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INDEX OF SOLUTION SET
FOR PERTURBED FREDHOLM EQUATIONS
AND EXISTENCE OF PERIODIC SOLUTIONS

FOR DELAY DIFFERENTIAL EQUATIONS

Vladimir T. Dmitrienko — Viktor G. Zvyagin

Abstract. We consider the index of the solution set of Fredholm equations
with f -condensing type perturbations. This characteristic is applied to the

existence of periodic solutions for delay differential equations.

1. Introduction

Let E, F be Banach spaces, f, k:E → F continuous maps. The authors of
paper [2] consider the situation when the operator equation

(1.1) f(x) + k(x) = 0

possesses some regular properties only on a certain neighbourhood of the so-
lution set. In particular, the main hypothesis of [2] includes the assumptions
that the solution set of (1.1) is compact, restriction of f onto a certain neigh-
bourhood of the solution set of (1.1) is a Cr-smooth (r ≥ 1) Fredholm map of
index n ≥ 0 and k is a completely continuous map. Under these assumptions
it was proposed to construct the topological index of the solution set of (1.1)
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possessing the usual properties of the characteristic of this sort. By now this
program has been realized only for the case of a non-oriented index (see [16]).
In the mentioned paper some applications of the index to the solvability of the
Dirichlet problem for the Monge–Ampére equation were also presented. In work
[17] the index of the solution set for Fredholm equations with compactly re-
stricted perturbations was introduced and investigated. As an application the
solvability of the boundary-value problem for a system of ordinary differential
equations unsolved with respect to the highest-order derivative was considered.
Furthermore in [6] this approach was used also to solve the periodic problem for
ordinary differential equations.

It is well known that the periodic problem, being one of classical objects of
mathematics and mechanics, has attracted the attention of many researchers.
We mention here only the works closely related to the subject of the present
paper.

M. A. Krasnosel’skĭı in [10] has reduced the periodic problem for the differ-
ential equation

(1.2) ẋ = F (t, x)

to the study of a fixed point of the translation operator along solutions of equa-
tion (1.2) (the Poincare–Krasnosel’skĭı map). Applying the theory of the rotation
of vector fields and appropriate homotopies along the trajectories of solutions
of (1.2) he proved the existence of periodic solutions under the condition that
the Brouwer’s degree of the map F (0, · ):Br(0) ⊂ Rn → Rn differs from zero on
a ball Br(0).

Another approach, based on the coincidence topological degree, was proposed
by J. Mawhin in [7] and [11], where the autonomous averaged vector field

f0: z 7→
1
ω

∫ ω

0

f(s, z) ds

was chosen as the final point of homotopies. A detailed survey of related results
and further developments can be found in [4].

In paper [12] the existence of solutions for the periodic boundary-value prob-
lem for the equation

(p(t)x′(t))′ = f(t, x(t), x′(t), x′′(t)) + y(t)

is proved. Further, in papers [13] and [14], these results were generalized to the
case of equations of a higher order. In these researches the degree theory for
A-proper maps was used as the main tool.

Note that the use of the degree theory requires, as a rule, some strong condi-
tions on the operators, generated by an equation, and therefore on the functions
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determining this equation. Usually these assumptions are imposed on the be-
havior of the functions on the entire domain. The application of the index of
solution set needs structural conditions only on a certain neighbourhood of the
solution set. This neighbourhood is chosen by some a priori arguments.

In the present paper the topological index of solution set, introduced in [17],
is applied to the investigation of periodic solutions of the differential equation of
the form

(1.3) a(t, x(t), x(t− τ), x′(t), x′(t− τ)) = b(t, x(t), x(t− τ), x′(t), x′(t− τ)).

We suppose that the functions a, b are ω-periodic in the first variable and that
the delay τ is commensurable with ω.

The paper consists of the introduction and 5 sections. In Section 2 we present
basic notions and properties of the index of the solution set for equations with
local Fredholm and local f -condensing maps. Section 3 contains auxiliary results
concerning the properties of the superposition operator. In Section 4 we study
conditions under which the index of solution set is well-posed for each differential
equation from the studied family. The evaluation of the index for one of these
equations is contained in Section 5. We reduce the evaluation of the index to
that of the nonoriented degree for a finite dimensional map. Section 6 contains
the main theorem on the existence of a periodic solution for differential equation
(1.3). To prove it we evaluate the index of solution set using its main properties.
As an application, the existence of a periodic solution for a nonlinear differential
equation is considered.

2. The index of the solution set for Fredholm equations
with f-condensing perturbations

Let E, F be real Banach spaces, X be an open subset of the space E,
f :X → F be a Cr-smooth map, r ≥ 1.

We recall some known notions [1], [3], [6].

Definition 2.1. The map f :X → F is called a Fredholm map of the index 0
(briefly Φ0C

r-map) on the set M ⊂ X if at any point u ∈ M the Frechet
derivative f ′(u) is a linear Fredholm operator of the index 0, i.e. dim Ker f ′(u) =
dim Coker f ′(u) <∞.

Definition 2.2. Let V be closed in E, V ⊂ X. We say that the restriction
f = f |V :V → F is a proper map on V if f−1(K) ∩ V is a compact set for any
compact K ⊆ F .
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Definition 2.3. The measure of noncompactness in a Banach space F is
a function ψ assigning a nonnegative number ψ(M) to any bounded set M ⊆ F

such that the following conditions are fulfilled:

(a) ψ(co(M)) = ψ(M), where co(M) is the closure of a convex hull of the
set M ,

(b) from inclusion M1 ⊆M2 it follows that ψ(M1) ≤ ψ(M2).

We suppose below that all measures of noncompactness satisfy the following
conditions:

(c) ψ(M) = 0 if and only if M is relatively compact,
(d) ψ(M1 ∪M2) ≤ max{ψ(M1), ψ(M2)},
(e) ψ(M1 +M2) ≤ ψ(M1) + ψ(M2) for any bounded subset M1, M2 in F .

As the example of a measure of noncompactness satisfying above conditions
we can present Kuratowski measure of noncompactness α(M):

α(M) = inf{d > 0, for which M may be covered

by a finite number of sets of diameter d}.

Let U be an arbitrary subset of a Banach space E, f, g:U → F be maps
acting from the set U to a Banach space F .

Definition 2.4. The map g:U → F is called f -condensing on the set U
with respect to the measure of noncompactness ψ if ψ(g(M)) < ψ(f(M)) for
any M in U such that ψ(g(M)) 6= 0.

Consider the equation

(2.1) f(u)− g(u) = 0, u ∈ X.

Denote by Q ⊆ X the set of solutions of the equation (2.1), i.e. Q = (f−g)−1(0).
We suppose that the following conditions are fulfilled:

(C1) The set Q is compact.
(C2) There exists an open neighbourhood of the compact Q such that the

map f is a Φ0C
1-map on the set Q.

(C3) There exists an open neighbourhood U of the compact Q such that g|U
is a f -condensing map on the set U with respect to the measure of
noncompactness ψ.

Under the above conditions the index of the solution set of equation (2.1),
ind2(f − g,X, 0), with values in the additive group Z2, is defined in [6].

We point out some properties of the index that we will need in the sequel.
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Property 2.5. If an index ind2(f − g,X, 0) differs from zero then equation
(2.1) has a solution in X.

In order to formulate the second property we consider the family of operator
equations

(2.2) f(u, λ)− g(u, λ) = 0, u ∈ X, λ ∈ [0, 1],

where f, g:X × [0, 1] → F are continuous maps. Denote by QΓ ⊆ X × [0, 1] the
set of all solutions (u, λ) of family (2.2).

We suppose that the following conditions are fulfilled:

(Γ1) the set QΓ is compact in X × [0, 1],
(Γ2) there exists an open neighbourhood U of the compact QΓ with the

property: on the closure of U the map f is continuous in λ uniformly
with respect to u and f( · , λ):U ∩ (E × {λ}) → F is a Φ0C

1-map for
any fixed λ, whose derivative f ′u(u, λ) is continuous in u and λ,

(Γ3) the map g is a f -condensing map with respect to the measure of non-
compactness ψ on some neighbourhood U of QΓ.

Under the above conditions the following property holds.

Property 2.6 (The homotopy invariance property of the index). Let con-
ditions (Γ1)–(Γ3) be fulfilled. Then

ind2(f0 − g0, X, 0) = ind2(f1 − g1, X, 0),

where fi(u) = f(u, i), gi(u) = g(u, i), i = 0, 1, u ∈ X.

By virtue of the compactness of the solution set it is sufficient to investigate
the properties of f and g in some neighbourhood of each point q ∈ Q.

Definition 2.7. A map g:U → F is called kf -bounded with respect to the
measure of noncompactness ψ at a point q ∈ U if for any ε > 0 there exists δ > 0
such that ψ[g(M)] ≤ (k + ε)ψ[f(M)] for any M from B(q, δ).

Theorem 2.8. Let a map f be continuously differentiable on some neigh-
bourhood of the compact Q and f ′(q) be a Fredholm operator for any q ∈ Q. Let
a map g be locally kf ′(q)-bounded with respect to the measure of noncompact-
ness α at any point q ∈ Q and k < 1. Then the map g is f-condensing with
respect to the measure of noncompactness α on some open neighbourhood U of
the compact Q.

The proof can be found in [17].
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3. Auxiliary results concerning the properties
of a superposition operator

Here we present some necessary facts and statements concerning the proper-
ties of a superposition operator in the space of functions continuous on [0, ω].

Let x be a vector in the space Rn and |x| be the norm of this vector.

Theorem 3.1 (Implicit Function Theorem). Let the functions ϕ, µ:U ⊂
Rm×Rn → Rn be continuous in a neighbourhood U of the point (x0, y0) and the
following conditions be satisfied:

(a) ϕ(x0, y0) = µ(x0, y0),
(b) the function ϕ(x, y) has a continuous derivative ∂ϕ/∂y on U and

det
∂ϕ

∂y
(x0, y0) 6= 0,

(c) |µ(x, y)−µ(x, y)| ≤ c|∂ϕ/∂y(x0, y0)(y−y)| for all (x, y), (x, y) ∈ U and
any constant c < 1.

Then, in a certain neighbourhood of the point x0, there exists a unique function
y = y(x) such that it is continuous, y(x0) = y0 and ϕ(x, y(x)) = µ(x, y(x)).

The statement follows from Banach fixed point theorem.
The following inverse function theorem is a simple corollary of Theorem 3.1.

Theorem 3.2 (Inverse Function Theorem). Let the functions ϕ, µ:U ⊂
Rn → Rn be continuous in a neighbourhood U of the point x0 and let the following
conditions be satisfied:

(a) y0 = ϕ(x0)− µ(x0),
(b) the function ϕ(x) has a continuous derivative dϕ/dx on U and

det
dϕ

dx
(x0) 6= 0,

(c) |µ(x)−µ(x)| ≤ c|(dϕ/dx)(x0)(x− x)| for all x, x ∈ U and any constant
c < 1.

Then, in a certain neighbourhood Vε of the point y0, there exists a continuous
function, inverse to ϕ− µ.

The statement follows from Theorem 3.1 applied to the equation

ϕ(x)− µ(x)− y = 0 for x ∈ U, y ∈ Rn.

Let V0 ⊂ [0, ω]×Rn be a bounded set, closed in [0, ω]×Rn, and V be the closure
of a certain bounded open neighbourhood of the set V0.

Denote by C([0, ω],Rn) the space of continuous functions with the norm
‖x‖0 = maxt∈[0,ω] |x(t)| (where | · | is the norm in Rn, defined by the formula
|u| = max1≤i≤n |ui|, u = (u1, . . . , un) ∈ Rn). As usual, Ck([0, ω],Rn) denotes
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the space of functions having continuous derivatives up to order k with the norm
‖x‖k =

∑k
j=0 ‖x(j)‖0.

Define the subsets W0, W in the space C([0, ω],Rn) in the following way:

W0 = {u ∈ C([0, ω],Rn) : (t, u(t)) ∈ V0, for all t ∈ [0, ω]},
W = {u ∈ C([0, ω],Rn) : (t, u(t)) ∈ V, for all t ∈ [0, ω]}.

Denote by D0 the set

D0 = {(t, u) ∈ V : ϕ(t, u)− µ(t, u) = 0}.

Let {uk(t)} be an arbitrary sequence of functions from W . We say that the
sequence {uk(t)} converges to the set V0, if for any ε > 0 there exists a number
k0 such that for every k ≥ k0 the graphs of the functions {(t, uk(t))} are contained
in the ε-neighbourhood Vε of V0.

Theorem 3.3. Let the functions ϕ, µ:V ⊂ [0, ω] × Rn → Rn be continuous
and for any point (t0, u0) ∈ D0 ∩ V0 there exists a neighbourhood such that:

(a) the function ϕ(t, u) has a continuous derivative ∂ϕ/∂u on V and

det
∂ϕ

∂u
(t0, u0) 6= 0,

(b) there exists a constant c < 1 such that

|µ(t, u)− µ(t, u)| ≤ c

∣∣∣∣∂ϕ∂u (t0, u0)(u− u)
∣∣∣∣

for any (t, u), (t, u) from this neighbourhood.

Then if the sequence {uk(t)} of functions from W converges to V0 and the se-
quence

yk(t) = ϕ(t, uk(t))− µ(t, uk(t))

uniformly converges to zero-function on [0, ω], there exists a subsequence, uni-
formly converging on [0, ω].

Proof. The set V is bounded and compact, (0, uk(0)) ∈ V , hence, without
loss of generality, we can suppose the sequence uk(0) to be converging to u0. By
the conditions of the theorem (0, u0) ∈ V0 and (0, u0) ∈ D0. By Implicit Function
Theorem 3.1 there exists a unique solution u0(t) of the equation ϕ(t, u) = µ(t, u),
whose graph starts from the point (0, u0). From the same theorem it follows that
the function u0(t) can be extended either on the entire interval [0, ω] or up to
the moment when the graph leaves the set V0.

Let the function u0(t) be extended on [0, t0]. By the Implicit Function Theo-
rem there exists ε > 0 such that the ε-neighbourhood of the graph of u0(t) does
not contain the points (t, u) ∈ D0, t ∈ [0, t0] except the points of the graph.
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Denote by Uε/3D0 the ε/3-neighbourhood ofD0 and by V (t0) the set V (t0) =
{(t, u) ∈ V : t ∈ [0, t0]}. Then on the set V (t0) \ Uε/3D0 the function |ϕ(t, u)−
µ(t, u)| is positive and for some δ > 0 we have |ϕ(t, u) − µ(t, u)| > δ for all
(t, u) ∈ V (t0) \ Uε/3D0.

Since the sequence yk(t) converges to zero uniformly on [0, t0], |yk(t)| < δ for
all t ∈ [0, t0] starting from a certain member of the sequence. Thus the graphs
of the functions uk(t) are contained in the set Uε/3D0.

By the hypothesis, the initial points of the graphs (t, uk(t)) are contained
in the ε/3-neighbourhood of (0, u0) for k sufficiently large. Hence the graphs
of these functions belong to the ε/3-neighbourhood of the graph of u0(t) for all
t ∈ [0, t0]. Thus the sequence uk(t) converges to u0(t) uniformly on [0, t0] since
ε can be chosen arbitrarily small and δ is getting smaller.

If [0, t0] = [0, ω], the theorem follows. Suppose that (t0, u0(t0)) 6∈ V0 and
t0 < ω. Denote by ε the distance from (t0, u0(t0)) to V0. Since (t0, uk(t0))
converges to (t0, u0(t0)), (t0, uk(t0)) does not belong to Vε/2 for k sufficiently
large. This contradicts to the hypothesis that the sequence {uk(t)} converges to
the set V0. Hence the graph of u0(t) is contained in V0 and [0, t0] = [0, ω]. �

4. Conditions for the well-posedness of the index
of the solution set of equation (1.3)

Consider the equation

(4.1) a0(t, x(t), x(t− τ), x′(t), x′(t− τ)) = b0(t, x(t), x(t− τ), x′(t), x′(t− τ)).

We suppose that the maps

a0, b0: R× Rn × . . .× Rn︸ ︷︷ ︸
4

→ Rn

are continuous and ω-periodic with respect to the first variable.
Suppose that the delay τ is commensurable with ω, that is there exists τ0 > 0

such that pτ0 = ω and kτ0 = τ for some integer p and k, p > k.
Consider the existence problem for ω-periodic solutions of equation (4.1) of

a class C1(R,Rn). Let C1
ω(Rn) be its subspace consisting of ω-periodic functions

endowed with the norm from C1([0, ω],Rn). (In what follows we assume that
the norm of a vector u = (u1, . . . , un) ∈ Rn is defined as |u| = max1≤i≤n |ui|.)

Introduce the maps

f0:C1
ω(Rn) → Cω(Rn), f0(x)(t) = a0(t, x(t), x(t− τ), x′(t), x′(t− τ)),

g0:C1
ω(Rn) → Cω(Rn), g0(x)(t) = b0(t, x(t), x(t− τ), x′(t), x′(t− τ)).

Then equation (4.1) is equivalent to the operator equation

(4.2) f0(x) = g0(x).
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We use the index of solution set to prove the solvability of this equation. We
consider the family of differential equations

(4.1λ) a(t, x(t), x(t−τ), x′(t), x′(t−τ), λ) = b(t, x(t), x(t−τ), x′(t), x′(t−τ), λ)

and the corresponding family of operator equations

(4.2λ) fω(x, λ) = gω(x, λ), λ ∈ [0, 1].

We suppose that the functions a and b are continuous, ω-periodic with respect
to the first variable and that

a( · , 0) = a0, a(t, x(t), x(t− τ), x′(t), x′(t− τ), 1) = a1(t, x(t), x′(t)),

b( · , 0) = b0, b( · , 1) = 0.

In the sequel we will see that under some conditions on the functions a and b

the solvability of the equation

(4.11) a1(t, x(t), x′(t)) = 0,

implies the solvability of (4.1) and follows from the solvability in Rn of the
equation

a1(0, u, 0) = 0.

Let V0 ⊂ [0, ω] × Rn × Rn be a bounded set, closed in [0, ω] × Rn × Rn,
and let the multivalued function Γ(t) = {(u, v) ∈ Rn × Rn : (t, u, v) ∈ V0} be
continuous on [0, ω] and Γ(0) = Γ(ω). Denote by V the closure of a certain
bounded neighbourhood of V0. For simplicity we use the same notation V0 for
the subset in R×Rn ×Rn, which coincides with V0 for all t ∈ [0, ω] and has the
property

V0 ∩ ({t+ ω} × Rn × Rn) = V0 ∩ ({t} × Rn × Rn)

for all t ∈ R. We do the same for V .
In C1([0, ω],Rn) we define subsets W0,W in the following way:

W0 = {x ∈ C1([0, ω],Rn) : (t, x(t), x′(t)) ∈ V0, for all t ∈ [0, ω]},
W = {x ∈ C1([0, ω],Rn) : (t, x(t), x′(t)) ∈ V, for all t ∈ [0, ω]}.

Similarly, in C1
ω(Rn), we define the subsets

W0,ω = {x ∈ C1
ω(Rn) : x|[0,ω] ∈W0}, Wω = {x ∈ C1

ω(Rn) : x|[0,ω] ∈W}.

We assume that W0,ω,Wω are nonempty sets.
Below we get conditions for a family of operator equations to be admissible on

Wω, i.e. the assumptions (Γ1)–(Γ3) to be fulfilled. For this purpose we introduce

A,B: R× Rn × . . .× Rn︸ ︷︷ ︸
2p

×[0, 1] → Rn × . . .× Rn︸ ︷︷ ︸
p

,
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A(t, u1, . . . , up, v1, . . . , vp, λ) = (a(t, u1, uk+1, v1, vk+1, λ),

a(t− τ0, u2, uk+2, v2, vk+2, λ), . . . , a(t− (p− 1)τ0, up, uk, vp, vk, λ)),

B(t, u1, . . . , up, v1, . . . , vp, λ) = (b(t, u1, uk+1, v1, vk+1, λ),

b(t− τ0, u2, uk+2, v2, vk+2, λ), . . . , b(t− (p− 1)τ0, up, uk, vp, vk, λ)).

It is clear that the maps A, B are ω-periodic with respect to the first variable.
For sets V0 and V we define corresponding sets in [0, ω]× Rpn × Rpn:

Ṽ0 = {(t, u1, . . . , up, v1, . . . , vp) ∈ [0, ω]× Rpn × Rpn:

(t− (i− 1)τ0, ui, vi) ∈ V0, i = 1, . . . , p},
Ṽ = {(t, u1, . . . , up, v1, . . . , vp) ∈ [0, ω]× Rpn × Rpn:

(t− (i− 1)τ0, ui, vi) ∈ V, i = 1, · · · , p}.

We define also corresponding sets in the function space C1([0, ω],Rpn):

W̃0 = {x ∈ C1([0, ω],Rpn) : (t, x(t), x′(t)) ∈ Ṽ0, for all t ∈ [0, ω]},
W̃ = {x ∈ C1([0, ω],Rpn) : (t, x(t), x′(t)) ∈ Ṽ , for all t ∈ [0, ω]}.

In the same way we define the subsets W̃0,ω, W̃ω in the space C1
ω(Rpn):

W̃0,ω = {x ∈ C1
ω(Rpn) : x|[0,ω] ∈ W̃0}, W̃ω = {x ∈ C1

ω(Rpn) : x|[0,ω] ∈ W̃}.

We consider a family of differential equations

(4.3λ) A(t, y(t), y′(t), λ) = B(t, y(t), y′(t), λ), λ ∈ [0, 1].

It is not difficult to see that every ω-periodic solution x(t) of equation (4.1λ)
yields the solution

y(t) = (x(t), x(t− τ0), x(t− 2τ0), . . . , x(t− (p− 1)τ0))

of equation (4.3λ).
Let us denote by Dλ the set Dλ = {(t, u, v) ∈ Ṽ : A(t, u, v, λ) = B(t, u, v, λ)}

and let D =
⋃

λ∈[0,1]Dλ.

Theorem 4.1. Let the continuous functions A(t, u, v, λ) and B(t, u, v, λ)
satisfy the conditions:

(A1) for any λ0 ∈ [0, 1] and (t0, u0, v0) ∈ D there exists a neighbourhood of
(t0, u0, v0, λ0) where the function A(t, u, v, λ) has continuous derivatives
A′u, A′v, A

′
λ and detA′v(t0, u0, v0, λ0) 6= 0,

(B1) for any λ0, λ0 ∈ [0, 1], and (t0, u0, v0) ∈ Dλ0 there exists an ε > 0 such
that

|B(t0, u, v, λ)−B(t0, u, v, λ)| ≤ c|A′v(t0, u0, v0, λ0)(v − v)|
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for all λ such that |λ − λ0| < ε, and (t0, u, v), (t0, u, v) from an ε-
neighbourhood of (t0, u0, v0), where c < 1 is a constant,

(C1) the equations of family (4.1λ), λ ∈ [0, 1], do not have solutions on the
boundary of W0,ω.

Then the family of operator equations (4.2λ), λ ∈ [0, 1], is admissible on the
domain W0,ω and

ind2(f0 − g0,W0,ω, 0) = ind2(f( · , λ)− g( · , λ),W0,ω, 0).

Proof. Introduce the maps

F : W̃ω × [0, 1] → Cω(Rpn), (y, λ) 7→ A(t, y(t), y′(t), λ),

G: W̃ω × [0, 1] → Cω(Rpn), (y, λ) 7→ B(t, y(t), y′(t), λ),

and the family of operator equations

(4.4λ) F (y, λ) = G(y, λ).

On the set W̃ω, this family is equivalent to the family of differential equations
(4.3λ).

We will check the conditions (Γ1)–(Γ3) for family (4.2λ) via the investigation
of family (4.4λ). Denote by C̃ω(Rpn) the space of functions

y(t) = (y1(t), . . . , yp(t)) = (x(t), x(t− τ0), x(t− 2τ0), . . . , x(t− (p− 1)τ0)),

where x ∈ C1
ω(Rn).

The map π0:Cω(Rn) → C̃ω(Rpn), π0:x 7→ y, is an isomorphism. Let
C̃1

ω(Rpn) = C1
ω(Rpn) ∩ C̃ω(Rpn). The map π0:C1

ω(Rn) → C̃1
ω(Rpn) is also an

isomorphism.
Equation (4.2λ) can be rewritten in the form

(4.5λ) π−1
0 ◦ F ( · , λ) ◦ π0(x) = π−1

0 ◦G( · , λ) ◦ π0(x).

We have F ( · , λ), G( · , λ): C̃1
ω(Rpn) ∩ W̃ω → C̃ω(Rpn), and the map π−1

0 deter-
mines the first component y1(t) of y(t).

Let us verify the condition (Γ1) for family (4.2λ). Since the solution set QΓ

is closed, and family (4.2λ) is presented in form (4.5λ), this will follow from the
compactness of the solution set of family (4.4λ).

Lemma 4.2. Let the functions A, B satisfy conditions (A1), (B1) of Theo-
rem 4.1. Then the set of solutions (y, λ) ∈ W̃0,ω × [0, 1] of (3.4λ) is compact in
C1

ω(Rpn)× [0, 1].

Proof. Take an arbitrary sequence (yk, λk) such that yk ∈ W̃0,ω is a solution
of equation (4.4λk

) and λk ∈ [0, 1]. Since the sequence λk is bounded, then
(passing to a subsequence if necessary) we may assume that the sequence λk
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converges and limk→∞ λk = λ0. Let us demonstrate that the sequence yk has a
converging subsequence. This will complete the proof.

Since the embedding W̃0,ω ⊂ Cω(Rpn) is completely continuous, without
loss of generality we may assume that yk → y0 uniformly on [0, ω]. Rewrite the
equations

A(t, yk(t), y′k(t), λk) = B(t, yk(t), y′k(t), λk)

in the form

A(t, y0(t), y′k(t), λ0)−B(t, y0(t), y′k(t), λ0) = A(t, y0(t), y′k(t), λ0)

−A(t, yk(t), y′k(t), λk) +B(t, yk(t), y′k(t), λk)−B(t, y0(t), y′k(t), λ0).

Denote by zk(t) the right-hand side of the last equation. Then it takes the form

(4.6) A(t, y0(t), y′k(t), λ0)−B(t, y0(t), y′k(t), λ0) = zk(t).

Notice that for k large enough the points (t, y0(t), y′k(t)) get into a small neigh-
bourhood of (t, yk(t), y′k(t)) and so into Ṽ . Thus equation (4.6) is well-posed.

Show that the sequence zk converges to zero uniformly on [0, ω]. Since A and
B are uniformly continuous on Ṽ × [0, 1] and since yk → y0, λk → λ0 then the
functions

A(t, y0(t), y′k(t), λ0)−A(t, yk(t), y′k(t), λk)

and B(t, yk(t), y′k(t), λk)−B(t, y0(t), y′k(t), λ0)

converge to zero uniformly on [0, ω]. Hence zk converges to zero also uniformly
on [0, ω].

Define the maps

ϕ(t, v) = A(t, y0(t), v, λ0) and µ(t, v) = B(t, y0(t), v, λ0).

They are continuous on the set U = {(t, v) ∈ [0, ω] × Rpn : (t, y0(t), v) ∈ Ṽ }.
Then equations (4.6) take the form

ϕ(t, y′k(t))− µ(t, y′k(t)) = zk(t).

Let U0 = {(t, v) ∈ [0, ω] × Rpn) : (t, y0(t), v) ∈ Ṽ0}, Z = {z ∈ Cω(Rpn) :
(t, z(t)) ∈ U, for all t ∈ [0, ω]}. Then y′k ∈ Z for a sufficiently large k and the
sequence {y′k} converges to the set U0. It is easy to verify that the maps ϕ
and µ satisfy all conditions of Theorem 3.3 on U and so the sequence {y′k} has
a subsequence uniformly converging on [0, ω]. Without loss of generality we may
assume that y′k → y̆0 uniformly on [0, ω]. But by our assumption yk tens to y0.
It follows that y′0(t) = y̆0(t). Thus, yk → y0 in the norm of C1([0, ω],Rpn). This
proves the lemma. �

Let us verify the condition (Γ2) for family (4.2λ).
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Lemma 4.3. Let the function A satisfy condition (A1) of Theorem 4.1. Let
for the function x ∈ W0,ω the corresponding function y = π0(x) be such that
(t, y(t), y′(t)) ∈ D for all t ∈ [0, ω]. Then, for every λ ∈ [0, 1], the Frechét deriv-
ative f ′ω,x(x, λ) of the map fω with respect to x is a Fredholm operator of index
zero and f ′ω,x(x̃, λ̃) is continuous with respect to (x̃, λ̃) on some neighbourhood
of (x, λ).

Proof. Let (x, λ) ∈ QΓ be an arbitrary solution of equation (4.2λ) and
y = π(x). Since

(4.7) f ′ω,x(x, λ) = π−1
0 ◦ F ′y(y, λ) ◦ π0,

we have, for arbitrary h ∈ C1
ω(Rn),

(f ′ω,x(x, λ)h)(t)

= π−1
0 ◦ (A′u(t, y(t), y′(t), λ) ◦ (π0h)(t) +A′v(t, y(t), y′(t), λ) ◦ (π0h

′)(t)).

Introduce the auxiliary operators

Φu(y, λ):C1
ω(Rn) → Cω(Rn), h 7→ π−1

0 ◦A′u(t, y(t), y′(t), λ) ◦ (π0h)(t),

Φv(y, λ):C1
ω(Rn) → Cω(Rn), h 7→ π−1

0 ◦A′v(t, y(t), y′(t), λ) ◦ (π0h
′)(t).

Then (f ′ω,x(x, λ)h)(t) = (Φu(y, λ)h)(t) + (Φv(y, λ)h)(t).
As the embedding C1

ω(Rn) ⊆ Cω(Rn) is completely continuous, the map
Φu(y, λ) is also completely continuous. Therefore it is sufficient to show that the
map Φv(y, λ) is a Fredholm map of zero index. Let us present this map as the
superposition of maps:

h(t)
d
dt−→ h′(t) π0−→ H ′(t)

A′
v−→ A′v(t, y(t), y′(t), λ)H ′(t)

π−1
0−→ π−1

0 ◦A′v(t, y(t), y′(t), λ)H ′(t).

It is well known that the operator

d

dt
:C1

ω(Rn) → Cω(Rn)

is a Fredholm map of zero index and π0 is an isomorphism of the space Cω(Rn)
and C̃ω(Rpn). As (t, y(t), y′(t)) ∈ D, the matrices A′v(t, y(t), y′(t), λ) are invert-
ible for all t ∈ [0, ω], therefore the operator

A′v:C(R,Rpn) → C(R,Rpn), H ′ 7→ A′v(t, y(t), y′(t), λ)H ′(t),

is also invertible.
It is easy to verify that its restriction

A′v:Cω(Rpn) → Cω(Rpn) and π−1
0 ◦A′v:Cω(Rpn) → Cω(Rn)
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is also invertible. Hence, operators Φv(y, λ) and f ′ω,x(x, λ) are Fredholm of zero
index. From the definition of Φu(y, λ), Φv(y, λ) and condition (A1) of Theo-
rem 4.1 it is easily seen, that f ′ω,x(ỹ, λ̃) is continuous with respect to ỹ and λ̃.�

Since the set of linear Fredholm operators is open in the set of continuous
linear operators [8], there exists a neighbourhood of the point (x, λ), in which the
derivative f ′ω,x(x̃, λ̃) is the Fredholm operator of zero index and it is continuous
with respect to (x̃, λ̃).

Let us verify the condition (Γ3). Let (x, λ) ∈ QΓ be an arbitrary solution of
(4.2λ). By Theorem 2.1 it is sufficient to show, that the map g is locally cf ′ω(x, λ)-
bounded with respect to the measure of noncompactness α at the point (x, λ),
where c is the constant from condition (B1). As

f ′ω(x, λ)(h, µ) = f ′ω,x(x, λ)h+ f ′ω,λ(x, λ)µ

and f ′ω,λ(x,λ) is a finite-dimensional map, it is sufficient to analyze the cf ′ω,x(x,λ)-
boundedness of the map g with respect to the measure of noncompactness α
at the point (x, λ). Note that the map π0 does not change the measure of
noncompactness of a set, therefore representation (4.7) allows us to prove the
equivalent inequality

α(F ′y(y, λ)(M̃)) ≤ (c+ ε)α(G(M̃)),

instead of the required inequality

α(π−1
0 ◦ F ′y(y, λ) ◦ π0(M)) ≤ (c+ ε)α(π−1

0 ◦G ◦ π0(M)),

for M ⊂ U and M̃ = π0(M).
Thus, it is sufficient to establish the cF ′y(y, λ)-boundedness of the map G

with respect to the measure of noncompactness α at the point (y, λ).

Lemma 4.4. Let the functions A, B satisfy conditions (A1), (B1) of Theo-
rem 4.1. Then for any function y ∈ W̃0,ω and the arbitrary number λ0 ∈ [0, 1],
such that (t, y(t), y′(t)) ∈ Dλ0 for all t ∈ [0, ω], the map G is cF ′(x, λ0)-bounded
with respect to the measure of noncompactness α at the point (y, λ0) with a con-
stant c < 1.

Proof. Let (y, λ0) satisfy the above assumptions. The lemma will be proved
if, given ε > 0, there exists δ > 0 such that

α(G(M̃)) ≤ (c+ ε)α(F ′y(y, λ0)M̃)

for M̃ ⊂ Bδ(y)× (λ0 − δ, λ0 + δ). Introduce the operators

Fu(y, λ):C1
ω(Rn) → Cω(Rn), H 7→ A′u(t, y(t), y′(t), λ)H(t),

Fv(y, λ):C1
ω(Rn) → Cω(Rn), H 7→ A′v(t, y(t), y′(t), λ)H ′(t).
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As F ′y(y, λ0)H = F ′u(y, λ0)H + F ′v(y, λ0)H, using the properties of the measure
of noncompactness and the fact that the map F ′v(y, λ0) is completely continuous,
we obtain

α(F ′v(y, λ0)M̃) ≤α(F ′(y, λ0)M̃ − F ′u(y, λ0)M̃)

≤α(F ′(y, λ0)M̃) + α(F ′u(y, λ0)M̃) = α(F ′(y, λ0)M̃).

The similar arguments give the inequality α(F ′(y, λ0)M̃) ≤ α(F ′v(y, λ0)M̃).
Hence, α(F ′(y, λ0)M̃) = α(F ′v(y, λ0)M̃) and the required inequality takes the
form

α(G(M̃)) ≤ (c+ ε)α(F ′v(y, λ0)M̃).

To prove the last inequality, assume the contrary. Then there exists ε > 0
such that for every δ > 0 there exists a set M̃ ⊂ Bδ(y) × (λ0 − δ, λ0 + δ) such
that the inequality

α(G(M̃)) ≥ (c+ ε)α(F ′v(y, λ0)M̃)

is valid.
Let α(F ′v(y, λ0)M̃) = d0. By the definition for any small δ1 > 0 the set

F ′v(y, λ0)M̃ can be covered by a finite number of subsets F ′v(y, λ0)M̃i, i =
1, . . . , k with diam(F ′v(y, λ0)M̃i) ≤ d0 + δ1. Moreover, as M̃ is relatively com-
pact in Cω(Rn)× (λ0− δ, λ0 + δ) and the function B is uniformly continuous on
Ṽ × (λ0 − δ, λ0 + δ), the cover can be chosen such that

|B(t, u(t), u′(t), λ1)−B(t, v(t), u′(t), λ2)| < δ2

for any small δ2 > 0 and for all (u, λ1), (v, λ2) ∈ M̃i, t ∈ [0, ω]. Hence

‖G(u, λ1)−G(v, λ2)‖0 ≤ δ2 + c‖F ′v(y, λ0)(u− v)‖0

≤ δ2 + c · diam(F ′v(y, λ0)M̃i) ≤ δ2 + c(d0 + δ1).

Since (u, λ1), (v, λ2) are arbitrary points in M̃i, we have

diam(G(M̃i)) ≤ δ2 + cd0 + cδ1.

The inequality is valid for every subset M̃i, i = 1, . . . , k, therefore

α(G(M̃) ≤ δ2 + cd0 + cδ1.

We choose constants δ1 and δ2 such that δ2 + cδ1 < εd0. Then

α(G(M̃) ≤ (c+ ε)d0.

This contradicts the assumption α(G(M̃)) ≥ (c+ε)α(F ′v(y, λ0)M̃) = (c+ε)d0.�
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5. Evaluation of the index of the solution set of equation (4.21).

In this section we evaluate the index of the solution set on W0,ω of equation
fω(x, 1) = 0.

Let a(t, u1, u2, v1, v2, 1) = a1(t, u1, v1). We rewrite equation (4.11) in the
form

a1(t, x(t), x′(t)) = 0, t ∈ [0, ω].

We call the problem

a1(t, x(t), x′(t)) = 0, t ∈ [0, ω],(5.1)

x(0) = x(ω),(5.2)

a periodic boundary value problem. If the solution x satisfies the condition

(5.3) x′(0) = x′(ω),

it is said to be periodic. Such a solution x(t) can be extended to an ω-periodic
function in C1(R,Rn). Notice that not any solution of periodic boundary value
problem (5.1), (5.2) is a periodic solution.

We consider the family of boundary value problems

(5.4λ)
a1(t, x(t), x′(t)) = 0, t ∈ [0, λω],

x(λω)− x(0)
λω

= 0, λ ∈ (0, 1].

Define the set

W (λ) = {x ∈ C1([0, λω],Rn) : (t, x(t), x′(t)) ∈ V0 for all t ∈ [0, λω]}

and maps

f1(λ):W (λ) → C([0, λω],Rn), x 7→ a1(t, x(t), x′(t)),

l1(λ):W (λ) → Rn, x 7→ x(λω)− x(0)
λω

.

Then the family of operator equations

(5.5λ) (f1(λ), l1(λ))(x) = (0, 0).

is equivalent to the family of periodic boundary value problems (5.4λ).
We state the main result of this section.

Theorem 5.1. Let the continuous function a1(t, u, v) satisfy the following
conditions:

(A1’) for any point (t0, u0, v0) ∈ D1 there exists a neighbourhood where the
function a1 has continuous derivatives a′1,u, a′1,v and

det a′1,v(t0, u0, v0) 6= 0,
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(A2) every solution x ∈W of (5.1), (5.2) satisfies condition (5.3),
(A3) boundary value problems (5.4λ) do not have solutions on the boundary

of W (λ) for all λ ∈ (0, 1];
(A4) the nonoriented degree for the map d: Ω → Rn, d(u) = a1(0, u, 0), is

well-posed on the set Ω = {u ∈ Rn : (0, u, 0) ∈ V0}.

Then the index of the solution set of equation (4.5λ) is well-posed for each λ ∈
(0, 1] and

ind2(fω( · , 1),W0,ω, 0) = ind2((f1(λ), l1(λ)),W (λ), 0) = deg2(d,Ω, 0).

We separate the proof of the theorem into some lemmas. Introduce the
notations:

Cω([0, ω],Rn) = {x(t) ∈ C([0, ω],Rn) : x(0) = x(ω)},
C1

ω([0, ω],Rn) = {x(t) ∈ C1([0, ω],Rn) : x(0) = x(ω), x′(0) = x′(ω)}.

We assume that C1
ω([0, ω],Rn) = C1

ω(Rn) and Wω = W ∩ C1
ω([0, ω],Rn).

Lemma 5.2. Let the function a1 satisfy all conditions of Theorem 5.1. If
y ∈ Cω(Rn) is sufficiently close to zero, every solution x ∈W0 of the equation

(5.6) a1(t, x(t), x′(t)) = y(t), t ∈ [0, ω],

which satisfies (5.2), belongs to Wω.

Proof. Suppose the contrary, i.e. for every index k there exists yk ∈ Cω(Rn)
such that ‖yk‖ < 1/k, and xk ∈W which is a solution of the equation

a1(t, x(t), x′(t)) = yk(t),

satisfying x(0) = x(ω), x′(0) 6= x′(ω). Repeating the arguments of Lemma 4.2,
it is easy to show that the set of solutions xk(t) is precompact. So, without loss
of generality we may assume that the sequence {xk} converges in C1([0, ω],Rn)
and its limit is x0. It is clear that x0 is a solution of (5.1), satisfying (5.2).

Note that the function a1(0, u, v)− w satisfies the conditions of the Implicit
Function Theorem (see [15]) with respect to v in some neighbourhood of the
point (u0, v0, w0) = (x0(0), x′0(0), 0). Therefore the equation a1(0, u, v)− w = 0
has a unique solution v = v(u,w) near the point (u0, w0) and v0 = v(u0, w0).
However, since

a1(0, xk(0), x′k(0)) = yk(0), a1(0, xk(0), x′k(ω)) = yk(0)

and xk(0) → x0(0), x′k(0) → x′0(0), x′k(ω) → x′0(ω), yk(0) → 0, as k →∞, then
(xk(0), x′k(0), yk(0)) and (xk(0), x′k(ω), yk(0)) are different solutions, which are
sufficiently close to (x0(0), x′0(0), 0). The contradiction proves the lemma. �
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We introduce the maps

f :C1([0, ω],Rn) → C([0, ω],Rn), f(x)(t) = a1(t, x(t), x′(t)),

l:C1([0, ω],Rn) → Rn, x 7→ x(ω)− x(0)
ω

.

Lemma 5.3. Let the function a1 satisfy the conditions of Theorem 5.1 and
x0 ∈ W0,ω be a solution of (5.1). The point x0 is a regular point for fω( · , 1) if
and only if it is a regular point for the map (f, l).

Proof. An arbitrary function z ∈ C1([0, ω],Rn) can be uniquely extended
as z(t) = z(t) + z1t+ z2t

2 with z ∈ C1
ω([0, ω],Rn), z1, z2 ∈ Rn:

z1 =
z(ω)− z(0)

ω
− z′(ω)− z′(0)

2
and z2 =

z′(ω)− z′(0)
2ω

.

The above extension gives the natural isomorphism p1:

p1:C1([0, ω],Rn) → C1
ω([0, ω],Rn)× Rn × Rn.

Analogously the function y ∈ C([0, ω],Rn) can be extended as y(t) = y(t) + y1t

with y ∈ Cω([0, ω],Rn), y1 ∈ Rn : y1 = (y(ω)− y(0))/ω. This gives the natural
isomorphism

p0:C([0, ω],Rn) → Cω([0, ω],Rn)× Rn.

The map (f, l) is regular at the point x0, if the Frechét derivative (f ′(x0), l) is
an invertible operator. This operator is invertible if the operator

L = (p0, I) · (f ′(x0), l) ·p−1
1 :C1

ω([0, ω],Rn)×Rn×Rn → Cω([0, ω],Rn)×Rn×Rn

is invertible. So it is sufficient to prove that the linear operators L and Lω =
f ′ω(x0, 1) are invertible simultaneously.

We introduce the projector

π:Cω([0, ω],Rn)× Rn × Rn → Cω([0, ω],Rn)× Rn × Rn,

π(z, z1, z2) = (z, 0, 0).

Note that π · L(z, 0, 0) = L(z, 0, 0) = Lω(z) and (I − π) · L(z, 0, 0) = 0 for all
z ∈ C1

ω([0, ω],Rn). Then

(5.7) L =
(
Lω π · L
0 (I − π) · L

)
.

Hence, if L is invertible, then the map Lω is invertible too.
Let the map Lω be invertible. From (5.7) it is clear that the invertibility of

(I − π) · L: {0} × Rn × Rn → {0} × Rn × Rn implies the invertibility of L.
The matrix of the map (I − π) · L is(

f ′u(x0) ωf ′u(x0) + 2f ′v(x0)
I Iω

)
,
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where f ′u(x0), f ′v(x0) are defined similarly to the maps F ′u, F
′
v from the proof of

Lemma 4.3. Due to the hypothesis of our lemma we have:

det
(
f ′u(x0) ωf ′u(x0) + 2f ′v(x0)
I Iω

)
= det

(
f ′u(x0) 2f ′v(x0)
Iω 0

)
= 2(−1)n det f ′v(x0) 6= 0.

Consequently the operator (I − π) · L is invertible and therefore the operator L
is also invertible. The lemma is proved. �

The above statements allow us to evaluate the nonoriented index of the so-
lution set for the equation (f, l)(x) = (0, 0) instead of the equation fω(x, 1) = 0.

To compare the values of the index for different λ, we consider a new family
of boundary value problems

(5.8λ)
a1

(
λt, y(t),

1
λ
y′(t)

)
= 0, t ∈ [0, ω], λ ∈ (0, 1],

y(ω)− y(0)
ω

= 0.

Denote by V (λ) the set

V (λ) = {(t, u, v) ∈ [0, ω]× Rn × Rn : (λt, u, v/λ) ∈ V0}

and by Wλ the set

Wλ = {y ∈ C1([0, ω],Rn) : (t, y(t), y′(t)) ∈ V (λ), for all t ∈ [0, ω]}.

Let

Φ(λ):Wλ → C([0, ω],Rn), y 7→ a1

(
λt, y(t),

1
λ
y′(t)

)
.

Then the operator equations

(5.9λ) (Φ(λ), l)(y) = (0, 0), λ ∈ (0, 1],

are equivalent to the boundary value problems (5.8λ).

Lemma 5.4. Let the function a1 satisfy conditions (A1’), A3 of Theorem 5.1.
Then for every λ ∈ (0, 1] the index of the solution set of equation (5.9λ) on Wλ

is well-posed, the values of the index for all λ are equal to each other and

(5.10) ind2((f1(λ), l1(λ)),W (λ), 0) = ind2((Φ(λ), l)),Wλ, 0).

Proof. Since

(a1(λt, u, v/λ))′v = (1/λ)a′1,v(λt, u, v/λ),

det a′1,v(λt, u, v/λ 6= 0 at (λt, u, v/λ) ∈ D,

then similarly to Lemma 4.3 we can prove that for every fixed λ ∈ (0, 1] the map
(Φ(λ), l) is Fredholm on some neighbourhood of each solution y of (5.8λ).
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The index of the solution set of equation (5.9λ) on the set Wλ is well-posed if
the equation has no solutions on the boundary ofWλ. Note, that the substitution
t = λτ in x(t) gives y(τ) = x(λτ) and equation (5.5λ) transforms into (5.8λ),
every solution x(t) of the first equation corresponds to a solution y(τ) of the last
equation. Moreover, W (λ) transforms into Wλ. By (A3) equation (5.5λ) has no
solution on the boundary of W (λ), this implies that (5.8λ) also has no solution
on the boundary of Wλ. Therefore the index of solution set ind2((Φ(λ), l),Wλ, 0)
is well-posed for every λ ∈ (0, 1].

Without loss of generality we assume that (0,0) is a regular value of the
Fredholm map (Φ(λ), l) on some neighbourhood of the solution set of (5.8λ).
Then the number of solutions of equation (5.8λ) is finite and its residue class
mod 2 is equal to the index of solution set ind2((Φ(λ), l),Wλ, 0). Equation (5.5λ)
has the same number of solutions and its residue class mod 2 is equal to the
index of solution set ind2((f1(λ), l1(λ)),W (λ), 0). Hence, for all λ ∈ (0, 1],

ind2((f1(λ), l1(λ)),W (λ), 0) = ind2((Φ(λ), l),Wλ, 0).

The domain Wλ is transforming continuously while λ changes. The contin-
uous map (Φ(λ), l) determines the continuous homotopy of Φ0C

1-maps on some
neighbourhood of the solution set of each equation (5.8λ0), λ0 ∈ (0, 1], for λ
sufficiently close to λ0. Then from the definition of the index and the homo-
topy invariance property for Fredholm maps we get coincidence of the indices
ind2((Φ(λ), l),Wλ, 0) with different λ ∈ (0, 1]. �

For λ = λ0 ∈ (0, 1], sufficiently small, we consider the family of boundary
value problems

(5.11η)

a1(t, x(t), x′(t)) = 0 for t ∈ [0, λ0ω],
x(ηλ0ω)− x(0)

ηλ0ω
= 0 for η ∈ (0, 1],

x′(0) = 0 for η = 0,

on W (λ0). We consider

l2(η):W (λ0) → Rn, l2(η)x =


x(ηλ0ω)− x(0)

ηλ0ω
if η ∈ (0, 1],

x′(0) if η = 0.

We obtain the family of operator equations

(5.12η) (f1(λ0), l2(η))(x) = (0, 0), η ∈ [0, 1].

Lemma 5.5. Let the function a1 satisfy conditions (A1’), (A4) of Theo-
rem 5.1. Given λ0, sufficiently small, the index of the solution set of each equa-
tion (5.12η) is well-posed on W (λ0), the values of the index coincide for all
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η ∈ [0, 1] and the equality

(5.13) ind2((f1(λ0), l2(η)),W (λ0), 0) = deg2(d,Ω, 0)

holds, where d: Ω → Rn, d(u) = a1(0, u, 0) and Ω = {u ∈ Rn : (0, u, 0) ∈ V0}.

Proof. Repeating arguments of the proof of Lemma 4.3, it is easy to show
that the map (f1(λ0), l2(η)) is the Φ0C

1-map on some neighbourhood of the
solution set of equation (5.12η) for all η ∈ [0, 1], moreover this map is continuous
in η.

Applying Lemma 4.2 to the equation

(5.14) a1(t, x(t), x′(t)) = 0, t ∈ [0, λ0ω],

it is easy to show that the set of solutions (x, η) of the family of equations (4.12η)
is compact in W (λ0)× [0, 1].

Let us show that equation (5.12η) has no solutions on the boundary of W (λ0)
for η = 0, and so, for η sufficiently small.

If η = 0, we get the initial-value problem

a1(t, x(t), x′(t)) = 0, t ∈ [0, λ0ω],

x′(0) = 0.

If t = 0, we have the equation

(5.15) a1(0, u, 0) = 0.

By virtue of (A4) of Theorem 5.1 it has no solution on the boundary of Ω.
Let u0 be a solution of equation (5.15). Using the Implicit Function Theorem

(see [15]) for the equation a1(t, u, v) = 0 on some neighbourhood of the point
(0, u0, 0), we obtain a continuous function v = v(t, u) with continuous deriva-
tive v′u. Then the equation (5.14) in the neighbourhood of the point (0, u0, 0)
is replaced by the equation x′(t) = v(t, x(t)). It has the unique solution x(t),
satisfying the initial condition x(0) = u0. For t from some segment [0, t1] the
points (t, x(t), x′(t)) are contained in V0 and they do not belong to the boundary
of V0.

As V0 is bounded and (t, x(t), x′(t)) ∈ V0 for all t ∈ [0, t1], then x′(t) is
bounded. For every solution u of (5.15) the initial values (0, u, 0) are contained
inside V0, so for every t in some interval [0, t1] all points (t, x(t), x′(t)) are con-
tained inside V0 for every solution x(t) to (5.12η) corresponding to η = 0.

If λ0 < t1/ω, the equation (5.12η) has no solutions on the boundary of W (λ0)
for η = 0, and therefore for small η, i.e. for η ∈ [0, η0].

Let us choose λ0 = min{t1/ω, η0/ω}. It is easy to see, that equations (5.12η)
for η ∈ [0, 1] have no solutions on the boundary of W (λ0). Then for every
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equation the index of solution set is well-posed on W (λ0) and these indices are
equal. Hence

ind2((f1(λ0), l2(η)),W (λ0), 0) = ind2((f1(λ0), l2(0)),W (λ0), 0).

Without loss of generality we assume that 0 is a regular value of the map
(f1(λ0), l2(0)), considered on some neighbourhood of the solution set of the equa-
tion (5.12η) for η = 0. We also assume that 0 is the regular value of the map
d on Ω. Then the equation (5.15) has a finite number of solutions u1, . . . , us.
Each solution ui determines a unique solution xi(t) of equation (5.14), such that
xi(0) = ui. The choice of λ0 allows us to extend the solution on the segment
[0, λ0ω] and (t, x(t), x′(t)) ∈ V0 for all t ∈ [0, λ0ω]. Hence, equations (5.15) and
(5.12η) at η = 0 have the same number s of solutions. By the definition of the
index of a solution set and the nonoriented degree of Fredholm maps of a zero
index we have

ind2((f1(λ0), l2(η)),W (λ0), 0) = s(mod 2), deg2(d,Ω, 0) = s(mod 2).

The lemma is proved. �

To complete the proof of Theorem 5.1, let us write down the equalities for
indices of the solution set that we have obtained above:

ind2(fω( · , 1),W0,ω, 0) = ind2((f1(λ), l1(λ)),W (λ), 0)

= ind2((f1(λ0), l1(λ0)),W (λ0), 0)

= ind2((f1(λ0), l2(1)),W (λ0), 0)

= ind2((f1(λ0), l2(0)),W (λ0), 0) = deg2(d,Ω, 0).

Theorem 5.1 is proved. �

6. Existence of periodic solutions of equation (4.1)

Now we are in position to present the main result of this paper. We suppose
that the differential equation

a0(t, x(t), x(t− τ), x′(t), x′(t− τ)) = b0(t, x(t), x(t− τ), x′(t), x′(t− τ))

is contained in the family of equations

(4.1λ) a(t, x(t), x(t−τ), x′(t), x′(t−τ), λ) = b(t, x(t), x(t−τ), x′(t), x′(t−τ), λ).

Theorem 6.1. Let the continuous functions A(t, u, v, λ) and B(t, u, v, λ)
satisfy the following conditions:

(A1) for any λ0 ∈ [0, 1] and (t0, u0, v0) ∈ D there exists a neighbourhood of
(t0, u0, v0, λ0) where the function A(t, u, v, λ) has continuous derivatives
A′u, A′v, A

′
λ and detA′v(t0, u0, v0, λ0) 6= 0,
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(B1) for any λ0 ∈ [0, 1] and (t0, u0, v0) ∈ Dλ0 there exists an ε > 0 such that

|B(t0, u, v, λ)−B(t0, u, v, λ)| ≤ c|A′v(t0, u0, v0, λ0)(v − v)|

for all λ : |λ− λ0| < ε, and (t0, u, v), (t0, u, v) from the ε-neighbourhood
of (t0, u0, v0), where c < 1 is a constant,

(C1) the equations of family (4.1λ), λ ∈ [0, 1] do not have solutions on the
boundary of W0,ω,

(A2) every solution x ∈W0 of (5.1), (5.2) satisfies condition (5.3),
(A3) the boundary value problems (5.4λ) do not have solutions on the bound-

ary of W (λ) for all λ ∈ (0, 1],
(A4’) the non-oriented degree on the set Ω = {u ∈ Rn : (0, u, 0) ∈ V0} for the

map
d : Ω → Rn, d(u) = a1(0, u, 0),

differs from zero.

Then equation (4.1) has at least one solution of W0,ω.

Proof. The existence of ω-periodic solution for equation (4.1) is equivalent
to the solvability of operator equation (4.2)

f0(x)− g0(x) = 0.

From Theorems 4.1 and 5.1 it follows that in conditions of Theorem 6.1 the index
of the solution set ind2(f0−g0,W0,ω, 0) of equation (4.2) is well-posed, and using
the homotopy invariance property of the index, we obtain the following equality

ind2(f0 − g0,W0,ω, 0) = ind2(fω( · , 1),W0,ω, 0)

= ind2((f1(λ), l1(λ)),W (λ), 0) = deg2(d,Ω, 0).

From assumption (A4’) we have deg2(d,Ω, 0) 6= 0, and therefore

ind2(f0 − g0,W0,ω, 0) 6= 0.

Now applying Property 2.5 of the index of the solution set we obtain that equa-
tion (4.1) has at least one solution in W0,ω and the conclusion of the theorem
follows. �

Remark 6.2. If we have

(6.1) a(t, x(t), x(t− τ), x′(t), x′(t− τ), 1) = a1(x(t), x′(t)),

then condition (A1) implies condition (A2), therefore we can exclude condition
(A2) from the hypotheses of the theorem.

Applying the Implicit Function Theorem in some neighbourhood of the graph
of any solution x(t) of problem (5.1)–(5.2) we can rewrite this equation in the
form x′(t) = ϕ(x(t)). Therefore condition (5.3) is fulfilled.
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Remark 6.3. It may be conjectured that if equality (6.1) holds, condition
(A3) is superfluous among assumptions of the theorem.

Example. We consider the existence of ω-periodic solutions of the differen-
tial equation

(6.2) µ(1 + (y′′(t))2)y′′(t)− (y′(t))12 − 2y(t)

= ϕ(t, y(t), y(t− τ), y′(t), y′(t− τ), y′′(t), y′′(t− τ)).

Let the continuous function ϕ be ω-periodic with respect to the first variable
and satisfy the following conditions

(a) for all (t, u1, u2, v1, v2) ∈ [0, ω]× [−1/2, 1/2]× [−1/2, 1/2]× [−M1,M1]×
[−M1,M1] with M1 = 21/6tg(27/6/µ1/3) and any w1, w2, w1, w2 ∈ R
such that |w1|, |w2|, |w1|, |w2| < M2+δ, δ > 0, M2 = (M12

1 + 2)1/3/µ1/3,
the following inequality holds

|ϕ(t, u1, u2, v1, v2, w1, w2)− ϕ(t, u1, u2, v1, v2, w1, w2)|
≤ c(|w1 − w1|+ |w2 − w2|)

where c < c0 = min{1, 2µ} is a certain constant,
(b) for any (t, u1, u2, v1, v2, w1, w2) such that t ∈ [0, ω], |u1|, |u2| ≤ 1/2,

|v1|, |v2| ≤M1, |w1|, |w2| ≤M2

|ϕ(t, u1, u2, v1, v2, w1, w2)| < 1.

Applying Theorem 6.1 we shall show that equation (6.2) has an ω-periodic
solution y(t) such that

(t, y(t), y′(t), y′′(t)) ∈ R× [−1/2, 1/2]× [−M1,M1]× [−M2,M2]

for all t ∈ R.
Reduce equation (6.2) to the system of first order differential equations in

the following way. Let x1(t) = y(t), x2(t) = y′(t) and x(t) = (x1(t), x2(t)). Then
the above-mentioned system has the form

(6.3)


x′1(t)− x2(t) = 0,

µ(1 + (x′2(t))
2)x′2(t)− (x2(t))12 − 2x1(t)

= ϕ(t, x1(t), x1(t− τ), x2(t), x2(t− τ), x′2(t), x
′
2(t− τ)).

Introduce the notations

u = (u1, u2), v = (v1, v2), u = (u1, u2), v = (v1, v2),

a0(u, v) = (v1 − u2, µ(1 + v2
2)v2 − u12

2 − 2u1),

b0(t, u, u, v, v) = (0, ϕ(t, u1, u1, u2, u2, v2, v2)).
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Then system (6.3) can be rewritten as the equation

(6.4) a0(x(t), x′(t)) = b0(t, x(t), x(t− τ), x′(t), x′(t− τ)).

Denote by V0 the set

V0 = {(t, u, v) ∈ [0, ω]× R2 × R2 : |u1| < 1/2, |u2|, |v1| < M1, |v2| < M2}.

Consider the following family of differential equations

(6.4λ) a0(x(t), x′(t)) = λb0(t, x(t), x(t− τ), x′(t), x′(t− τ)).

For the sake of simplicity we assume τ = ω/2. Then the maps the A and B
have the form

A(u, u, v, v) =


v1 − u2

µ(1 + v2
2)v2 − u12

2 − 2u1

v1 − u2

µ(1 + v2
2)v2 − u12

2 − 2u1

 ,

B(t, u, u, v, v) =


0

ϕ(t, u1, u1, u2, u2, v2, v2))
0

ϕ(t, u1, u1, u2, u2, v2, v2)

 .

Let us show that the system of equations (6.3) satisfies all conditions of Theorem
6.1 on an appropriate domain.

(1) The function A has continuous derivatives A′u, A′v:

A′v,v =


1 0 0 0
0 µ(1 + 3v2

2) 0 0
0 0 1 0
0 0 0 µ(1 + 3v2

2)

 ,

detA′v,v = µ2(1 + 3v2
2)(1 + 3v2

2) 6= 0.

(2) For all (t, u, u, v, v), (t, u, u, w,w) the inequality

|B(t, u, u,v, v)−B(t, u, u, w,w)|
= |ϕ(t, u1, u1, u2, u2, v2, v2)− ϕ(t, u1, u1, u2, u2, w2, w2)|
≤ c(|v2 − w2|+ |v2 − w2|) ≤ 2c|(v, w)− (v, w)|,

holds. Moreover, for any v, v ∈ R2 and w,w ∈ R2 we have

|A′v,v(e, e)(v − w, v − w)|
= |(v1 − w1, µ(1 + 3e22)(v2 − w2)), (v1 − w1, µ(1 + 3e22)(v2 − w2))|
≥ c0|(v, w)− (v, w)|,
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where c0 = min{1, 2µ}. Therefore

|B(t, u, u, v, v)−B(t, u, u, w,w)| ≤ 2c
c0
|A′v,v(e, e)(v − w, v − w)|

for all (t, u, u, v, v), (t, u, u, w,w) ∈ Ṽ and 2c/c0 < 1.
(3) Notice that on the domain Ω = {u ∈ R2 : |u1| < 1/2, |u2| < M1} the

map

d: Ω → R2, d(u) = (−u2,−u12
2 − 2u1),

is invertible and d(0) = 0. Therefore deg2(d,Ω, 0) = 1.
(4) We shall show that equations (6.4λ), λ ∈ [0, 1], have no solutions on the

boundary of W0,ω. Moreover, we shall show, that the boundary value problems
(5.4λ) have no solutions on the boundary of W (λ) for all λ ∈ (0, 1].

Assume that the graph of a certain solution (x1(t), x2(t)) attains the bound-
ary V0 at a point t0. Then either |x1(t0)| = 1/2, or |x2(t0)| = |x′1(t0)| = M1, or
|x2(t0)| = M2. We consider each case separately.

Let |x1(t0)| = 1/2, then t0 is a point of a local extremum of the function
x1(t). If t0 ∈ (0, ω), then x′1(t0) = x2(t0) = 0. As x1(t) is a solution of equation
(6.4λ), at the point t0 we have

µ(1 + (x′′1(t0))2)x′′1(t0)− 2x1(t0)

= λϕ(t0, x1(t0), x1(t0 − ω/2), 0, x′1(t0 − ω/2), x′′1(t0), x′′1(t0 − ω/2)).

Hence, if x1(t0) = 1/2, then µ(1 + (x”1(t0))2)x”1(t0) > 0 and x”1(t0) > 0,
what is impossible, since the point t0 is a maximum point of the function. For
x1(t0) = −1/2 we have x′′1(t0) < 0, that also leads to a contradiction.

If t0 = 0 or t0 = ω, the condition x′1(0) = x′1(ω) is fulfilled only in the case
x′1(0) = x′1(ω) = 0. Otherwise in some neighbourhood of either 0 or ω there are
values t0 ∈ (0, ω) such that |x1(t0)| > 1/2, and then x /∈W0. The case x′1(t0) = 0
is considered above and leads to a contradiction.

If t0 = 0 or t0 = ω the requirement x′1(0) = x′1(ω) is fulfilled only in the case
x′1(0) = x′1(ω) = 0.

Let |x′1(t0)| = |x2(t0)| = M1. From the condition x1(0) = x1(ω) we get the
existence of a point t∗ ∈ (0, ω), such that x′1(t

∗) = 0. Let us consider one of the
possible cases x′1(t0) = M1, t0 > t∗ and x′1(t) > 0 on [t0, t∗]. Since x1(t) is a
solution of equation (6.4λ), then

µ|x′′1(t)|3 ≤ µ (1 + (x′′1(t))2)|x′′1(t)| ≤ (x′1(t))
12 + 2|x1(t)|+ 1 ≤ (x′1(t))

12 + 2.

Therefore |x′′1(t)| < (1/µ1/3)(|x′′1(t)|)4 + 21/3). Further,

−x′′1(t) <
1

µ1/3
(|x′′1(t)|)+21/3),
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− x′′1(t)
|x′′1(t)|)4 + 21/3

<
1

µ1/3
,

− x′1(t)x
′′
1(t)

|x′′1(t)|)4 + 21/3
<

1
µ1/3

x′1(t).

Integrating over the interval [t0, t∗], we obtain

−
∫ t∗

t0

x′1(t)x
′′
1(t)

|x′′1(t)|)4 + 21/3
dx <

1
µ1/3

(x1(t∗)− x(t0)),∫ x1(t0)

0

sds

s4 + 21/3
<

1
µ1/3

,

1
27/6

arctan
(
x′1(t0)
21/6

)
<

1
µ1/3

.

We get a contradiction, since x′1(t0) = M1 = 21/6tg(27/6/µ1/3).
The case x′1(t0) = −M1 and another disposition of the point t∗ with respect

to the point t0 can be investigated analogously and lead to a contradiction.
Hence |x′1(t)| = |x2(t)| < M1 for all t.

From equation (6.4λ) and the estimates |x1(t)| < 1/2, |x′1(t)| = |x2(t)| < M1,
|ϕ| < 1 we obtain the inequality

µ|x′′1(t)|3 ≤ µ(1 + (x′′1(t))2)|x′′1(t)| ≤ (x′1(t))
12 + 2|x1(t)|+ 1 ≤M12

1 + 2.

Hence |x1”(t)| < (M12
1 + 2)1/3/µ1/3 and the equality |x′2(t0)| = |x′′1(t0)| = M2 is

impossible.
Thus we have shown that conditions (C1), (A3) of Theorem 6.1 are satisfied.

From Remark 6.2 it follows that (A2) is satisfied. From Theorem 6.1 it follows
that equation (6.2) has an ω-periodic solution.
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