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ON A THEOREM OF TVERBERG

ZDZISLAW DZEDZEJ — MAREK IZYDOREK — ANTONIO VIDAL

1. Introduction

Let A™ denote the n-dimensional simplex. Any face of A™ is assumed to be
closed. The well-known theorem of Radon (see [6]) can be formulated as follows

THEOREM (Radon). For any linear map f : A" — R™ there exist two
disjoint faces o1, oo of A" such that f(o1) N f(o2) # 0.

In 1966 the Radon theorem was generalized by Tverberg in the following way
(see [20]):

THEOREM (Tverberg). For any linear map f : AN — R", where N =
(p—1)(n+ 1), there exist p pairwise disjoint faces o1, ... ,0, C AN such that

P

m floi) # 0.
i=1
There is a natural question whether the linearity condition for f can be
replaced by continuity. The first positive answer was given by Bajmodczy and
Bérany in [1] for p = 2. Next Bédrdny, Shlosman and Sziics in [3] proved the
theorem for p being a prime number. In 1992 Volovikov obtained the positive
answer for any number which is a prime power (see [21]). In all papers mentioned
above various generalizations of the classical Borsuk—Ulam antipodal theorem
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was used in an essential way. Recently Sarkaria [16] gave a proof for an arbitrary
natural p.

The aim of this paper is to prove Volovikov theorem (see Theorem 1 in [21])
for multivalued maps (cf. [13] for p = 2). In our considerations we will need
an appropriate version of Bourgin—Yang theorem (cf. [10]) which generalizes
Borsuk—Ulam theorem (see Theorem 3). We consider also the case when AY
is replaced by an arbitrary N-dimensional compact and convex polytope in RV
(see Theorem 9).

2. G-spaces and the G-index

We are going to use cohomology of the Cech type. The Cech cohomology the-
ory has a continuity property which says that if a cohomology class vanishes on
a closed set, then it vanishes on a neighbourhood of this set as well. Throughout
the paper the group Z, of integers mod p, p prime, will be used as a coefficient
group in cohomology.

Let G be the Cartesian product of n copies of the group Z,. We assume that
G acts freely on a paracompact space X. We call X a G-space. Any such G-
space admits an equivariant map h : X — EG into a classifying space EG; any
two such maps are equivariantly homotopic (see [8, Theorems 8.12 and 6.14]).
The map h induces a map h : X/G — BG := EG/G on the orbit spaces.
Consequently one has a uniquely determined homomorphism

h*: H*(BG,Z,) — H*(X/G,Z,).
Let us recall the definition of the G-index indg X, for a G-space X (see [21]).

DEFINITION 1. We say that the G-index of X is not less than k, if the ho-
momorphism h* : H*(BG,Z,) — H*(X/G,Z,) is a monomorphism.

Most of the properties of the G-index are immediate consequences of the de-
finition. In particular, monotonicity says:

if G acts freely on X and Y, and f: X — Y is an equivariant map, then
inde Z inng.

The dimension property:
if dimX < m, then indgX < m,

where dim denotes the covering dimension.

An important special case of the above says:

if indgX =0, then X # 0.
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As the consequence of the continuity property for the Cech cohomology we
obtain the following continuity property for G-index:

let G act freely on X, A C X is a compact G-space. Then there is an open
neighbourhood U of A in X which is a G-space such that indgU = indg A.

The concept of the G-index was introduced by Yang [24] for G = Z5 and next
extended to other more general settings by several authors, notably to actions
of compact Lie groups by Fadell and Husseini [9)].

3. Multivalued maps

Let X, Y be two spaces. We say that ¢ : X — Y is a multivalued map if for
every point € X a nonempty subset ¢(z) of Y is given. We associate with ¢
the graph to be the set

Ly i={(z,y) e X xY |y € p(x)}.

The image of a subset A C X is the set p(A) := (J,c 4 ¢(x). For asubset B CY
we can define two types of a counterimage:

e (B):={zeX|p()C B},  ¢I'(B):={reX|p()nB#0}

They both coincide if ¢ is a singlevalued map.
One defines a compositionof p : X - Y and¢:Y — Zasamapy: X — Z
given by 7(z) = ¥(p(x)).
A multivalued map ¢ : X — Y is upper semicontinuous (u.s.c.) provided
(i) for each z € X p(z) C Y is compact,
(ii) for every open subset V C Y the set ¢~!(V) is open in X.

Let us recall some basic properties of u.s.c. maps:

(1) The image of a compact set is a compact set.
(2) The graph Iy is a closed subset of X x Y.
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

We would like to remind a class of admissible multivalued maps considered
by Gérniewicz [11].
We say that a space X is acyclic if H*(X) = H* (point).
A continuous map p: X — Y is a Vietoris map if:
(i) p(X) =Y,
(ii) p is proper (i.e. p~1(A) is compact whenever A C Y is compact),
(iii) for every y € Y the set p~(y) is acyclic.
An important feature of Vietoris maps is the famous Vietoris—Begle Mapping
Theorem (see [18]) which says that if X, Y are paracompact spaces and p : X —
Y is a Vietoris map, then it induces an isomorphism on cohomology.
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DEFINITION 2. An u.s.c. map ¢ : X — Y is admissible provided there exists
a space I', and two continuous maps p: I' — X, ¢ : ' — Y such that

(i) p is a Vietoris map,
(ii) for every z € X q(p~1(z)) C ¢(x).
We call every such pair (p, ¢) of maps a selected pair for .

The class of admissible maps is very broad. It includes all u.s.c. maps with
acyclic values (see [11]), and in particular with convex values, if Y is a normed
space. Moreover, a composition of two admissible maps is also admissible ([11]).
Many results from topological fixed point theory of singlevalued maps carry onto
this class of maps.

4. Borsuk—Ulam type theorems

Our first result is a multivalued version of a Bourgin—Yang type theorem for
the group G = (Z,)". This is a generalization of a theorem due to Volovikov
(see [21]).

THEOREM 3. Let G and X be as above and assume that indgX > k. For
each admissible map ¢ : X — R™ the G-index of the set

A@:{xexz map(ga:);é@}

geG
is not less than k — (p"™ — 1)m.

PROOF. Let’s denote by d the order of the group G, d = p™. Let ¢ : X — R™
be an admissible map. We consider a selected pair X L 1L R™ for ®.

We choose a linear order in the set of all elements of G, g1 < g2 < ... < gq.
In the Cartesian product of d copies of I' the coordinates of each point will be
indexed by elements of G. This allows us to define an action of G on I'?. For
any g € G we let g(7g,,- -+ sYga) = (Vgg1»-- - +Vgga) and define a subset X c I

(%) )?:{(791,... ga) €T3 € X ply,,) = giz, i=1,... ,d}.

Notice that for each (vg,,...,7q.) € X there is only one x € X satisfying
the conditions of (). It is clear that X is a G-subset of I'Y, and G acts freely
on it. Consider the following diagram

LF

14\

R’HL
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where 7 : X — T is the projection T(Ygrs--+ »Vga) = Vg and s : X — X is
the composition s = p o . One can see that s is a G-equivariant map:

5(9(75]17' . v’}/gd)) = 3(79915 s a'yggd) =po ﬂ-(’}/gglv et 7799d)
= p(Vgg9:) = 9917 = gp(Vg1) = 95(Vg1» - -+ Vga)-

For each subset A C X,

sTHA) = [p 9197t A) X pHgagr tA) X ... x pH(gagr PA) N X

In particular, if A C X is compact then s7!(A) is compact and therefore s is

a proper map. On the other hand, for every z € X,

s”Hx) =p~ M) x p~Hgagy ' 2) X ... x P (gag7 @),

and thus s~1(z) is an acyclic set as it is a Cartesian product of acyclic sets.
Consequently we have shown that s : X — X is a Vietoris map.

Now, we consider the following commutative diagram

X /- X

X/G —— X/G
where S is a map induced by s on the orbit spaces and vertical arrows denote the
natural projections. Since G is a finite group and s is a Vietoris map, it follows
that § is also a Vietoris map. Hence the homomorphism s* : H*(X/G) —
H*(X /@) is an isomorphism. In the diagram

X LN X ~—h——>EG

L

X/G —— x/G —"— BaG

h is an arbitrary G-equivariant map. By our assumptions hk o H k(BaG, Zp) —
H*(X/G,Z,) is a monomorphism. The composition h o s : X — EG is an
equivariant map and (h/o\s)k = St o Rk . H*(BG,Z,) — H*(X/G, Zy) is a
monomorphism, thus indg)? > k.

Now, applying Volovikov Theorem (see [21]) to the map f = gor : X — R™,
we find that the index of Ay, indgA; > k — (d — 1)m. Thus by monotonicity
property of the index we obtain

indgs(Ay) > k— (d—1)m.

We check that s(Ay) is a G-subset of A,. Let’s take x € s(Ay). There is a point
(Ygrs -+ »Vgq) € X such that = s(7g,, .-+ ,Vg.) = P(Vgr) and q(vg,) = q(7g) for
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every g € G. On the other hand we have ¢(vg4,) € q¢(p~*(g9)) C ¢(gz). Hence

9(79,) € () ¢(g2)

geG

and therefore 2 € A,. Again by the monotonicity property of the index we
obtain the inequality indgA, > k — (d — 1)m which completes the proof. O

Our next problem is devoted to a topological generalization of Tverberg
theorem (see [3] and [22]). We are going to generalize Theorem 1 in [22] to
multivalued maps. We begin with the following:

PROPOSITION 4. Let X be a paracompact G-space such that X = 0. We
assume that X is l-acyclic, i.e. H*(X,Z,) =0 for k=0,...,l. Then indgX >
[+1.

For the proof see e.g. [22].

Denote by d the order of a group G = Zy, d = p". For N = (d — 1)(m + 1),
we denote by AN the N-dimensional simplex and by dAY its boundary.

THEOREM 5. Let ¢ : OAYN — R™ be an admissible mapping into an m-di-
mensional Euclidean space. Then there are d mutually disjoint closed faces of
AN o1,... 04 such that

d
_ﬂ p(oi) # 0.

PrOOF. In [3] the following CW-complex was considered: in the Cartesian
product (AN)? of d copies of the simplex AN we choose the set Yy q of all
points (y1, ... ,va), yi € OAYN that have mutually disjoint carriers. It was shown
in [3] that for all natural numbers N and d, N > d, the CW-complex Yy 4 is
(N — d)-connected. One can easily define a free action of the group G on Yy 4
as follows:

Let o : G — S; be an arbitrary monomorphism of G into the permuta-
tion group Sy of d elements. Since Sy acts freely on Yy 4 (by permutation of
coordinates), the action of G induced by « is also free.

By Hurewicz theorem [18] Yy 4 is (N — d)-acyclic as it is (N — d)-connected.
From Proposition 4 we obtain that indgYn g > N —d+ 1.

Let us define an admissible map @ : Yn g — R™, &(y1,... ,ya) = ¢(y1). By
Theorem 2 indgAz > N —d+ 1 — (d — 1)m = 0 which means in particular that
Az # 0. Thus there is a point (y1,... ,y4) € Yn,q such that

() &, ya) = ﬂ e(yi) # 0.

geG i=1
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By definition of Yy 4 there are mutually disjoint faces of AN oy,... 04, with
y; € o; for all ¢ = 1,...,d. Therefore ﬂ?:l ¢(0;) # 0 which completes the
proof. O

In order to formulate a generalization of Theorem 5 we introduce some nota-
tion. Given a convex compact set C' C R™ with nonempty interior and a vector
v € R™" v # 0, we write

Cw)={z e C: (v,z) = max{{v,y), y € C}}.

C(v) is called a proper face of C. Clearly, it may happen that two different
nonzero vectors define the same face of C. If C(v) consists of one point =, we
call it a vertex of C. For a vertex z € C we define the star of x, denoted by
st(z), to be the union of all proper faces of C' containing . If € C then the
carrier of x is the minimal face containing x.

DEFINITION 6. Let C' be a compact and convex subset of R™ with nonempty
interior. We say that C' has a property (A), if there exists a homeomorphism
f: A™ — C such that the image of every face of A™ by f is a sum of faces in C.

The following theorem is an easy consequence of Theorem 4.

THEOREM 7. Let C be a compact convex subset of RN with nonempty inte-
rior, where N = (d—1)(m+ 1), d = p™ for some prime p, and n,m are natural
numbers. We assume that C has property (A). Then for every admissible map
@ : 0C — R™ there are pairwise disjoint faces Ay, ..., Aq of C such that

d
n p(A;i) # 0.

PROOF. By our assumptions there is a homeomorphism f : AV — C sending
each face of AN onto a sum of faces in C. Define h : 0AYN — 9C, h(z) = f(z).
We consider the composition ¢ := ¢ o h : 9AN — R™, which is an admissible
map. In view of Theorem 5 there exist points 1, ... ,zq in OAY with mutually
disjoint carriers such that

d d

(@) = () e(h(x:)) # 0.
—1

i=1 i=1
Since the carriers of the points h(x;), @ ,...,d are mutually disjoint, the

proof is complete. O

THEOREM 8. FEwery compact and convex polytope C C R™ with nonempty
interior has the property (A).

PRrROOF. We proceed by induction with respect to the dimension of C. If
n = 0, then our theorem is obvious.
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We assume that the theorem holds for n = k and consider a compact and
convex polytope C' C R**! with nonempty interior. We choose any vertex
o € C. Since C has nonempty interior, there is a vector v € RFF! at zq
such that —v is directed inward C' and {z¢} = C(v). Let H be a hyperplane
through zy in R¥*! which is orthogonal to v. Then the orthogonal projection 7
of st(xg) into H is a homeomorphism onto its image. Moreover, the set 7(st(xz¢))
is star-shaped with the center at xg.

We say that B C w(st(xo)) is a m-face in w(st(zg)) if it is an image of a face
of C (contained in st(zg)).

Let p1,... ,pm be the m-vertices in w(st(xg)) which are joined with ¢ by a 1-
dimensional 7-face and let D = conv{p1,... ,pm}. Thus D C H is a polytope of
dimension k with nonempty interior (in H). The projection along rays (starting
at zg) from dD onto Om(st(xg)) can be extended radially to a homeomorphism
fi: D — 7(st(zp)) such that the image of every face of D by f; is a sum of
m-faces in mw(st(zg)). In particular f;(zg) = 0.

By induction there is a homeomorphism fy : A¥ — D such that the image
of every face in A* by f; is a sum of faces in D.

Let AF1 = conv{wy,... ,wi1}. Simplex AF is considered as a face of
AR AR = conv{wy,... ,wi}. Notice that JAF is equal to the boundary of
st(wp1) which allows us to define a map fo : Ost(wyp1) U {wys1 } — D putting

~ { fo(z) if z € Ost(wpr1) = OAF,
fa(z) = .
o if v = wgy1-
Now we extend it radially to a homeomorphism f3 : st(wg41) — D. One can see
that the composition

hi =710 fiofy:st(werr) — st(zo),

is a homeomorphism such that the image of every simplex in st(wgy1) by hq is
a sum of faces in st(zo).

Let us also notice that the sets JAF+1\ st(wgy1) = A¥ and AC \ st(zg) are
homeomorphic to each other since they are both homeomorphic to a closed disc

of dimension k. In our case h; defines a homeomorphism hy : A¥ — 9C \ st(wg).
Hence we have a homeomorphism h : OA*TT — 9C defined by

hi(z) if z € st(wgy1),
h(z) =
ha(z) otherwise,

which obviously maps every simplex in JA*+! onto a sum of faces in 9C.
Finally, h can be extended to a homeomorphism f : A¥*1 — C and therefore
C has the property (A) . O

As a direct consequence of Theorems 7 and 8 we obtain
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THEOREM 9. Let C be a compact and convex polytope in RN with nonempty
interior, where N = (d—1)(m+ 1) and d = p™ for some prime p and n,m € N.
Then for any admissible map ¢ : 0C — R™ there are pairwise disjoint faces
Ay, ..., Aq of C such that

d
n 0(4;) # 0.

It is obvious that compact and convex polytopes are not the only sets with
property (A). For example the following is true.

ProOPOSITION 10. Let C be a compact, convex subset of R™ with nonempty
interior. If we assume that for some vertex xq € OC there is an open neighbour-
hood U of xg in OC consisting of vertices only then C has the property (A).

PRrROOF. Let A" = conv(wy,...,w,). We consider an arbitrary injection
hy : st(wy) — U. It is a homeomorphism onto its image and the image of every
simplex in st(w,) by hi is a sum of faces (0-dimensional faces) in C.

Now, any extension of h; to a homeomorphism h : A" — C maps each face
of A™ onto a sum of faces in C', which completes the proof. g

The analysis of many concrete examples suggests the following

Conjecture. Every compact and convex subset of R™ with nonempty inte-
rior has the property (A).
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