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SEMIDISCRETIZATION SCHEMES
FOR THE AUTONOMOUS DIFFERENTIAL EQUATIONS

WITH NONCOMPACT SEMIGROUPS USING
THE FUNCTIONALIZING PARAMETER METHOD

Irina Gurova

Dedicated to the memory of Juliusz P. Schauder

Abstract. In the case of the abstract autonomous semilinear equation in
a Banach space we provide conditions which ensure that the approximate

cycles given by a semidiscretization method converge to the exact cycle.

1. Introduction

Many mathematical models decribing auto-oscillations can be reduced to an
existence problem for a cycle of the autonomous semilinear equation

(1) x′ = Ax + f(x),

where the linear operator A is the infinitesimal generator of a C0-semigroup
exp{At} that acts on a Banach space E, and f is a nonlinear contiuous operator
acting from E to E. In this paper we study the semidiscretisation method for an
approximate computation of the cycles of the equation (1). This method consists
of an aproximation of the operators A and f by approprietly chosen approximate
operators Ah and fh, acting in the spaces Eh (in applications those spaces are
usualy finite dimensional spaces) without change of the time derivative. We
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suppose that the approximate cycles can be found exactly and we want to suggest
the conditions which provide the convergence of approximate cycles to the exact
cycle of equation (1). We take as a semidiscretization scheme the following
equations

(2) x′h = Ahxh + fh(xh),

where h is a parameter of the semidiscretization, the operators Ah are infinitisi-
mal operators of C0-semigoups of linear operators exp{Aht} acting in the Banach
spaces Eh, and fh are continous operators from Eh to Eh.

We suppose that h ∈ H = {hn : hn > 0, hn ↓ 0} ∪ {0}, and we identify the
operators A0, f0 with the operators A, f , and the space E0 with the space E

accordingly. Thus for h = 0 equation (2) becomes equation (1).
In the paper [6], for semilinear parabolic equations conditions for the conver-

gence of the approximate cycles to the exact cycle were given. By the method
proposed in [4], the problem of periodic solutions of equation (2) is replaced by
the functional equation

(3) u = F (h, T, u),

where T is the unknown period and F is an equivalent (see [9]) compact continu-
ous operator. After this the parameter T is functionalized (see [2]) in such a way
that after replacing the parameter T by the the functional T (u) the following
inequality

(4) ind(z0, F (0, T ( · ), · )) 6= 0

holds. In the inequality (4) z0 is a periodic solution corresponding to the cycle
of equation (1). This solution is selected by the functionalization of the param-
eter T . Recall (see [2]) that without the functionalization of the parameter the
periodic sollution corresponding to the cycle is not isolated and the topological
index of the set of all periodic solutioins corresponding to the same cycle is equal
to zero.

The compactness of the operator F permits to study the equation (3) by the
methods of topological degree theory for compact vector fields in infinite dimen-
sional spaces (see, for example, [8]). In [6] the main assumptions which provided
the compactness of F were the compactness of the resolvant of the operator A

and uniform strict positiveness (see [9]) of the operators Ah. Under those con-
ditions the semigroups considered in [6] are analytic compact semigroups. But
with such conditions it’s not possible to investigate mathematical models which
contain hyperbolic equations because none of the mentioned conditions are satis-
fied. In this case the semigroups are C0-semigroups and are neither analytic nor
compact. As it is shown below for a wide class of equations (1), where exp{At} is
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non analytic and is non compact (in particular for hyperbolic equation with dis-
sipative members, see, for example, [3]), this difficulty can be surmounted since
we can establish that the operator F is a (q, χ)-bounded operator, where q < 1
and χ is a Hausdorff measure of noncompactness. Consequently (see, [1]) F is a
condensing operator with respect to the Hausdorff measure of noncompactness.
This result permits to leave almost without changes the proof of the abstract
theorem on the functionalization of the parameter from [6], simply changing the
word compact by the words (q, χ)-bounded with a constant q < 1, and certainly
remplacing the topological degree theory for compact vector fields by this the-
ory for condensing vector fields (see [1]). It is possible since the derivative of a
(q, χ)-bounded operator is (q, χ)-bounded too (see [1]). Therefore 1 as a point of
spectrum of this derivative can be only an eigenvalue of finite multiplicity and
the functional T (u) functionalizing the parameter T in [6] must not be changed.
Comparing this abstract theorem with the Theorem 4.4.11 from [1], let us re-
mark that we don’t suppose that 1 is a simple eigenvalue. This condition is
remplaced as in [6] by an other one which is adopted to varify in the case of
integral operator.

2. Main assumptions

At this point we also give the main conditions on the operators Ah and fh.
In order to state these conditions we need auxiliary operators connecting the
spaces Eh and E.

We assume that for h ∈ H \ {0}, there exist linear uniformly bounded oper-
ators Qh : Eh → E, Ph : E → Eh. We set Q0 = I, P0 = I and we suppose that
these operators satisfy the following conditions:

(5) PhQh = Ih for h ∈ H,

where Ih is identity operator on the space Eh;

(6) QhPhx → x as h → 0 for all x ∈ E.

Now let us state the assumptions on the aproximate operators Ah. We as-
sume that the semigroups exp{Aht} approximate the semigroup exp{At}, which
means that

(A1) For every x ∈ E, Qh exp{Aht}Phx → exp{At}x, as h → 0, uniformly
with respect to t from any bounded segment [0, d], d > 0.

In addition we suppose that the semigroups exp{Aht} are uniformly strictly
contractive:

(A2) There exists a constant γ > 0, such that ‖Qh exp{Aht}Phx‖ ≤ e−γt for
h ∈ H, t ∈ [0,∞).
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Before giving the conditions on the operators fh, recall that for a bounded set
Ω ⊂ E the Hausdorff measure of noncompactness χ(Ω) is given by the following
formula

χ(Ω) = inf{ε : Ω has a finite ε-net}.
For properties of the measure of noncompactness χ see, for example, [1].

Let us set ϕ(h, x) = Qhfh(Phx). In the sequel we suppose also that the
following two assumptions hold.

(A3) The operator ϕ is continuous with respect to all its variables and is
bounded on bounded sets.

(A4) There exists a constant k < γ such that, for any bounded set Ω ⊂ E,

χ

( ⋃
h∈H

ϕ(h,Ω)
)
≤ kχ(Ω).

Remark 1. If the constant k in the assumption (A4) is equal to zero (it
means that the operator ϕ is compact) then we need not assume A2).

Below we always suppose that the space E is separable.

3. Main result

Let CT (Eh) be a space of continuous T -periodic functions with values in Eh

endowed the usual uniform norm. Following [9], as T -periodic solutions of the
equation (2), we take solutions in the space CT (Eh) of the equivalent integral
equation

u(t) = exp{Aht}(I − exp{AhT})−1

T∫
0

exp{Ah(T − s)}fh(u(s)) ds(7)

+

t∫
0

exp{Ah(t− s)}fh(u(s)) ds.

Assume that

(A5) The equation (1) has a twice continuously differentiable T0-periodic so-
lution z0 and the nonlinear operator f is uniformly differentiable in the
points z0(t), i.e.

f(z0(t) + w)− f(z0(t)) = f ′(z0(t))w + ω(t, w),

where ‖ω(t, w)‖/‖w‖ → 0 as ‖w‖ → 0 uniformly with respect to t ∈
[0, T0].

Since equation (1) is autonomous, z′0 is a T0-periodic solution of the linearized
equation

(8) y′ = Ay + f ′(z0(t))y.
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We suppose that

(A6) The equation (8) has no T0-periodic solution that is lineary independent
of z′0 and has no Floquet solutions adjoint to z′0 i.e. there is no solution
having the form

y(t) = y0(t) +
t

T0
z′0(t),

where y0 is a T0-periodic function.

Theorem 1. Let conditions (5), (6) and assumptions (A1)–(A6) hold. Then,
for sufficiently small h, equations (2) have Th-periodic solutions zh, such that
Th → T0 as h → 0 and∥∥∥∥Qhzh

(
Th

T0
t

)
− z0(t)

∥∥∥∥ → 0 as h → 0

uniformly with respect to t ∈ [0, T0].

4. Auxiliary propositions

Below we will use the measure of noncompactness ν defined on bounded
subsets Ω of the space CT0(E) by the following formula ν(Ω) = supt χ(Ω(t)).

Definition 1. The continuous operator

F : H × [T0 −∆, T0 + ∆]× CT0(E) → CT0(E)

is (q, χ, ν)-bounded (see [1]) if, for every bounded set Ω ∈ CT0(E), the inequality

(9) χ(F (H × [T0 −∆, T0 + ∆]× Ω)) ≤ qν(Ω)

holds.

Recall that, following [1], if the last inequality has the form

χ(F (H × [T0 −∆, T0 + ∆]× Ω)) ≤ qχ(Ω)

we say that the operator F is (q, χ)-bounded. We need also one result from [4]
which we give in a form convenient for the sequel.

Lemma 1. Let E be a separable Banach space, {ym} ⊂ L1([0, T0], E) be a
sequence of summable functions and there exist p, r ∈ L1([0, T0], R) such that

‖ym(t)‖ ≤ p(t), for a.a. t ∈ [0, T0], and all m = 1, 2, . . .

and χ({ym(t)}) ≤ r(t) for a.a. t ∈ [0, T0]. Then for all ε > 0 there exist eε ⊂
[0, T ], compact set Kε ⊂ E and a sequence {gm} ⊂ L1([0, T0], E) such that

meas(eε) < ε,(10)

gm(t) ∈ Kε for all t ∈ [0, T0], m = 1, 2, . . .(11)



390 I. Gurova

and

(12) ‖ym(t)− gm(t)‖ ≤ r(t) + ε, for a.a. t ∈ [0, T ] \ eε.

The following theorem is a version of Theorem 2 from [6] for the case of a
(q, χ)-bounded operator (see also Theorem 4.4.11 in [1])

Theorem 2. Let F : H× [T0−∆, T0 +∆]×BCT0
(u0, r) → CT0(E) be (q, χ)-

bounded continuous with respect to its all variables and q < 1. Let the following
conditions hold:

(1) F (0, T0, z0) = z0,
(2) the operator F (0, T, u) is differentiable with respect to u at the points

(T, u0),

(13) F (0, T, z0 + w)− F (0, T, z0) = F ′
u(0, T, z0)w + ω1(T,w),

where ‖ω1(T, k)‖/‖k‖ → 0 as ‖k‖ → 0 uniformly with respect to T , and
the operator F ′

u(0, T, z0) is strongly continuous with respect to T ,
(3) the function F (0, T, z0) is differentiable with respect to T at the point

T0, i.e.

(14) F (0, T + s, z0)− F (0, T, z0) = F ′
T (0, T0, z0)s + ω2(s),

where ‖ω2(s)‖/|s| → 0 as |s| → 0,
(4) the operator F ′

u(0, T0, z0) satisfies the following conditions

(a) 1 ∈ σ(F ′
u(0, T0, z0)),

(b) the subspace of eigenvectors corresponding to the eigenvalue 1 is
one-dimensional,

(c) the equation

(15) F ′
T (0, T0, z0) = w − F ′

u(0, T0, z0)w

has no solutions.

Then for all sufficiently small h, there exist Th, uh such that (h, Th, uh) satisfies
the equation (3) and Th → T0, uh → u0 as h → 0.

Proof of the Theorem 1. In the equation (2) let us change the variables
uh(τ) = xh(Tτ/T0), and for the equation obtained after this change of vari-
ables let us construct the integral operator equivalent to the T0-periodic solution
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problem. So we obtain the operator

F (h, T, u)(t) =Qh
T

T0
exp

{
T

T0
Aht

}
(I − exp{AhT})−1(16)

·
T0∫
0

exp
{

T

T0
Ah(T0 − s)

}
Phϕ(h, u(s)) ds

+
T

T0

t∫
0

Qh exp{Ah(t− s)}Phϕ(h, u(s)) ds.

The equivalence of the fixed point problem for the operator F (h, T, · ) to the
problem of T -periodic solution of the equation (2) follows from the conditions (5).
The details can be found in [5]. Chose ∆ > 0 such that the following inequality
q = k(T0 + ∆)/γ(T0 −∆) < 1 holds. We want to demonstrate that the operator
F : H × [T0 − ∆, T0 + ∆] × CT0(E) → CT0(E), defined by the equality (16),
satisfies the conditions of Theorem 2.

In order to prove that F is (q, χ)-bounded, we prove the following statement.

Proposition 1. Let the conditions (5), (6) and the assumptions (A1)–(A4)
hold. Then the operator F , defined by equality (7), is continuous with respect to
all its variables and is (q, χ, ν)-bounded.

Proof. The conditions (5), (6) and the assumptions (A1), (A3) imply the
continuity of the operator F , defined by the formula (7), with respect to all its
variables.

Let us demonstrate now that F is (q, χ, ν)-bounded. Let estimate

χCT0 (E)(F (H, [T0 −∆, T0 + ∆],Ω)).

Since E is separable, then the space CT0(E) is separable and every subset of
CT0(E) is separable too. Therefore there exist sequences {hm} ⊂ H, {Tm} ⊂
[T0 −∆, T0 + ∆], {um} ⊂ Ω such that

(17) χCT0 (E)(F (H, [T0 −∆, T0 + ∆],Ω)) = χCT0 (E)({wm}),

where wm = F (hm, Tm, um). Using now the assumption (A4) and properties
of the Hausdorff measure of noncompactness (see [1]), we obtain the following
estimates

χE

({
Tm

T0
ϕ(hm, um(t))

})
≤ T0 + ∆

T0
χE({ϕ(hm, um(t))})

≤ T0 + ∆
T0

kχE({um(t)})

≤ T0 + ∆
T0

k sup
t

χE({um(t)}) ≤ T0 + ∆
T0

kν(Ω).
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From the assumption (A3) we conclude that the functions

ym(t) =
Tm

T0
ϕ(hm, um(t)), m = 1, 2, . . .

are continuous and uniformly bounded by a constant M . Therefore we can apply
Lemma 1 to the sequence {ym}, in which

p(t) ≡ M, q(t) ≡ T0 + ∆
T0

kν(Ω).

So we have eε, Kε and {gm} satisfying the relations (10)–(12). Let us take the
T0-periodic extension of gm. We preserve the same notation for such extension.
Let

zm(t) =Qhm exp
{

Tm

T0
Ahmt

}
(I − exp{AhmTm})−1(18)

·
T0∫
0

exp
{

Tm

T0
Ahm

(T0 − s)
}

Phm
gm(s) ds

+

t∫
0

Qhm
exp{Ahm

(t− s)}Phm
gm(s) ds.

It follows from (A1) and (11) that the sequence {zm} is relativly compact in the
space CT0(E). Let us evaluate ‖wm − zm‖CT0

. Since the functions wm and zm

are T0-periodic, it is sufficient to estimate ‖wm(t)−zm(t)‖E for t ∈ [0, T0]. Using
(A2) we have

‖wm(t)− zm(t)‖ ≤ e−γ(T0−∆)t/T0(1− e−γ(T0−∆))−1

·
∫

[0,T0]\eε

e−γ(T0−∆)(T0−s)/T)

(
k

T0 −∆
T0

ν(Ω
)

+ ε) ds

+
∫

[0,t]\eε

e−γ(T0−∆)(t−s)/T)

(
k

T0 −∆
T0

ν(Ω) + ε

)
ds

+ (1− e−γ(T0−∆)−1Mε

≤ q(ν(Ω) + ε) + (1− e−γ(T0−∆))−1Mε.

So the functions {zm} represent a relativly compact (qν(Ω) + Cε)-net of {wm}.
Since ε is arbitrary, using (17) we have the estimate (9). �

Evidently ν(Ω) ≤ χ(Ω). Therefore we have the following statement.

Corollary 1. Let the conditions (5), (6) and the assumptions (A1)–(A4)
hold. Then the operator F , defined by the equality (7), is continuous with respect
to all its variables and is a (q, χ)-bounded operator.

We return now to the proof of Theorem 1. Condition (1) follows from the
assumption that a T0-periodic solution z0 exists. Assumption (A5) gives the
condition (2). Since z0 is twice differentiable we have condition (3).
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Now let us verify condition (4). Since z′0 is a solution of the linearized equa-
tion (8) we obtain (4)(a). As we remarked by Theorem 1.5.9 (see [1]) the operator
F ′

u(0, T0, z0) is (q, χ)-bounded too. Therefore (see [1]) 1 as a point of the spec-
trum of the operator F ′

u(0, T0, z0) can be only an eigenvalue of finite mutiplicity.
If there exits an eigenvector v0 linearly independent with z′0, then v0 would be
a solution of (8) contradicting the assumption. Therefore we have (4)(b). We
pass now to condition (4)(c). Les us remark that the function

ŵ(t) =
t

T0
z′0(t)

is a solution of the differential equation

w′ = Aw + f ′(z0(t))w +
1
T0

z′0(t).

Therefore

(19) ŵ(t) =

t∫
0

exp{A(t− s)}ŵ(s) ds +
1
T0

t∫
0

exp{A(t− s)}z′0(s) ds.

If we suppose now that there exists a solution w̃ = w̃(t) of equation (15), then
as it is shown in [7]

(20) w̃(t) = exp{At}(I − exp{AT})−1

T0∫
0

exp{A(T0 − s)}f ′(z0(s))w̃(s)ds

+

t∫
0

exp{A(t− s)}f ′(z0(s))w̃(s)ds

+ exp{At}(I − exp{AT})−1

T0∫
0

exp{A(T0 − s)}f ′(z0(s))z′0(s) ds

+

t∫
0

exp{A(t− s)}f ′(z0(s))z′0(s) ds.

Thus from (20) we have

w̃(t) = exp{At}w̃(0) +

t∫
0

exp{A(t− s)}f ′(z0(s))w̃(s) ds(21)

+

t∫
0

exp{A(t− s)}f ′(z0(s))z′0(s) ds.

Substracting (21) from (19) we obtain that the function y(t) = −w̃(t) + ŵ(t)
satisfies the equality
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y(t) = exp{At}y(0) +

t∫
0

exp{A(t− s)}f ′(z0(s))y(s) ds.

Therefore
y(t) = −w̃(t) +

t

T0
z′0(t)

is a solution of equation (8), contradicting the assumption. �
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dovskĭı, Measures of Noncompactness and Condensing Operators, Birkhäuser-Verlag,
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[2] N. A. Bobylev and M. A. Krasnosel’skĭı, Parameter functionalization and conti-
guity theorem for autonomous systems, Differential Equations 6 (1970), 1479–1484.

[3] S. S. Ceron and O. Lopes, α-contractions and attractors for dissipative semilinear
hyperbolic equations and systems, Ann. Math. Pura Appl. 160 (1991), 193–206.
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tegral Operators in Spaces of Summable Functions, Noordhoff International Publishing,

Leyden, 1976.

Manuscript received October 28, 1999

Irina Gurova

Voronezh Technical State University

Department of Mathematics
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