λ are disjoint.

In the sequel, Φ(X) will denote a C2,α(Sn \ Λ) function such that, for all
X ∈ Sn \ Λ,

(10) 1
2 dist(X,Λ) ≤ Φ(X) ≤ 2 dist(X,Λ)

and also

(11) |∇Φ(X)| ≤ c

for some constant c > 0 only depending on Λ. As in the paper of R. Mazzeo and
N. Smale [7], we define some weighted Hölder spaces as follows.

Definition 1 ([7]). Given some positive parameter ν > 0, we define, for
any function U ∈ C0,α(Sn \ Λ), the norm

‖U‖ν = sup
r≤π/2

|ΦνU |0,α,[r,2r].

We will denote by C0,α
ν (Sn \ Λ) the space of functions U satisfying ‖U‖ν <∞.

Here | · |0,α,[r,2r] denotes the norm in the Hölder space C0,α, which is defined
by

|u|0,α,[r,2r] = sup
dist(x,Λ)∈[r,2r]

|u(x)|+ rα sup
dist(xi,Λ)∈[r,2r]

|u(x1)− u(x2)|
|x1 − x2|α

.

The parameter α is assumed to be fixed once for all and to satisfy 0 < α < 1.
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Remark 1. Given some function φ defined in Rn \Λ′ and satisfying inequal-
ities like (10) and (11) in Bn(2) and such that φ(x)|x|2−n tends to 1 as |x| tends
to ∞, we can define a norm similar to ‖ · ‖ν for functions defined in Rn \Λ. We
will use the same notations for the two norms. The corresponding space will be
denoted by C0,α

ν (Rn \ Λ′).

Remark 2. The functions that belong to the space C0,α
ν (Sn \Λ) can roughly

be described as the functions which can blow up at every point of Λ not faster
than Φ−ν .

The following lemma is straightforward but essential:

Lemma 2. If ν ≤ (n+ 2)/2 and if

1 ≤ p <
n+ 2
2ν

,

then, for all U ∈ C0,α
ν (Sn \ Λ), we have U ∈ Lp(Sn).

We now give a series of technical properties which lead to a calculus in the
spaces C0,α

ν .

Proposition 2. The following properties hold:

1. Given U ∈ C0,α
ν and V ∈ C0,α

ν′ , we have UV ∈ C0,α
ν+ν′ and

‖UV ‖ν+ν′ ≤ 2‖U‖ν‖V ‖ν′ .

2. Given U ∈ C0,α
ν such that U ≥ 0 and given p > 1, we have Up ∈ C0,α

pν

and

‖Up‖pν ≤ p‖U‖p
ν .

3. Assume that ΦνU ∈ C0 and Φν+1|∇U | ∈ C0. Then U ∈ C0,α
ν for every

α ∈ (0, 1).

Notice that, in this proposition, the set on which the functions are defined
is not specified since all these properties hold in C0,α

ν (Rn \ Λ′) as well as in
C0,α

ν (Sn \ Λ). Our next proposition shows the influence of the stereographic
projection on elements of C0,α

ν (Rn \Λ′) via the transformations given by (3) and
(6).

Proposition 3.

1. Given u ∈ C0,α
ν (Rn \ Λ′) with compact support in Rn, the function U

defined in (3) belongs to C0,α
ν (Sn \ Λ). In addition,

‖U‖ν ≤ c‖u‖ν

for some constant c which does not depend on u.
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2. Given f ∈ C0,α
ν (Rn \ Λ′) with compact support in Rn, the function F

defined in (6) is in C0,α
ν (Sn \ Λ) and

‖F‖ν ≤ c‖f‖ν

for some constant c which does not depend on f .

5. Construction of an approximate solution

We denote by Bk(R) the ball in Rk with radius R > 0, centered at the origin.
In some neighborhood U ′ ⊂ Λ′ of a point z0 ∈ Λ′, there exists a diffeomorphism
ψz0 : T ′σ|U ′ → B(n+2)/2(σ) × U ′. In the coordinate system induced by ψz0 , we
can write as in [7]:

Proposition 4 ([7]). In some neighborhood of z0 ∈ Λ′, let the coordinates
be given by (y, z) ∈ B(n+2)/2(σ)× U ′. Then for any function u we can write

∆δn
ij
u = ∆

δ
(n+2)/2
ij

u+ ∆g(Λ′)u+ e1 · ∇2u+ e2 · ∇u.

In addition, e1 and e2 satisfy the estimate

‖e1‖−1 + ‖e2‖0 ≤ c

for some constant c > 0 which does not depend on α, σ nor on y, z.

Here, we have adopted the notation

e1 · ∇2u ≡
∑
i,j

eij
1

∂2u

∂xi∂xj
, e2 · ∇u ≡

∑
i

ei
2

∂u

∂xi
,

and naturally
‖e1‖−1 + ‖e2‖0 ≡

∑
i,j

‖eij
1 ‖−1 +

∑
i

‖ei
2‖0.

Reducing σ if necessary, we can assume that the result of Proposition 4 holds in
all T ′σ.

We now recall the following existence result, a proof of which can be found
in P. Aviles’ papers [2], [3]:

Theorem 2 ([2], [3]). For all dimensions m ≥ 3, there exists a positive
weak solution of

(12) −∆δm
ij
u = um/m−2,

defined on the unit ball of Rm, which is regular except at the origin. In addition,
there exists some constant c > 0 only depending on m such that for y near the
origin we have

u(y) = (c + o(1))(−|y|2 log |y|)2−m/2.
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Let χ be a regular function from R(n+2)/2 into R+ such that

χ ≡ 1 in B(n+2)/2(1), χ ≡ 0 in R(n+2)/2 \B(n+2)/2(2).

For all τ > 0 we define the cut-off function χτ (y) ≡ χ(y/τ) for all y ∈ Rm. Given
0 < ε < 1 and τ < σ/2, we define, in some neighborhood of z0 ∈ Λ′, the function

u0(y, z) ≡ u0(y) ≡ ε(n−2)/2u(εy)χτ (y).

The above construction allows one to define locally the value of the function
u0, near any point of T ′σ. Taking into account the result of Proposition 2, we
can compute in B(n+2)/2(σ)× U ′ the error function f0 given by

f0(y, z, ε, τ) = ∆δn
ij
u0 + u

(n+2)/(n−2)
0 ,

where we get, after some computation,

f0(y, z, ε, τ) ≡ e1(y, z) · ∇2u0(y) + e2(y, z) · ∇u0(y)

+ ε(n−2)/2u(εy)∆
δ
(n+2)/2
ij

χτ (y) + 2∇χτ (y)∇(ε(n−2)/2u(εx))

+ (χ(n+2)/(n−2)
τ (y)− χτ (y))ε(n+2)/2u(n+2)/(n−2)(εy).

We may now come back to our problem on Sn using the result of Proposi-
tion 1. After an inverse stereographic projection, we get from the functions u0

and f0 defined on Rn \ Λ′, some functions U0 and F0 defined by (3) and (6) on
Sn \ Λ which satisfy the equation

−L0U0 = U
(n+2)/(n−2)
0 + F0 in Sn \ Λ.

The function F0 depends on τ , which we will assume to be fixed, and also depends
on ε, which we may take as small as we want. In the next section we are going
to estimate the norm of the different quantities we are going to deal with, when
the parameter ε tends to 0.

6. Estimates in the space C0,α
ν

Our first lemma is concerned with the norm of the function F0 which has
been defined in the previous section. Let us recall that F0 depends on the scaling
factor ε > 0.

Lemma 3. Assume that ν > (n − 4)/2 and that the Hölder exponent α is
chosen to satisfy 0 < α < ν− (n−4)/2. For any η > 0, there exists some θ > 0,
depending on η and ν, such that

‖F0‖ν+2 ≤ η if ε < θ.
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Proof. In this proof we define m = (n + 2)/2. The first step is to prove
some estimates on u. We already know that u is bounded by

u(y) ≤ c(|y|2(− log |y|))(2−m)/2

for all |y| ≤ 1. Since u is radial, from equation (12) we get

d

dr

(
rm−1 du

dr

)
= −rm−1um/(m−2).

Therefore, we have ∣∣∣∣ ddr
(
rm−1 du

dr

)∣∣∣∣ ≤ cr−1(− log r)−m/2

for all r ≤ 1. Integrating the last inequality from 0 to r < 1 we get the upper
bound

rm−1

∣∣∣∣dudr
∣∣∣∣ ≤ c(− log r)(2−m)/2.

Therefore

(13) |∇u(y)| ≤ c|y|1−m(− log |y|)(2−m)/2.

Finally, using once more the equation (12), we derive the estimate

(14) |∇2u(y)| ≤ c|y|−m(− log |y|)(2−m)/2,

and also

(15) |∇3u(y)| ≤ c|y|−m−1(− log |y|)(2−m)/2.

Now using (13)–(15) we easily get the desired estimate for f0 from the prop-
erties stated in Proposition 2. Namely, if dist(x,Λ′) ∈ [r, 2r] and dist(x,Λ′) ∈
[r, 2r], then we have, for r ≤ τ/2,

|φ(x)ν+2f0(x)| ≤ cr3−m+ν(log(εr))(2−m)/2,

and also

|φ(x)ν+2f0(x)− φ(x)ν+2f0(x)| ≤ cr3−m+ν−α(log(εr))(2−m)/2|x− x|,

where the constant c > 0 depends on τ , n, α and ν. Therefore, applying the
result of Proposition 3, we see that if dist(X,Λ) ∈ [r, 2r] and dist(X,Λ) ∈ [r, 2r],
then

|Φ(X)ν+2F0(X)| ≤ cr3−m+ν(log(εr))(2−m)/2.

and also

|Φ(X)ν+2F0(X)− Φ(X)ν+2F0(X)| ≤ cr3−m+ν−α(log(εr))(2−m)/2|X −X|α.

The result follows at once since, for all n ≥ 4, we have m ≡ (n + 2)/2 > 2 and
also since we have assumed that ν + 2 > n/2 ≡ m− 1. �
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Our next goal will be to estimate the norm of U4/(n−2)
0 V in the weighted

Hölder spaces. This is the aim of the next lemma:

Lemma 4. For all η > 0, there exists some θ > 0, only depending on ν,
such that

‖U4/(n−2)
0 V ‖ν+2 ≤ η‖V ‖ν ,

provided ε < θ.

Proof. Outside Tσ(Λ), the estimate can be derived easily. Now, for all
X ∈ Tσ(Λ), notice as above that there exists some constant c > 0 independent
of ε ∈ (0, 1) such that

1
c
(dist(X,Λ))(2−n)/2(log(ε dist(X,Λ)))(2−n)/4

≤ U0(X) ≤ c(dist(X,Λ))(2−n)/2(log(ε dist(X,Λ)))(2−n)/4

and also

|∇U0|(X) ≤ c(dist(X,Λ))−n/2(log(ε dist(X,Λ)))(2−n)/4.

From these inequalities and from the result of Proposition 2, we find that the
norm of U0 can be taken as small as we want in the space C0,α

(n−2)/2(S
n \ Λ),

provided ε is small enough. Therefore, U4/(n−2)
0 can be taken as small as we

want in C0,α
2 (Sn \ Λ). If we assume that V ∈ C0,α

ν (Sn \ Λ), we can easily derive
the result from Proposition 2. �

Finally, we will have to estimate the norm of nonlinear terms like V (n+2)/(n−2)

in the weighted Hölder spaces. This is the purpose of the last lemma of this sec-
tion:

Lemma 5. Assume that ν ≤ (n − 2)/2. For all η > 0, there exists some
δ > 0, only depending on ν and η, such that

‖V (n+2)/(n−2)‖ν+2 ≤ η‖V ‖ν ,

provided ‖V ‖ν < δ.

Proof. The proof relies on the simple fact that

‖V (n+2)/(n−2)‖(n+2)ν/(n−2) ≤ cη4/(n−2)‖V ‖ν .

But, as we have chosen ν ≤ (n− 2)/2, we obtain

n+ 2
n− 2

ν ≤ ν + 2,

and the result follows immediately. �
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7. The conformal Laplacian in weighted Hölder spaces

We begin this section by the following important proposition:

Proposition 5. Assume that 0 < ν < (n− 2)/2. For all V ∈ Cν+2(Sn \Λ),
there exists a unique weak solution U ∈ C0,α

ν (Sn \ Λ) to the equation

(16) −L0U = V in Sn.

In addition, there exists some constant c > 0, only depending on n and ν, such
that

‖U‖ν ≤ c‖V ‖ν+2.

Proof. The existence of a weak solution of (16) is standard as we have
assumed that ν ∈ ((n − 4)/2, (n − 2)/2). More precisely, applying the result
of Lemma 2, we find that V ∈ Lp(Sn) for all 1 < p < (n + 2)/(2(ν + 2)).
Therefore, one can apply the classical Lp existence theory to get the existence
and uniqueness of a weak solution U ∈ W 2,p(Sn) of (16). In addition, we claim
that

(17) sup
X
|Φν+1|∇U ||(X) + sup

X
|ΦνU |(X) ≤ c‖V ‖ν+2,

where the constant c > 0 does not depend on V . In order to prove the above
estimates, let us emphasize that we are dealing with the conformal Laplacian
on the sphere. Therefore, by (6)–(8), the resolution of (16) is equivalent to the
resolution of the equation

−∆δn
ij
u = v in Rn,

where the relations between u, v and U, V are given by (3) and (6). But since
V ∈ C0,α

ν+2(Sn \ Λ) we have the estimates

(18) |v(x)| ≤ c‖V ‖ν+2φ
−ν−2(x) for all x ∈ Bn(2)

and

(19) |v(x)| ≤ c‖V ‖ν+2|x|2−n for all x ∈ Rn \Bn(2).

(We recall that, by assumption, Λ′ ⊂ Bn(1).)
In Rn\T ′σ the estimate (17) follows from classical regularity theory using (18)

and (19). In T ′σ we can easily build some supersolution by considering the func-
tion

ũ : x→ dist(x,Λ′)−ν .

By Proposition 4, we see that

−∆δn
ij
ũ = ν

(
n− 2

2
− ν

)
dist(x,Λ′)−ν−2 + o(dist(x,Λ′)−ν−2)
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near Λ′. Moreover, from the choice on ν we see that ν((n− 2)/2 − ν) > 0.
Therefore, if τ is taken small enough and the constant k > 0 large enough,
then k‖V ‖ν+2ũ is a supersolution for u in T ′σ. And the estimate on U in (17)
follows easily from Proposition 3. The estimate for the gradient in (17) follows
immediately using classical regularity theory. �

Remark 3. Notice that we only need to know that Φν+2V is bounded in
order to get the estimate of Proposition 5.

8. The proof of Theorem 1 completed

In this last section, in view of the previous propositions, we restrict the set
in which the parameter ν is chosen to

ν ∈ ((n− 4)/2, (n− 2)/2).

In order to prove Theorem 1, it is sufficient to solve in the space C0,α
ν (Sn \Λ)

the nonlinear equation

(20) −L0W = (|W + U0|(n+2)/(n−2) − U
(n+2)/(n−2)
0 )− F0.

Since ν < (n−2)/2, we will see below that this will imply that W+U0 is singular
at every point of Λ.

To achieve this, we are going to define some continuous operator K from
C0,α

ν (Sn \ Λ) into itself. Then, we are going to prove that, when restricted to
a small ball in C0,α

ν (Sn \ Λ), this operator is a contraction. The existence of a
solution W of (20) will then follow from a classical fixed point theorem.

Assume that we have already obtained a solution to (20). Then U0 + V is a
weak solution of

−L0(V + U0) = |V + U0|(n+2)/(n−2) in Sn.

We claim that V + U0 is positive in Sn \ Λ. In fact, we first have the estimate

(21) U0(x) ≥ c(dist(x,Λ))(2−n)/2(− log(dist(x,Λ)))(2−n)/4 in Tσ.

On the other hand, since V ∈ C0,α
ν (Sn \ Λ), there exists some constant c > 0

such that

(22) V (x) ≤ c(dist(x,Λ))−ν .

Using the fact that ν ∈ ((n−4)/2, (n−2)/2), one finds immediately that V +U0

> 0 near Λ and, by the maximum principle, we conclude that V + U0 > 0
everywhere in Sn \ Λ. So, U0 + V is a positive solution of (2).

Finally, the fact that the metric (V + U0)4/(n−2)g0 is complete is also a
consequence of the estimates (21) and (22), which imply that
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U0(x) + V (x) ≥ c(dist(x,Λ))(2−n)/2(− log(dist(x,Λ)))(2−n)/4,

and the completeness of the metric follows at once.
It remains to prove the existence of a solution of (20) (see also [7], Proposi-

tions 3.4 and 3.5). We begin by

Lemma 6. There exists some constant c > 0 such that, for all x > 0 and all
y ∈ R,

(23) ‖x+ y|(n+2)/(n−2) − x(n+2)/(n−2)| ≤ c(|y‖x|4/(n−2) + |y|(n+2)/(n−2)).

Let V ∈ C0,α
ν (Sn \ Λ) be given. We define K(V ) ≡ W ∈ C0,α

ν (Sn \ Λ) to be
the solution of

−L0W = (|V + U0|(n+2)/(n−2) − U
(n+2)/(n−2)
0 )− F0.

Using (23) and the results of Lemmas 3–5, we see that, for all V ∈ C0,α
ν (Sn \Λ),

the right hand side of (20) belongs to Cν+2(Sn \ Λ). Therefore, by Proposition
4, the operator K is well defined. The next lemma will enable us to estimate it:

Lemma 7. There exists some constant c > 0 such that, for all x > 0 and all
y, z ∈ R,

||x+ y|(n+2)/(n−2)− |x+ z|(n+2)/(n−2)| ≤ c|y− z|(|x+ y|4/(n−2) + |x+ z|4/(n−2)).

Using this last lemma, we see that, by Lemmas 4 and 5, and also considering
Remark 3, we can choose ε small enough and V, V ′ in a small ball of C0,α

ν (Sn \Λ),
in order to get

‖K(V )−K(V ′)‖ν ≤ 1
2‖V − V ′‖ν .

Therefore, if % and ε are chosen small enough, the operator K sends the ball of
radius % in C0,α

ν (Sn \Λ) into itself and, when restricted to this ball, the operator
K is a contraction. This ends the proof of Theorem 1.
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