
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 11, 1998, 375–395

ON CLASSICAL SOLVABILITY
OF THE FIRST INITIAL-BOUNDARY VALUE PROBLEM

FOR EQUATIONS GENERATED BY CURVATURES

Nina Ivochkina — Olga Ladyzhenskaya

Dedicated to Jürgen Moser

1. Main theorem and estimations in C2

The aim of this paper is to prove the existence theorem announced in [5].
The proof is based on á priori estimates which were done in [6]–[8] for solutions
to equations including the equations from [5]. We have to add to these estimates
the estimates of Hölder constants for ut and uxixj

. Section 2 is devoted to this
purpose.

We study the problems

Mm[u] = 3D − ut√
1 + u2

x

+ fm(k[u]) = 3Dg in QT = 3DΩ× (0, T ),(1.1)

u = 3Dϕ on ∂′QT , m ∈ [2, n],(1.2)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω, ∂′QT =
3D∂′′QT ∪ Ω(0), ∂′′QT = 3D∂Ω × [0, T ], Ω(0) = 3D{z = 3D(x, t) | x ∈ Ω, t =
3D0}. Functions g : QT → R1 and ϕ : Ω → R1 are known, and function
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u : QT → R1 is to be found. Besides, k = 3D(k1, . . . , kn) ∈ Rn,

fm(k) = 3DS1/m
m (k) and Sm(k) = 3D

∑
i1<...<im

ki1 . . . kim
.

We consider fm on the cone

(1.3) Γ(n)
m = 3D{k ∈ Rn | Sl(k) > 0, l = 3D1, . . . , m}.

The numbers ki[u](x, t), i = 3D1, . . . , n, forming

k[u](x, t) = 3D(k1[u], . . . , kn[u])(x, t),

are the principal curvatures in the point (x, t) of the hypersurface Tt ⊂ Rn+1,
given by equation

(1.4) xn+1 = 3Du(x, t), x ∈ Ω.

Number t plays here the role of a parameter.
Let us define by Km the set of all functions v continuous with their derivatives

vxi
, vxixj

in QT and such that k[v](z) belong to Γ(n)
m for all z ∈ QT . We will

say that v : QT → R1 is admissible for Mm if v belongs to Km, and v is an
admissible solution of (1.1) if v belongs to Km, has vt belonging to C(QT ) and
satisfies (1.1).

In this paper we deal only with admissible solutions and sometimes will omit
the word “admissible”. In many places we write Q instead of QT .

We will use more abridged notation then in [14], they are close to the notation
in [13]. Namely, C(QT ) and C(QT ) are sets of functions continuous on QT or QT

correspondingly. The norm in C(QT ) will be denoted by ‖ · ‖∞,QT
. Cα(QT ) and

Cα(QT ), α ∈ (0, 1), are sets of functions from C(QT ) or C(QT ) correspondingly
which are α-Hölder continuous in QT or QT with respect to parabolic distance

ρ(z, z′) = 3D|x− x′|+ |t− t′|1/2, z = 3D(x, t), z′ = 3D(x′, t′).

The norm in Cα(QT ) will be denoted by

|u|Cα,QT
= 3D|u|∞,QT

+ 〈u〉(α)
QT

,

where

〈u〉(α)
QT

= 3D sup
z,z′∈QT

|u(z)− u(z′)|
ρ(z, z′)

.

The number 〈u〉(α)
QT

< u
(α)
QT

is named Hölder constant for u and α — its Hölder
power. C2(QT ) and C2+α(QT ) are Banach spaces of all elements u of C(QT )
for which ux, uxx and ut belong to C(QT ) or Cα(QT ) respectively.

The norm of u in C2(QT ) is determined by equality

|u|C2,QT
= 3D‖u‖∞,QT

+ ‖ux‖∞,QT
+ ‖uxx‖∞,QT

+ ‖ut‖∞,Q,
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and the norm of u in C2+α(QT ) is determined by similar equality in which
‖ · ‖∞,QT

is replaced by | · |Cα,Qt .
We suppose that boundary ∂Ω has C4+α- smoothness and ∂Ω ∈ Γ(n−1)

m . This
means that in a small vicinity of any point x0 of ∂Ω the surface ∂Ω in Rn can
be presented as

(1.61) xn = 3Dω(x̃), x̃ = 3D(x1, . . . , xn−1) ∈ Bd(x0) = 3D{x̃‖ |x̃| ≤ d},

in Cartesian coordinates (x̃, xn) corresponding to x0. The latter means that
x0 is the origin of these coordinates (i. e. x0 = 3D(0, . . . , 0)) and the axis
xn is directed along the inner normal to ∂Ω at the point x0. (The function ω

depends on x0 but we do not indicate this explicitly). Moreover, we will take
axis x1, . . . , xn−1 such that

(1.62) ω(x̃) = 3D
1
2

n−1∑
α=3D1

λα(x0)x2
α + O(|x̃|3),

for x̃ ∈ Bd(x0). Obviously, the numbers λ1(x0), . . . , λn−1(x0) are the principal
curvatures of ∂Ω in x0. The hypotheses ∂Ω ⊂ Ck or Ck+α imply that ω belongs
to Ck(Bd(x0) or Ck+α(Bα(x0)) for all x0 ∈ ∂Ω and the hypothesis ∂Ω ∈ Γ(n−1)

m

implies that vectors λ(x0) = 3D(λ1(x0), . . . , λn−1(x0)) belong to Γ(n−1)
m for all

x0 ∈ ∂Ω. Here

Γ(n−1)
m = 3D{k ∈ Rn−1 | Sl(k) > 0, l = 3D1, . . . , m},

is a convex cone in Rn−1.
Number |∂Ω|Ck is sup

x0∈∂Ω

|ω|Ck,Bd(x0), |∂Ω|Ck+α is sup
x0∈∂Ω

|ω|Ck+α,Bd(x0) with a

number α ∈ (0, 1), number d > 0 being common for all x0 ∈ ∂Ω.
To find an admissible solution u of problem (1.1), (1.2) we use the continu-

ation by parameter τ ∈ [0, 1] in the following form. We consider the family of
problems

Mm[uτ ] = 3Dgτ in QT ,(1.1τ )

uτ = 3Dϕτ on ∂′QT ,(1.2τ )

where ϕ0(x) = 3Dϕ(x, 0), ϕτ (x, t) = 3Dτϕ(x, t) + (1 − τ)ϕ0(x), gτ (x, t) =
3Dτg(x, t) + (1− τ)g0(x), g0(x) = 3Dfm(k[ϕ0]).

For τ = 3D1 this problem coincides with problem (1.1), (1.2) and for τ = 3D0
the problem (1.1τ ), (1.2τ ) has a unique solution u0(x, t) = 3Dϕ0(x). Besides, we
have to suppose that ϕ0 ∈ Km. The other necessary conditions for the existence
of an admissible solution to (1.1), (1.2) are the compatibility conditions of zero
and first orders. The first condition we include in the conjection that ϕ belongs
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to C2+α(QT ) and u = 3Dϕ on ∂′QT . The second condition is expressed in the
standard form

(1.7) − ϕt√
1 + ϕ2

x

+fm(k[ϕ]) = 3Dg on ∂2
txQ = 3D{(x, t) | x ∈ ∂Ω, t = 3D0}.

It is easy to see that for problem (1.1τ ), (1.2τ ) with any τ ∈ [0, 1] the compati-
bility conditions of zero and first orders are fulfilled.

Now we formulate our main theorem.

Theorem 1.1. Problem (1.1), (1.2) has a unique admissible solution u be-
longing to C2+β(QT ) with some β ∈ (0, α] and having the derivatives ux, uxx,
ut belonging to C2+α(QT ) if the following conditions are met.

(a) ∂Ω ∈ Γm−1 ∩ C4+α, ϕ ∈ C4+α(QT ), ϕ0 ∈ Km, g ∈ C2+α(QT ) and the
compatibility condition (1.7) is satisfied,

(b) infQT
g ≥ 0, inf∂′QT

ut + infQT
g ≡ ν1 and gt ≤ 0 on QT with a ν1 > 0,

(c) for all admissible solutions uτ of problems (1.1τ ), (1.2τ ), τ ∈ [0, 1] there
is a common minorant ν2 in inequality

(1.8) inf
τ∈[0,1]

inf
∂′′QT

∂uτ

∂n
≥ ν2.

Each problem (1.1τ ), (1.2τ ) also has a unique admissible solution uτ with the
same smoothness as the solution u of problem (1.1), (1.2).

In (1.8) ∂uτ

∂n (x0, t), x0 ∈ ∂Ω, t ∈ [0, T ] is the derivative of uτ at point (x0, t)
along the inner normal ~n to ∂Ω in x0.

It is easy to check that for each problem (1.1τ ), (1.2τ ) all requirements of (a)
and (b) are satisfied, but minorant ν̃1 for

min
∂′QT

uτ
t + inf

QT

gτ ,

is equal to min{ν0; ν1}, where

ν0 = 3D inf g0 = 3D inf
Ω

fm(k[ϕ0]).

Thus, for (1.1τ ), (1.2τ ) the inequalities

(bτ ) infQT
gτ ≥ 0, inf∂′QT

uτ
t + infQT

gτ ≥ ν̃1 = 3D min{ν0; ν1} > 0, gτ
t ≤

0,

follow from (b).
Theorem 1.1 is a slightly improved version of Theorem 1 from [5]. Its proof

will be given here.
The statement about uniqueness holds due to the following known compari-

son theorem (see, for example, [8]).



On Solvability of Problem for Equations Generated by Curvatures 379

Theorem 1.2. If u and v belong to C2(QT ) ∩ C(QT ) ∩Km and Mm[u] ≥
Mm[v] in QT then

sup
QT

(u− v) = 3D sup
∂′QT

(u− v).

This theorem was used when we derived estimates for derivatives of admis-
sible solutions u. In Section 3 of paper [8], devoted to the estimation of |ux|, we
have formulated a sufficient condition on data when we could find a minorant ν2

for ∂u/∂n|∂′′QT
. It has the form

(1.9) g ≡ max
∂′′QT

g < µ,

where µ is a constant determined by data. For m ∈ [2, n− 1]

(1.9′) µ = 3D inf
x0∈∂Ω

S1/m
m (λ)(x0).

For m = 3Dn majorant µ depends not only on λ(x0), x0 ∈ ∂Ω, but on majorants
for |gx|∞, eQ, |ϕ|C2, eQ and |∂Ω|C3 , where Q̃ = 3DΩ̃d× [0, T ] and Ω̃d = 3D{x ∈ Ω |
dist{x; ∂Ω} ≤ d}. It depends also on majorant µ̃ for sup eQ |ϕ−u|. The minorant
ν2 for ∂u/∂n|∂′′QT

depends on µ̃ in all cases m ∈ [2, n]. But, as we show below,
a minorant µ̃ is easily calculated (see (1.11) and (1.12)).

For problems (1.1τ ), (1.2τ ) the results of [8] lead to the following statement.

Proposition 1.3. Let the conditions (a) and (b) of Theorem 1.1 be fulfilled.
If

max
τ∈(0,1]

max
∂′′QT

gτ ≡ max
∂′′QT

max{g(x, t);max fm(k[ϕ0])(x)} < µ,

where µ is a constant determined by data then there is a common minorant ν2

in (1.8) that can be calculated. For n ∈ [2,m− 1] number µ is given in (1.9′).

We remark that here we have applied results of [8] to problems (1.1τ ), (1.2τ ),
τ ∈ [0, 1], and used (1.9′).

As it is well known, the most difficult part of proving the existence theorems
is obtaining proper á priori estimates for all possible solutions of the problem
under investigation and of some auxiliary problems connected with it. In our
case the role of these auxiliary problems play problems (1.1τ ), (1.2τ ), τ ∈ [0, 1].
For all admissible solutions uτ of these problems it is desirable to find a majorant
c in the inequality

(1.10) sup
τ∈[0,T ]

|uτ |C2+β ,QT
≤ c,

with a β > 0. Such estimate is sufficient for the validity of the last affirmation
of Theorem 1.1 on solvability of problems (1.1τ ), (1.2τ ).

We explain this in detail in Section 3.
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In papers [6]–[8] we obtained estimates of |u|C2,QT
for solutions u of problem

(1.1), (1.2) using only the properties of data ϕ, g and ∂Ω indicated in Theo-
rem 1.1. Since all these properties are valid for data ϕτ , gτ and ∂Ω of problems
(1.1τ ), (1.2τ ), τ ∈ [0, 1], we can apply results of [6]–[8] to these problems. Let
us remind those which are useful for our purposes now.

As it was pointed out in Section 2 of [6], the hypothesis gt ≤ 0 implies the
estimate ut(z) ≥ min∂′QT

ut for all z ∈ QT . For gτ we have gτ
t = 3Dτgt ≤ 0 and

therefore

(1.11) uτ
t (z) ≥ min

∂′QT

uτ
t ≥ inf

τ∈[0,1]
min
∂′QT

uτ
t ≡ ν3.

This gives the following minorants for uτ

(1.12) uτ (x, t) ≥ ϕ0(x) +
∫ t

0

uτ
ξ (x, ξ) dξ ≥ inf

Ω
ϕ0 + inf

[0,T ]
(ν3t) ≡ ν4.

To estimate uτ and ∂uτ/∂n|∂′′Q from above we keep in mind the inequalities

(1.13) S1(k[uτ ])(z) > 0, z ∈ QT ,

which are valid for any element of Km and for admissible solutions in particular.
These inequalities and the comparison principle for operator S1 guarantee the
inequalities

(1.141) uτ (x, t) ≤ ũ(x, t), x ∈ Ω̃,

and

(1.142)
∂uτ

∂n
≤ ∂ũ

∂n
on ∂′′QT ,

where ũ are solutions of problems

(1.143) S1(k[ũ])(x, t) = 3D0, x ∈ Ω, ũ(x, t) = 3Dϕ(x, t), x ∈ ∂Ω.

In [20] (see also [3]) the classical solvability of this problem was obtained for
any smooth function ϕ if only ∂Ω ∈ Γ(n−1)

1 . In particular, there was done an
estimate for |ũ( · , t)|C1,Ω. We can use these estimates as condition ∂Ω ⊂ Γ(n−1)

1

follows from our assumption ∂Ω ⊂ Γ(n−1)
m . Thus, the estimates

(1.151) sup
Q

uτ ≤ sup
Q

ũ ≡ ν5,

and

(1.152) sup
∂′′Q

∂uτ

∂n
≤ sup

∂′′Q

∂ũ

∂n
≡ ν6,
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follow from (1.14k), k = 3D1, 2, . . . . From (1.15k), (1.8) and (1.12) we draw the
conclusions

(1.16) sup
τ∈[0,1]

‖uτ‖∞,Q ≤ ν7, sup
t∈[0,1]

‖uτ
x‖∞,∂′Q ≤ ν7.

Now we can use Theorem 1.2 from [8]. It guarantees the estimate

(1.17) ‖uτ
x‖∞,Q ≤ Φ(c−1

0 , ‖uτ‖∞,Q, ‖uτ
x‖∞,∂′Q, ‖gτ‖∞,Q, ‖gτ

x‖∞,Q) ≤ ν8,

where Φ is a continuous nondecreasing function of indicated arguments. Theo-
rem 2.1 of [8] gives an analogous estimate for ‖uτ

x‖∞,Q with a majorant Φ, which
does not depend of T but depends on c−1

0 , where c0 is taken from the inequality

(1.18)
∂fm(k)

∂k1
≥ c0 > 0 for all k ∈ Γ(n)

m with k1 ≤ 0.

Inequality (1.18) can be extracted from several papers. In [1] it was proved for
k satisfying additional inequalities o < ν ≤ fm(k) ≤ µ. But in fact, it is true for
any k ∈ Γ(n)

m with k1 ≤ 0 due to the following known inequalities:

S̃1/m
m (k) < S̃

1
m−1
m−1(k) for S̃m(k) = 3D

(
n

m

)−1

Sm(k),

S̃
1/(m−1)
m−1 (k) ≤ S̃

1/(m−1)
m−1 (0, k2, . . . , kn) (as k1 ≤ 0),

and hence

S̃1/m
m (k) ≤ S̃

1/(m−1)
m−1 (0, k2, . . . , kn).

On the other hand

∂

∂k1
S̃1/m

m (k) = 3D
1
m

S̃(1−m)/m
m (k)S̃m−1(0, k2, . . . , kn),

and therefore

(1.18′)
∂

∂k1
S̃1/m

m (k) ≥ 1
m

.

From (1.18′) follows (1.18) with c0 = 3D 1
m

0
@ n

m

1
A
−1/m

.

Theorem 2 from [6] and (1.17) give a majorant ν9 for uτ
t in Q, which with

(1.11) gives the inequalities

(1.19) ν3 ≤ uτ
t (z) ≤ ν9, z ∈ Q, τ ∈ [0, 1].

The estimate

(1.20) ‖uτ
xx‖∞,∂′′QT

≤ ν10,
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is actually proved in [7]. It follows from Theorem 1.1 of [7] since all conditions of
the theorem are valid for problems (1.1τ ), (1.2τ ). Among these conditions there
is the requirement on the existence of a positive minorant for

jτ ≡ uτ
t + gτ

√
1 + (uτ

x)2 in QT .

Due to (bτ ) and (1.11) the number ν̃1 is the minorant for jτ . All other conditions
of Theorem 1.1 from [7] are also fulfilled.

The estimate

(1.21) sup
τ∈[0,1]

‖uτ
xx‖∞,Q ≤ ν11,

follows from the results of [6], Section 3. The condition (3.53) of [6] is fulfilled
and we know some frontiers for fm(k[uτ ]) (the latter ones are denoted in [6] by
ν4 and ν5). Namely, due to (1.1τ )

fm(k[uτ ]) = 3Dgτ +
uτ

t√
1 + (uτ

x)2
,

and due to (1.11), (1.17) and (bτ )

(1.21) fm(k[uτ ]) ≥ 1√
1 + (uτ

x)2

[
min
∂′Q

uτ
t + inf

Q
gτ

]
≥ ν̃1√

1 + ν2
8

≡ ν12.

As a majornat for fm(k[uτ ]), we can take

ν13 = 3Dν9 + sup
QT

max{g(x, t); g0(x)}.

The fulfilment of condition (3.53) for fm = 3DS
1/m
m has been checked in the end

of [6].
So, we can assume that constants ν11, ν12 and ν13 are known and they are

positive.
Because of this, equations (1.1τ ) are uniformly parabolic on uτ and we know

the positive constants ν14 and ν15 in inequalities

(1.23) ν14ξ
2 ≤ ∂

∂uτ
xixj

[fm(k[uτ ])
√

1 + (uτ
x)2]ξiξj ≤ ν15ξ

2

for all ξ ∈ Rn. The information about uτ which is now available is sufficient to
find majorants for Hölder constants 〈uτ

t 〉
(β)
Q , and 〈uτ

xixj
〉(β)
Q with β > 0. Next

section is devoted to these problems.
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2. Estimation of Hölder constant for uτ
t and uτ

xixj

The estimates which we will obtain here are proved identically for solutions
u of (1.1), (1.2) and solutions uτ of (1.1τ ), (1.2τ ), and as to g and ϕ we will
use only information about majorants of some of their norms. Therefore, we
can restrict ourselves to the study of solutions u to (1.1), (1.2). It is known
(see, for example, any of [6]–[8] or preceding papers [1], [4] devoted to stationary
equations (1.1)) that equation (1.1) can be represented in the form

(2.1) −ut + Fm(u(xx)) = 3Dg
√

1 + u2
x,

where Fm(A) = 3DS
1
m
m (A), Sm(A) is the trace of order m of symmetric matrix A,

u(xx) = 3DT uxxT , where T = 3Dg−1/2(ux) and g(ux) is the metric tensor of the
surface Tt determined in (1.4). The elements gij of g(ux) are equal δj

i + uxi
uxj

.
Numbers ki[u](z), i = 3D1, . . . , n, are eigenvalues of matrix (1+u2

x)−1/2u(xx)(z),
so that

(2.2) Fm(u(xx)) = 3Dfm(k[u])
√

1 + u2
x.

The cone Γ(n)
m determined in (1.3) corresponds to the cone Km in the space

Mn×n
s of all symmetric matrices n× n. This cone is determined as follows

(2.3) Km = 3D{A | A ∈ M t×n
s , Sl(A) > 0, l = 3D1, . . . , m}.

This cone, as the cone Γ(n)
m , is a convex set. On it

(2.4)
∂Fm(A)

∂Aij
ξiξj > 0 for all A ∈ Km, ξ ∈ Rn\{0},

where Aij are elements of A, and Fm is concave, so that

(2.5)
∂2Fm(A)
∂Aij∂Akl

ζijζkl ≤ 0 for all ζ = 3D(ζij) ∈ Mn×n
s .

By virtue of (2.5) and convexity of Km the inequality

(2.6)
∂Fm(A)

∂Aij
(Bij −Aij) ≥ Fm(B)− Fm(A),

holds for all A and B from Km. Since Fm is 1-homogeneous the inequality (2.6)
is equivalent to

(2.6′)
∂Fm(A)

∂Aij
Bij ≥ Fm(B) = 3D

∂Fm(B)
∂Bij

Bij .

We will use also the equalities

(2.7) F (B)− F (A) = 3D

∫ 1

0

d

dξ
F (Aξ) dξ = 3D

∫ 1

0

∂F (Aξ)

∂Aξ
ij

dξ(Bij −Aij),

where Aξ = 3DξB + (1− ξ)A and A, B belong to Km.
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Let us remark that the stationary parts of equations (1.1) do not satisfy the
conditions which were imposed in the papers of Erance [2], N. V. Krylov [12]
and in the book [3] by D. Gilbarg and N. Trudinger on the equations

F (uxx, ux, u, x) = 3Dg(x),

when they derived Hölder estimates for uxixj
. In all these papers and in the

book [13] by N. V. Krylov, devoted to parabolic equations

(2.8) −ut + F (uxx, ux, u, x, t) = 3Dg(x, t),

the authors supposed that functions F are determined on the whole space R ≡
Mn×n

s × Rn × R1 × Rk (k = 3Dn or k = 3Dn + 1) and satisfy the condition of
ellipticity

∂F (A, p, u, z)
∂Aij

ξiξj > 0, for all ξ ∈ Rn\{0},(2.4′)

and the condition of convexity

∂2F (A, p, u, z)
∂Aij∂Akl

ζijζkl ≤ 0, for all ζ ∈ Mn×n
s ,(2.5′)

also on the whole R.
But equations (1.1) as well as equations in our previous papers [9]–[11] do

not satisfy these hypothesis and therefore we had to find majorants for 〈ut〉(β)
QT

and 〈uxixj
〉(β)
QT

. It was done in [9] for solutions of some class of nontotally par-
abolic equations. In [4] the author attempted to adapt some considerations of
N. V. Krylov to the stationary equations (1.1) and on the base of these adap-
tations in [10] Theorem 2 was announced. In this theorem we asserted the
possibility to estimate 〈uxixj

〉(β)
QT

for solutions u of equations (2.8) if the inequal-
ities (2.4′) and (2.5′) take place only on the investigated solution u(z) (i. e. for
A = 3Duxx(z), p = 3Dux(z), u = 3Du(z), z ∈ QT )) and if a majorant c for
|u|C2,QT

is known. But soon after the publication of [10] we found a mistake in
[4] (see pages 884–885), and therefore we had to state that our Theorem 2 from
[10] has no proof. Maybe it is not even true.

So we had in [9] and [11] to find majorants of 〈uxixj 〉
(β)
Q for solutions u of

equations −ut + F (uxx) = 3Dg. Here we do this for equations (2.1), using some
proposals from [15].

Remark. In Theorem 6.1 of [9] taken from the paper [15] (see also [16] or
[17]) there are two misprints (in [15]–[17] all is correct)):

(1) after inequality (6.9) it is written “for all k > 0” but has to be “for a
k > 0”;

(2) in (6.10) instead of “inf” should be “infQρ
”.
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Let us introduce the abbreviations ui = 3Duxi
, uij = 3Duxixj

, so that uij

are elements of matrix uxx. The elements of matrix u(xx) = 3DT uxxT we will
denote by u(ij). For them we have the representations u(ij) = 3Dτikτjlukl where
τik = 3Dτki are elements of matrix τ = 3Dg−1/2(ux) ≡ T (ux).

We start with the evaluation of 〈ut〉(β)
Q with some β > 0. For this purpose

we differentiate (2.1) with respect to t and get

(2.9) −utt +
∂Fm(u(xx))

∂u(ij)
u(ij)t = 3D(g

√
1 + u2

x)t.

Let us introduce the notations

(2.101)
[
∂Fm(u(xx))

∂u(ij)
τik(ux)τjl(ux)

]
(z) ≡ akl(z),

and remark that for all z ∈ QT and all ξ ∈ Rn we have inequalities

(2.102) νξ2 ≤ akl(z)ξkξl ≤ µξ2,

with some known positive constants ν and µ.
The estimates (1.20) and (1.23) guarantee (2.102). The relation (2.9) we

consider as a linear equation for ut:

(2.11) −∂tut + aklutxkxl
+ bkutxk

= 3Dgt

√
1 + u2

x.

The form of bk is not significant for us. For us only majorants for ‖bk‖∞,Q

and ‖gt

√
1 + u2

x‖∞,Q are important. Besides this, we can calculate explicitly a
majorant for ‖ut‖(α)

∂′Q. This information is enough to find a majorant for 〈ut〉(β)
Q

with a β ∈ (0, α] (see [15–17]). Thus, the estimate

(2.12) 〈ut〉(β)
Q ≤ c,

is in our hands.
In the next stage we will find a majorant for 〈uij〉(β)

∂′′Q on the boundary ∂′′Q.
We do this as in Section 5 in [9], using the following Lemma for a linear operator

(2.13) Lu = 3D − ∂t + akl∂
2
xkxl

,

with akl from (2.101).

Lemma 2.1. Let v ∈ C(Q) ∩ C2(Q), vx ∈ C(Q), v|∂′′Q = 3D0, v|t=3D0 ∈
Cα(Ω) and let v satisfy the inequality |Luv(z)| ≤ c1 in Q. Then

|vxi
|(β)
∂′′Q ≤ c2, i = 3D1, . . . , n

with some β ∈ (0, 1). The numbers β and c2 are determined by numbers ν−1, µ,
c1, n and |v( · 0)|(α)

Ω .
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This lemma follows from the results of [18] and from [19] (see, also [13]).
Let all above relations be written in cartesian coordinates x = 3D(x̃, xn) corre-
sponding to x0 ∈ ∂Ω. We apply Lemma 2.1 to any of v(x, t) = 3Dvk(x, t)ζ(x),
k = 3D1, . . . , n−1, in the cylinder Q(x0, d) = 3D[Ω∩Bd(x0)]×(0, T ) with d � 1.
The function ζ is a cut-function for Bd(x0). It is equal to 1 for x ∈ Bd/2(x0),
to zero near ∂Bd(x0) and ζ(x) ∈ [0, 1]. The functions vk are determined by
equalities

vk(x, t) = 3D(u(x, t)− ϕ(x, t))xk
+ (u(x, t)− ϕ(x, t))xn

ωxk
(x), k < n,

where ω(x) = 3Dω(x̃) for x = 3D(x̃, xn). It is easy to see that vkζ are zero on
∂′′Q(x0, d),

(2.14) |Lu(vkζ)| ≤ c in Q(x0, d),

and some majorants for |vkζ|t=3D0|(α)
Ω are known. To prove (2.14) we differen-

tiate (2.1) with respect to xk, represent the result in the form Luuk = 3DΦk

and remark that we know a majorant for all ‖Φk‖∞,Q(x0,d), k = 3D1, . . . , n.
Due to the above said and Lemma 2.1 we know on the part Σd × [0, T ]

of boundary ∂′′Q(x0, d) the estimates |vk
xi
|(β)
Σd×[0,T ] ≤ c1, i = 3D1, . . . , n, from

which we conclude that

(2.151) |uki + uniωxk
|(β)
Σd×[0,T ] ≤ c2,

with β which is minimal of 1/2 and previous β. Because of (2.151), for any
z0 = 3D(x0, t) ∈ Q(x0, d) and any z′ = 3D(x′, t′) ∈ Σd × [0, T ], we have the
inequalities

(2.152) |uki(z′)− uki(z0, t)| ≤ c3ρ
β(z′, z0) + |uni(z′)ωxk

(x′)| ≤ c4ρ
β(z′, z0),

for k ∈ [1, n− 1] and i ∈ [1, n]. Here we have taken into account that

ωxk
(x0) = 3D0 and |ωxk

(x′)| ≤ c|x′ − x0|.

For the estimation of |unn(z′)− unn(z0)| we consider the difference of equations
(2.1) at points z′ and z

(2.16) j = 3DFm(u(xx)(z′))− Fm(u(xx)(z0))

= 3Dut(z′)− ut(z0) + (g
√

1 + u2
x)(z′)− (g

√
1 + u2

x)(z0).

Now we can conclude that the absolute value of the right-hand side of (2.16)
does not exceed cρβ(z′, z0) with some c and β > 0. The left-hand side of (2.16)
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we represent, using (2.7), in the form

j =3Dâij [u(ij)(z′)− u(ij)(z0)](2.17)

= 3Dâij [(uklτikτjl)(z′)− (uklτikτjl)(z0)]

= 3Dâijτik(z0)τjk(z0)[ukl(z′)− ukl(z0)]

+ âij [(τikτjl)(z′)− (τikτjl)(z0)]ukl(z′)

= 3D = 3D̂̂aij [ukl(z′)− ukl(z0)] + O(ρβ(z′, z0)),

where

âij = 3D
∫ 1

0

∂Fm(uξ
(xx))

∂uξ
(ij)

dξ and uξ
(xx) = 3Dξu(xx)(z′) + (1− ξ)u(xx)(z0).

In this connection we used convexity of the cone Km and known estimates for u.
Additionally, for quadratic forms âijξiξj and ̂̂aijξiξj we have inequalities (2.102)
with positive constants ν and µ under control. From this follows the estimateŝ̂ann ≥ ν and |̂̂aij | ≤ µ, i, j = 3D1, . . . , n. These inequalities permit draw from
(2.15k)–(2.17) the conclusion

(2.18) ν|unn(z′)− unn(z0)| ≤ cρβ(z′, z0).

Since z0 is an arbitrary point of ∂′′QT , we obtain from (2.15k), k = 3D1, 2, and
(2.18) the desirable estimates

(2.19) 〈uxixj
〉(β)
∂′′QT

≤ c, i, j = 3D1, . . . , n,

with some c and β > 0. For estimation of 〈uij〉(β)
Q we use Theorem 6.2 from [9].

Lemma 2.2. Let functions vk : QT → R1, k = 3D1, . . . , N , belong to
W 2,1

n+1(QT ) ∩ C(QT ) and satisfy inequalities |vk|Cα,∂′QT
≤ c1 and

(2.20) ‖(−Luvk)+‖n+1,QT
≤ c2,

with some c1 and c2 where Lu has the form (2.13) with akl satisfying (2.102).
Let also the inequalities

(2.21) δ
N∑

i=3D1

[vk(z2)− vk(z1)]+ ≤
N∑

i=3D1

[vk(z2)− vk(z1)]− + c3ρ
α(z1, z2),

be fulfilled for all z1, z2 ∈ QT with some positive δ and c3. Then for all k =
3D1, . . . , N , vk belong to Cβ(QT ) and |vk|Cβ ,QT

≤ c4, where c4 is determined
by δ−1 and ci, i = 3D1, 2, 3. Number β belongs to (0, α] and is also determined
by δ−1 and ci, i = 3D1, 2, 3.

In [9] we did a proof of this statement and pointed out that it is a general-
ization of some statements from [13].
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The collection {vk}N
k=3D1 of functions to which we will apply Lemma 2.2 has

no relation with functions vk, k = 3D1, . . . , n−1, used before for proving (2.19).
Here we construct vk, k = 3D1, . . . , N , with the help of second derivatives of
u having the form uk ≡ uγkγk

= 3Duij cos(γk, xi) cos(γk, sj), k = 3D1, . . . , N ,
where γ1, . . . , γN is a collection of unite vectors including vectors e1, . . . , en,
their combinations e±ij = 3D(ei±ej)/

√
2, i 6= j, and some other vectors. We will

describe it below. Due to relations

∂2
xixj

= 3D
1
2
(∂xi + ∂xj )

2 − 1
2
∂2

xixi
− 1

2
∂2

xjxj
,

each second derivative uij can be represented as a sum of uk, k = 3D1, . . . , N .
Each of uk satisfies a certain differential inequality. Namely, let us differentiate
(2.1) along the direction γ. It gives

(2.22) −uγt +
∂Fm(u(xx))

∂u(ij)
u(ij)γ = 3D(g

√
1 + u2

x)γ ,

where uγ = 3Dui cos(γ, xi). Now, we differentiate (2.20) along the same γ and
reject in the result the nonpositive number

∂2Fm(u(xx))
∂u(ij)∂u(kl)

u(ij)γu(kl)γ ,

(see (2.5)). It gives the inequality

(2.23) −uγγt +
∂Fm(u(xx))

∂u(ij)
u(ij)γγ ≥ (g

√
1 + u2

x)γγ .

This relation, taking for all γ = 3Dγk, we rewrite in the form

(2.24) Luuk +
N∑

l=3D1

N∑
i=3D1

ck
liu

l
xi
≥ Φi, k = 3D1, . . . , N.

where ck
li and Φk are continuous functions of z ∈ QT for which we know majorants

of their modulus. Operator Lu is taken from (2.13) and the inequalities (2.102)
hold four its coefficients.

As it was understood (see for example [14]) while evaluating of Hölder con-
stants for derivatives uxi

of solutions u to the quasilinear elliptic and parabolic
equations, we have to pass from the collection {uk}N

k=3D1 to another collection
{vk}N

k=3D1 which has the following two properties:

(1) any vk satisfies an inequality

(2.25) Luvk ≥ c5, k = 3D1, . . . , N,

(2) quantities 〈uk〉(β)
Q , k = 3D1, . . . , N , can be majorized by quantities

〈vk〉(β)
Q and ‖uk‖∞,Q.
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Such collection is constructed in the following way: at first we “normalized” uk

taking ũk(z) = 3D(uk(z)−m−
k )/(m+

k −m−
k ) ∈ [0, 1] with m+

k = 3D supQ uk and
m−

k = 3D infQ uk instead of uk. We have for them the inequalities (2.24) only
with others coefficients ck

li and other Φk. Since these changes are not important
for our main purpose we will suppose that uk themselves have the properties
uk(z) ∈ [0, 1]. Using such uk we construct the collection

(2.26) vk(z) = 3Duk(z) + ε
N∑

l=3D1

[ul(z)]2, k = 3D1, . . . , N,

with a small positive ε (ε ∈ (0, 1]). Due to (2.24), functions vk satisfy the
inequalities (2.25) with some c5 < ∞ if only ε > 0. Besides this, the differences
ũm = 3Dum(z2) − um(z1) and ṽm = 3Dvm(z2) − vm(z1) are connected by
equalities

ṽk = 3Dũk + ε
N∑

l=3D1

alũ
l,

where al = 3Dul(z2) + ul(z1) ∈ [0, 2]. They imply

N∑
k=3D1

akṽk = 3D
N∑

k=3D1

akũk

(
1 + ε

N∑
l=3D1

alṽ
l

)
, k = 3D1, . . . , N,

and therefore

(2.26′) ũk = 3Dṽk − ε

1 + ε
∑N

l=3D1 al

N∑
l=3D1

alṽ
l, k = 3D1, . . . , N.

Due to this the estimates |ṽl| ≤ cρα(z1, z2) give the analogues estimates for |ũk|.
Now we show that the inequalities (2.21) hold for {vk}N

k=3D1 if the collection
of directions γk = 3D

∑n
i=3D1 γkiei, k = 3D1, . . . , N , is selected so that all

aij(z) can be represented in the form

(2.27) aij(z) = 3D
N∑

m=3D1

βm(z)γmiγmj , i, j = 3D1, . . . , n,

where βk(z) belong to [ν∗, µ∗] with some positive numbers ν∗ and µ∗ determined
by n, µ and ν from (2.102). A possibility of such a representation is guaranteed
by Wasov-Motzkin Lemma (see, for example, [9] or [13]).

Let us take relation (2.16) for arbitrary points z1 and z2 from Q:

(2.281) j(z1, z2) = 3Dut(z2)− ut(z1) + (g
√

1 + u2
x)(z2)− (g

√
1 + u2

x)(z1),

where

(2.282) j1(z1, z2) = 3DFm(u(xx)(z2))− Fm(u(xx)(z1)),
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and, using (2.6), evaluate j from below

j(z1, z2) ≥
∂Fm(u(xx))

∂u(ij)
(z2)[u(ij)(z2)− u(ij)(z1)] + j1(z1, z2) = 3D

= 3Dakl(z2)[ukl(z2)− ukl(z1)] + j1(z1, z2),

where

j1(z1, z2) = 3D
∂Fm(u(xx))

∂u(ij)
(z2)ukl(z2)[(τikτjl)(z2)− (τikτjl)(z1)].

By virtue of (2.27)

(2.29) j(z1, z2) ≥
N∑

m=3D1

βm(z2)[um(z2)− um(z1)] + j1(z1, z2).

It is easy to see that the sum of absolute values of j1 and the right-hand side
of (2.281) does not exceed cρα(z1, z2) with some c and α > 0, and therefore we
can conclude from (2.281) and (2.29) that

(2.30)
N∑

m=3D1

βm(z2)[um(z2)− um(z1)] ≤ c6ρ
α(z1, z2) ≡ c6ρ

α.

Because of βm(z2) ∈ [ν∗, µ∗] we have from (2.30) the inequalities

ν∗
N∑

m=3D1

[ũm]+ − µ∗
N∑

m=3D1

[ũm]− ≤ c6ρ
α,

where ũm = 3Dum(z2) − um(z1), [a]+ = 3D max{0; a}, [a]− = 3D max{0;−a}.
From these ineqaulities we deduce

(2.31) δ1

N∑
m=3D1

[ũm]+ ≤
N∑

m=3D1

[ũm]− + c7ρ
α, δ1 = 3D

ν∗

µ∗
.

For ṽm determined after (2.26), we have, using (2.31), the following

[ṽm]+ ≤ [ũm]+ + 2ε

N∑
l=3D1

[ũl]+

⇒
N∑

m=3D1

[ṽm]+ ≤ c8

N∑
m=3D1

[ũm]+, c8 = 3D1 + 2εN,

[ũm]− = 3D[ṽm−ε
N∑

l=3D1

alũ
l]− ⇒

N∑
m=3D1

[ũm]− ≤
N∑

m=3D1

[ṽm]− + 2Nε
N∑

l=3D1

[ul]+

≤
N∑

m=3D1

[ṽm]− + 2Nεδ−1
1

N∑
m=3D1

[ũm]− + 2Nεδ−1
1 c7ρ

α.
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For ε < δ1(4N)−1 the last inequality gives the relations

(2.32)
N∑

m=3D1

[ũm]− ≤ 2
N∑

m=3D1

[ṽm]− + c9ρ
α, c9 = 3D4Nεc7δ

−1
1 .

From these relations and from (2.31) we obtain the inequalities

N∑
m=3D1

[ṽm]+ ≤ c8

N∑
m=3D1

[ũm]+ ≤ c8δ
−1
1

N∑
m=3D1

[ũm]− + c7c8δ
−1
1 ρα

≤ 2c8δ
−1
1

N∑
m=3D1

[ṽm]− + c8(c7 + c9)δ−1
1 ρα,

which are just the desirable inequalities (2.21) with

δ = 3Dδ1(2c8)−1 = 3Dν∗[2µ∗(1 + 2εN)]−1 and c3 = 3D(c7 + c9)/2.

The condition (2.20) of Lemma 2.2 is also fulfilled for our vk because

(2.25′) [−Luvk]+ ≤ max{0;−c5},

due to (2.25). Thus, Lemma 2.2 guarantees the estimates

(2.331) |vk(z2)− vk(z1)| ≤ cρβ(z1, z2), k = 3D1, . . . , N,

with some c and β ∈ (0, α) for any z1, z2 ∈ QT .
As it was explained above (see (2.26′)), from (2.331) we can get the estimates

(2.332) |uk(z2)− uk(z1)| ≤ cρβ(z1, z2), k = 3D1, . . . , N,

and from them the estimates

(2.333) |uxixj
(z2)− uxixj

(z1)| ≤ cρβ(z1, z2), i, j = 3D1, . . . , n,

with some other constant c. All this is true for solutions uτ of problems (1.1τ ),
(1.2τ ). So, we have proved

Theorem 2.1. For all admissible solutions uτ of problems (1.1τ ), (1.2τ ),
τ ∈ [0, 1], for which ‖uτ‖C2,QT

≤ c, there exist a constant β ∈ (0, α] and a
majorant c1 such that

(2.34) sup
τ∈[0,T ]

‖uτ‖C2+β ,QT
≤ c1.

They are determined by c, |ϕ|C3,QT
, |g|C2,QT

, and |∂Ω|C3 .

Thus, the estimate (1.10) is proved. For this we have used that uτ ∈ C2(QT )
and uτ

x, uτ
xx, and uτ

t belong to C2(QT ). It is known that to prove the exis-
tence theorem for problems (1.1τ ), (1.2τ ) in the functional space indicated in
Theorem 1.1 we have to check two facts:
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(1) If problem (1.1τ ), (1.2τ ) is solvable for τ1, τ2, . . . , and τk → τ then
it is solvable for τ = 3Dτ also. It is proved easily, since due to (1.10), uτki

for some subsequence {τki
}, ki → ∞, converges in C2(QT ) to a function u ∈

C2+β(QT ) and this function u will be a solution of problem for τ = 3Dτ (we
know preliminary that problem (1.1τ ), (1.2τ ) for any τ ∈ [0, 1] can have not
more then one solution). The belonging of the derivatives ux, uxx, ut of u to
C2+α(QT ) is proved on the base of the linear theory of parabolic equations.

(2) The second property of the family of problems (1.1τ ), (1.2τ ), τ ∈ [0, 1],
which we have to verify, is the possibility to find solutions in a vicinity of any
τ ∈ [0, 1) for which we know the solution u = 3Duτ . Such possibility is proved
often with the help of proper approximations and the existence theorem for
contractive mappings. In the monograph [13, Chapter I, Section 3], this way
was used for the second order nonlinear parabolic equations of general form,
but under condition that the studied problem is “strong” compatible with the
first initial-boundary values problem for the heat equation with the same ϕ on
∂′QT . It means that function ϕ : QT → R1 has to satisfy not only necessary
compatibility conditions but also the condition

(2.35) −ϕt + ∆ϕ = 3D0.

This requirement is caused not by the essence of problem but by technical rea-
sons — choosing of auxiliary problems. We use other auxiliary problems — the
problems (1.1τ ), (1.2τ ), τ ∈ [0, 1], and do not put on ϕ the condition (2.35).
Each problem (1.1τ ), (1.2τ ) satisfies the compatibility conditions of the zero and
first orders. Let us explain how to prove the solvability of problems (1.1τ ), (1.2τ )
for all τ +ε with ε ∈ (0, ε0), ε0 � 1, if we know its solvability (in the same space)
for τ .

Let us introduce linear operators Lτ

(2.36) Lτv = 3D − vt + aτ
ijvij + aτ

i vi,

corresponding to the equations in variations for equations (1.1τ ) written in the
form

(2.37) −uτ
t + Fm(uτ

(xx))− gτ
√

1 + (uτ
x)2 = 3D0.

In (2.36)

aτ
ij = 3D

∂Fm(uτ
xx, uτ

x)
∂uτ

ij

, where Fm(uxx, ux) ≡ Fm(u(xx)),

and

aτ
i = 3D

∂Fm(uτ
xx, uτ

x)
∂uτ

i

− gτ uτ
i√

1 + (uτ
x)2

.
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Let us consider the linear problems

Lτv = 3DBτ [uτ , w] + (gτ+ε − gτ )
√

1 + w2
x in QT ,(2.381)

v = 3Dϕτ+ε on ∂′QT ,(2.382)

where Bτ [uτ , w] = 3Daτ
ijwij + aτ

i wi − Fm(w(xx)) + gτ
√

1 + w2
x.

A unique solution v of the problem (2.38k), k = 3D1, 2, corresponds to each
w from C2+β(QT ) ∩ Km. If the solution v coincides with w then v will be a
solution of (1.1τ+ε), (1.2τ+ε).

In order that v enters in C2+β(QT ) it is necessary that the compatibility
conditions of the zero and first orders for problem (2.38k), k = 3D1, 2, are
fulfilled. To obtain this we will consider problem (2.38k), k = 3D1, 2, only for w

belonging to the set

A(δ, τ, ε) = 3D{w ∈ C2+β(QT ) | |w− uτ |C2+β ,QT
≤ δ, w = 3Dϕτ+ε on ∂′QT }.

If w ∈ A(δ, τ, ε) with a δ > 0 the solution v of (2.38k), k = 3D1, 2, for such w

belongs to A(δ̃, τ, ε), may be with δ̃ > δ. This gives us the mapping

Φτ,ε:w ∈ A(δ, τ, ε) → v ∈ A(δ̃, τ, ε).

If δ and ε are sufficiently small then Φτ,ε maps A(δ, τ, ε) in itself. To control this
we consider the difference of the equation (2.381) and (2.37) and write the result
as an equation for v − uτ

(2.391) Lτ (v − uτ ) = 3DBτ [uτ , w − uτ ] + ε(g − g0)
√

1 + w2
x ≡ j1 in QT .

We also have

(2.392) v − uτ = 3Dϕτ+ε − ϕτ = 3Dε(ϕ− ϕ0) on ∂′QT .

It is not difficult to calculate that for w ∈ A(δ, τ, ε)

(2.40) |j1|Cβ ,QT
≤ c[κ(δ)δ + ε],

where κ : [0, δ1] → R1 is a continuous function equal zero in the end δ = 3D0 of
[0, δ1].

Because of this and Schauder’s estimates for solution v − uτ of problem
(2.39k), k = 3D1, 2,

|v − uτ |C2+β ,QT
≤ c1[κ(δ)δ + ε],

and therefore v will belong to A(δ, τ, ε) if only δ and ε are so small that

(2.41) c1[κ(δ)δ + ε] ≤ δ.

The contraction property of Φτ,ε for small τ and ε is proved analogously. (For
this purpose it is necessary to consider the difference of equations (2.381) for two
different w from A(δ, τ, ε).) This guarantees the existence of a fixed point v for
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Φτ,ε and, by the same token, the solvability of problems (1.1τ+ε), (1.2τ+ε) for
small ε. It is easy to see that in all our steps we did not leave the cone Km and
for solutions uτ+ε the estimates (2.34) hold. Thus, we have tested the fulfillment
of both conditions (1) and (2) which permit to use the continuation with respect
to parameter τ ∈ [0, 1] and prove Theorem 2.1.
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