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ON A THEOREM OF TVERBERG

Zdzisław Dzedzej — Marek Izydorek — Antonio Vidal

1. Introduction

Let ∆n denote the n-dimensional simplex. Any face of ∆n is assumed to be
closed. The well-known theorem of Radon (see [6]) can be formulated as follows

Theorem (Radon). For any linear map f : ∆n+1 → Rn there exist two
disjoint faces σ1, σ2 of ∆n+1 such that f(σ1) ∩ f(σ2) 6= ∅.

In 1966 the Radon theorem was generalized by Tverberg in the following way
(see [20]):

Theorem (Tverberg). For any linear map f : ∆N → Rn, where N =
(p− 1)(n+ 1), there exist p pairwise disjoint faces σ1, . . . , σp ⊂ ∆N such that

p⋂
i=1

f(σi) 6= ∅.

There is a natural question whether the linearity condition for f can be
replaced by continuity. The first positive answer was given by Bajmóczy and
Bárány in [1] for p = 2. Next Bárány, Shlosman and Szücs in [3] proved the
theorem for p being a prime number. In 1992 Volovikov obtained the positive
answer for any number which is a prime power (see [21]). In all papers mentioned
above various generalizations of the classical Borsuk–Ulam antipodal theorem
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was used in an essential way. Recently Sarkaria [16] gave a proof for an arbitrary
natural p.
The aim of this paper is to prove Volovikov theorem (see Theorem 1 in [21])

for multivalued maps (cf. [13] for p = 2). In our considerations we will need
an appropriate version of Bourgin–Yang theorem (cf. [10]) which generalizes
Borsuk–Ulam theorem (see Theorem 3). We consider also the case when ∆N

is replaced by an arbitrary N -dimensional compact and convex polytope in RN

(see Theorem 9).

2. G-spaces and the G-index

We are going to use cohomology of the Čech type. The Čech cohomology the-
ory has a continuity property which says that if a cohomology class vanishes on
a closed set, then it vanishes on a neighbourhood of this set as well. Throughout
the paper the group Zp of integers mod p, p prime, will be used as a coefficient
group in cohomology.
Let G be the Cartesian product of n copies of the group Zp. We assume that

G acts freely on a paracompact space X. We call X a G-space. Any such G-
space admits an equivariant map h : X → EG into a classifying space EG; any
two such maps are equivariantly homotopic (see [8, Theorems 8.12 and 6.14]).
The map h induces a map ĥ : X/G → BG := EG/G on the orbit spaces.
Consequently one has a uniquely determined homomorphism

ĥ∗ : H∗(BG,Zp)→ H∗(X/G,Zp).

Let us recall the definition of the G-index indGX, for a G-space X (see [21]).

Definition 1. We say that the G-index of X is not less than k, if the ho-
momorphism ĥk : Hk(BG,Zp)→ Hk(X/G,Zp) is a monomorphism.

Most of the properties of the G-index are immediate consequences of the de-
finition. In particular, monotonicity says:

if G acts freely on X and Y, and f : X → Y is an equivariant map, then

indGY ≥ indGX.

The dimension property:

if dimX < m, then indGX < m,

where dim denotes the covering dimension.
An important special case of the above says:

if indGX = 0, then X 6= ∅.
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As the consequence of the continuity property for the Čech cohomology we
obtain the following continuity property for G-index:

let G act freely on X, A ⊂ X is a compact G-space. Then there is an open
neighbourhood U of A in X which is a G-space such that indGU = indGA.

The concept of the G-index was introduced by Yang [24] for G = Z2 and next
extended to other more general settings by several authors, notably to actions
of compact Lie groups by Fadell and Husseini [9].

3. Multivalued maps

Let X, Y be two spaces. We say that ϕ : X → Y is a multivalued map if for
every point x ∈ X a nonempty subset ϕ(x) of Y is given. We associate with ϕ
the graph to be the set

Γϕ := {(x, y) ∈ X × Y | y ∈ ϕ(x)}.

The image of a subset A ⊂ X is the set ϕ(A) :=
⋃
x∈A ϕ(x). For a subset B ⊂ Y

we can define two types of a counterimage:

ϕ−1(B) := {x ∈ X | ϕ(x) ⊂ B}, ϕ−1+ (B) := {x ∈ X | ϕ(x) ∩B 6= ∅}.

They both coincide if ϕ is a singlevalued map.
One defines a composition of ϕ : X → Y and ψ : Y → Z as a map γ : X → Z

given by γ(x) = ψ(ϕ(x)).
A multivalued map ϕ : X → Y is upper semicontinuous (u.s.c.) provided

(i) for each x ∈ X ϕ(x) ⊂ Y is compact,
(ii) for every open subset V ⊂ Y the set ϕ−1(V ) is open in X.

Let us recall some basic properties of u.s.c. maps:

(1) The image of a compact set is a compact set.
(2) The graph Γϕ is a closed subset of X × Y .
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

We would like to remind a class of admissible multivalued maps considered
by Górniewicz [11].
We say that a space X is acyclic if H∗(X) = H∗ (point).
A continuous map p : X → Y is a Vietoris map if:

(i) p(X) = Y ,
(ii) p is proper (i.e. p−1(A) is compact whenever A ⊂ Y is compact),
(iii) for every y ∈ Y the set p−1(y) is acyclic.

An important feature of Vietoris maps is the famous Vietoris–Begle Mapping
Theorem (see [18]) which says that if X, Y are paracompact spaces and p : X →
Y is a Vietoris map, then it induces an isomorphism on cohomology.
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Definition 2. An u.s.c. map ϕ : X → Y is admissible provided there exists
a space Γ, and two continuous maps p : Γ→ X, q : Γ→ Y such that

(i) p is a Vietoris map,
(ii) for every x ∈ X q(p−1(x)) ⊂ ϕ(x).

We call every such pair (p, q) of maps a selected pair for ϕ.

The class of admissible maps is very broad. It includes all u.s.c. maps with
acyclic values (see [11]), and in particular with convex values, if Y is a normed
space. Moreover, a composition of two admissible maps is also admissible ([11]).
Many results from topological fixed point theory of singlevalued maps carry onto
this class of maps.

4. Borsuk–Ulam type theorems

Our first result is a multivalued version of a Bourgin–Yang type theorem for
the group G = (Zp)n. This is a generalization of a theorem due to Volovikov
(see [21]).

Theorem 3. Let G and X be as above and assume that indGX ≥ k. For
each admissible map ϕ : X → Rm the G-index of the set

Aϕ =
{
x ∈ X :

⋂
g∈G

ϕ(gx) 6= ∅
}

is not less than k − (pn − 1)m.

Proof. Let’s denote by d the order of the group G, d = pn. Let ϕ : X → Rm

be an admissible map. We consider a selected pair X
p←− Γ q−→Rm for ϕ.

We choose a linear order in the set of all elements of G, g1 ≺ g2 ≺ . . . ≺ gd.
In the Cartesian product of d copies of Γ the coordinates of each point will be
indexed by elements of G. This allows us to define an action of G on Γd. For
any g ∈ G we let g(γg1 , . . . , γgd) = (γgg1 , . . . , γggd) and define a subset X̃ ⊂ Γd:

(∗) X̃ = {(γg1 , . . . , γgd) ∈ Γd : ∃x ∈ X p(γgi) = gix, i = 1, . . . , d}.

Notice that for each (γg1 , . . . , γgd) ∈ X̃ there is only one x ∈ X satisfying
the conditions of (∗). It is clear that X̃ is a G-subset of Γd, and G acts freely
on it. Consider the following diagram

X̃
π //

s

��

Γ

p
����

��
��

�� q

  A
AA

AA
AA

A

X Rm
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where π : X̃ → Γ is the projection π(γg1 , . . . , γgd) = γg1 and s : X̃ → X is
the composition s = p ◦ π. One can see that s is a G-equivariant map:

s(g(γg1 , . . . , γgd)) = s(γgg1 , . . . , γggd) = p ◦ π(γgg1 , . . . , γggd)
= p(γgg1) = gg1x = gp(γg1) = gs(γg1 , . . . , γgd).

For each subset A ⊂ X,

s−1(A) = [p−1(g1g−11 A)× p−1(g2g−11 A)× . . .× p−1(gdg−11 A)] ∩ X̃.

In particular, if A ⊂ X is compact then s−1(A) is compact and therefore s is
a proper map. On the other hand, for every x ∈ X,

s−1(x) = p−1(x)× p−1(g2g−11 x)× . . .× p−1(gdg−11 x),

and thus s−1(x) is an acyclic set as it is a Cartesian product of acyclic sets.
Consequently we have shown that s : X̃ → X is a Vietoris map.
Now, we consider the following commutative diagram

X̃
s−−−−→ Xy y

X̃/G
bs−−−−→ X/G

where ŝ is a map induced by s on the orbit spaces and vertical arrows denote the
natural projections. Since G is a finite group and s is a Vietoris map, it follows
that ŝ is also a Vietoris map. Hence the homomorphism ŝ∗ : H∗(X/G) →
H∗(X̃/G) is an isomorphism. In the diagram

X̃
s−−−−→ X

h−−−−→ EGy y y
X̃/G

bs−−−−→ X/G
bh−−−−→ BG

h is an arbitrary G-equivariant map. By our assumptions ĥk : Hk(BG,Zp) →
Hk(X/G,Zp) is a monomorphism. The composition h ◦ s : X̃ → EG is an
equivariant map and (ĥ ◦ s)k = ŝk ◦ ĥk : Hk(BG,Zp) → Hk(X̃/G,Zp) is a
monomorphism, thus indGX̃ ≥ k.
Now, applying Volovikov Theorem (see [21]) to the map f = q ◦π : X̃ → Rm,

we find that the index of Af , indGAf ≥ k − (d − 1)m. Thus by monotonicity
property of the index we obtain

indGs(Af ) ≥ k − (d− 1)m.

We check that s(Af ) is a G-subset of Aϕ. Let’s take x ∈ s(Af ). There is a point
(γq1 , . . . , γgd) ∈ X̃ such that x = s(γg1 , . . . , γgd) = p(γg1) and q(γg1) = q(γg) for
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every g ∈ G. On the other hand we have q(γgg1) ∈ q(p−1(gx)) ⊂ ϕ(gx). Hence

q(γg1) ∈
⋂
g∈G

ϕ(gx)

and therefore x ∈ Aϕ. Again by the monotonicity property of the index we
obtain the inequality indGAϕ ≥ k − (d− 1)m which completes the proof. �

Our next problem is devoted to a topological generalization of Tverberg
theorem (see [3] and [22]). We are going to generalize Theorem 1 in [22] to
multivalued maps. We begin with the following:

Proposition 4. Let X be a paracompact G-space such that XG = ∅. We
assume that X is l-acyclic, i.e. H̃k(X,Zp) = 0 for k = 0, . . . , l. Then indGX ≥
l + 1.

For the proof see e.g. [22].

Denote by d the order of a group G = Znp , d = pn. For N = (d− 1)(m+ 1),
we denote by ∆N the N -dimensional simplex and by ∂∆N its boundary.

Theorem 5. Let ϕ : ∂∆N → Rm be an admissible mapping into an m-di-
mensional Euclidean space. Then there are d mutually disjoint closed faces of
∆N , σ1, . . . , σd such that

d⋂
i=1

ϕ(σi) 6= ∅.

Proof. In [3] the following CW -complex was considered: in the Cartesian
product (∆N )d of d copies of the simplex ∆N we choose the set YN,d of all
points (y1, . . . , yd), yi ∈ ∂∆N that have mutually disjoint carriers. It was shown
in [3] that for all natural numbers N and d, N > d, the CW -complex YN,d is
(N − d)-connected. One can easily define a free action of the group G on YN,d
as follows:

Let α : G → Sd be an arbitrary monomorphism of G into the permuta-
tion group Sd of d elements. Since Sd acts freely on YN,d (by permutation of
coordinates), the action of G induced by α is also free.

By Hurewicz theorem [18] YN,d is (N − d)-acyclic as it is (N − d)-connected.
From Proposition 4 we obtain that indGYN,d ≥ N − d+ 1.
Let us define an admissible map ϕ̃ : YN,d → Rm, ϕ̃(y1, . . . , yd) = ϕ(y1). By

Theorem 2 indGAeϕ ≥ N − d+ 1− (d− 1)m = 0 which means in particular that
A
eϕ 6= ∅. Thus there is a point (y1, . . . , yd) ∈ YN,d such that

⋂
g∈G

ϕ̃(g(y1, . . . , yd)) =
d⋂
i=1

ϕ(yi) 6= ∅.
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By definition of YN,d there are mutually disjoint faces of ∆N , σ1, . . . , σd, with
yi ∈ σi for all i = 1, . . . , d. Therefore

⋂d
i=1 ϕ(σi) 6= ∅ which completes the

proof. �

In order to formulate a generalization of Theorem 5 we introduce some nota-
tion. Given a convex compact set C ⊂ Rn with nonempty interior and a vector
v ∈ Rn, v 6= 0, we write

C(v) = {x ∈ C : 〈v, x〉 = max{〈v, y〉, y ∈ C}}.

C(v) is called a proper face of C. Clearly, it may happen that two different
nonzero vectors define the same face of C. If C(v) consists of one point x, we
call it a vertex of C. For a vertex x ∈ C we define the star of x, denoted by
st(x), to be the union of all proper faces of C containing x. If x ∈ C then the
carrier of x is the minimal face containing x.

Definition 6. Let C be a compact and convex subset of Rn with nonempty
interior. We say that C has a property (∆), if there exists a homeomorphism
f : ∆n → C such that the image of every face of ∆n by f is a sum of faces in C.

The following theorem is an easy consequence of Theorem 4.

Theorem 7. Let C be a compact convex subset of RN with nonempty inte-
rior, where N = (d− 1)(m+ 1), d = pn for some prime p, and n,m are natural
numbers. We assume that C has property (∆). Then for every admissible map
ϕ : ∂C → Rm there are pairwise disjoint faces A1, . . . , Ad of C such that

d⋂
i=1

ϕ(Ai) 6= ∅.

Proof. By our assumptions there is a homeomorphism f : ∆N → C sending
each face of ∆N onto a sum of faces in C. Define h : ∂∆N → ∂C, h(x) = f(x).
We consider the composition ψ := ϕ ◦ h : ∂∆N → Rm, which is an admissible
map. In view of Theorem 5 there exist points x1, . . . , xd in ∂∆N with mutually
disjoint carriers such that

d⋂
i=1

ψ(xi) =
d⋂
i=1

ϕ(h(xi)) 6= ∅.

Since the carriers of the points h(xi), i = 1, . . . , d are mutually disjoint, the
proof is complete. �

Theorem 8. Every compact and convex polytope C ⊂ Rn with nonempty
interior has the property (∆).

Proof. We proceed by induction with respect to the dimension of C. If
n = 0, then our theorem is obvious.
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We assume that the theorem holds for n = k and consider a compact and
convex polytope C ⊂ Rk+1 with nonempty interior. We choose any vertex
x0 ∈ C. Since C has nonempty interior, there is a vector v ∈ Rk+1 at x0
such that −v is directed inward C and {x0} = C(v). Let H be a hyperplane
through x0 in Rk+1 which is orthogonal to v. Then the orthogonal projection π
of st(x0) into H is a homeomorphism onto its image. Moreover, the set π(st(x0))
is star-shaped with the center at x0.
We say that B ⊂ π(st(x0)) is a π-face in π(st(x0)) if it is an image of a face

of C (contained in st(x0)).
Let p1, . . . , pm be the π-vertices in π(st(x0)) which are joined with x0 by a 1-

dimensional π-face and let D = conv{p1, . . . , pm}. Thus D ⊂ H is a polytope of
dimension k with nonempty interior (in H). The projection along rays (starting
at x0) from ∂D onto ∂π(st(x0)) can be extended radially to a homeomorphism
f1 : D → π(st(x0)) such that the image of every face of D by f1 is a sum of
π-faces in π(st(x0)). In particular f1(x0) = x0.
By induction there is a homeomorphism f0 : ∆k → D such that the image

of every face in ∆k by f0 is a sum of faces in D.
Let ∆k+1 = conv{w0, . . . , wk+1}. Simplex ∆k is considered as a face of

∆k+1, ∆k = conv{w0, . . . , wk}. Notice that ∂∆k is equal to the boundary of
st(wk+1) which allows us to define a map f̃2 : ∂st(wk+1) ∪ {wk+1} → D putting

f̃2(x) =

{
f0(x) if x ∈ ∂st(wk+1) = ∂∆k,
x0 if x = wk+1.

Now we extend it radially to a homeomorphism f2 : st(wk+1)→ D. One can see
that the composition

h1 = π−1 ◦ f1 ◦ f2 : st(wk+1)→ st(x0),

is a homeomorphism such that the image of every simplex in st(wk+1) by h1 is
a sum of faces in st(x0).
Let us also notice that the sets ∂∆k+1 \ st(wk+1) = ∆k and ∂C \ st(x0) are

homeomorphic to each other since they are both homeomorphic to a closed disc
of dimension k. In our case h1 defines a homeomorphism h2 : ∆k → ∂C \ st(x0).
Hence we have a homeomorphism h : ∂∆k+1 → ∂C defined by

h(x) =

{
h1(x) if x ∈ st(wk+1),
h2(x) otherwise,

which obviously maps every simplex in ∂∆k+1 onto a sum of faces in ∂C.
Finally, h can be extended to a homeomorphism f : ∆k+1 → C and therefore

C has the property (∆) . �

As a direct consequence of Theorems 7 and 8 we obtain
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Theorem 9. Let C be a compact and convex polytope in RN with nonempty
interior, where N = (d− 1)(m+ 1) and d = pn for some prime p and n,m ∈ N.
Then for any admissible map ϕ : ∂C → Rm there are pairwise disjoint faces
A1, ..., Ad of C such that

d⋂
i=1

ϕ(Ai) 6= ∅.

It is obvious that compact and convex polytopes are not the only sets with
property (∆). For example the following is true.

Proposition 10. Let C be a compact, convex subset of Rn with nonempty
interior. If we assume that for some vertex x0 ∈ ∂C there is an open neighbour-
hood U of x0 in ∂C consisting of vertices only then C has the property (∆).

Proof. Let ∆n = conv(w0, . . . , wn). We consider an arbitrary injection
h1 : st(wn)→ U . It is a homeomorphism onto its image and the image of every
simplex in st(wn) by h1 is a sum of faces (0-dimensional faces) in C.
Now, any extension of h1 to a homeomorphism h : ∆n → C maps each face

of ∆n onto a sum of faces in C, which completes the proof. �

The analysis of many concrete examples suggests the following

Conjecture. Every compact and convex subset of Rn with nonempty inte-
rior has the property (∆).
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Montréal, Montreal, Quebeck, 1985, pp. 166–235.

[20] H. Tverberg, A generalization of Radon’s theorem, J. London Math. Soc. 41 (1966),

123–128.

[21] A. Ju. Volovikov, Bourgin–Yang type theorem for a Zn
p -action, Mat. Sb. 183 (1992),

115–144. (Russian)

[22] , On a topological generalization of the Tverberg theorem, Mathematical Notes
59 (1996), 324–326.

[23] G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, 1978.

[24] C. T. Yang, On theorems of Borsuk–Ulam, Kakutani, Yamabe, Yujobô and Dyson I,
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