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NONTRIVIAL SOLUTIONS OF VARIATIONAL INEQUALITIES.
THE DEGENERATE CASE

SERGIO LANCELOTTI

ABSTRACT. We consider a class of asymptotically linear variational in-
equalities. We show the existence of a nontrivial solution under assump-
tions which allow the problem to be degenerate at the origin.

1. Introduction

Let © be a bounded open subset of R” and ¢g: R — R be a function of class C'*
with ¢(0) = 0 and linear growth at infinity. The existence of nontrivial solutions
u to the semilinear elliptic problem

Au+g(u)=0 in Q,
u=20 on 0f),
was first studied by Amann and Zehnder in [1] by means of Conley index. The

main result was then refind by Chang, Lazer and Solimini ([3], [13]), using Morse
theory, and Saccon ([15]), again by means of Conley index. The key assumptions
9(5)

/ .
g (c0):= lim =——=
( ) |s| =00 S

are that there exists
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and that the quadratic forms
Qo(w) = [ (Duf - ¢ (O?)
Q
Quelw) = [ (Duf® - g (2c)u) da
Q

have different index in H}(Q).

More recently, the result has been also extended to variational inequalities
by Saccon ([16]) and to quasilinear equations by Corvellec, Degiovanni, and
Lancelotti ([6], [12]). In the first case, one also considers a closed convex subset
K of H} () with 0 € K and looks for nontrivial solutions u € K of the variational
inequality

(1.1) /Q[DuD(v —u)—g(u)(v—u)]de >0 forallveK.

It is interesting to remark that the constraint K can induce the existence of
nontrivial solutions also when g(s) = As with A € R. However, if for instance

K={ueHy(Q):p1 <u<ps}

with 1 < 0 < ¢, the assumptions considered in [16] require the quadratic
form Qg to be nondegenerate at the origin, a restriction which is not needed for
semilinear equations (see [13]).

Our purpose is to prove the existence of nontrivial solutions to (1.1) without
assuming such a nondegeneracy at 0. While the approach of [16] was based on
Conley index, we find it more convenient to use Morse theory. More precisely,
since the precence of the constraint K makes the problem nonsmooth, we take
advantage of the extension of Morse theory to continuous functionals developed
in [5].

Our main result is Theorem 2.2, where we prove the existence of a nontrivial
solution to (1.1) in the degenerate case, even if the family of constraints K
considered is not so wide as in [16] (see assumption (2.1)). Since our approach is
different, we also treat in Theorem 2.4 the nondegenerate case already considered
in [16].

As in [13], the first step in the proof is to find a saddle point u of the functional
f: K — R defined by

f(u)z%/Q|Du|2dx—/QG(u)d:c, G(s):/osg(t)dt,

with a suitable information about its critical groups. This is done by an adapta-
tion of Rabinowitz saddle theorem (see Theorem 4.2). Then the main point is to
obtain estimates about the critical groups of f at the origin. Since 0 is possibly
degenerate, we adapt to our nonsmooth setting some ideas of the generalized
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Morse lemma (see [4], [9], [14]). After that, it is possible to show that u # 0,
obtaining the existence of a nontrivial solution.

Acknowledgements. The author wishes to thank Marco Degiovanni for
helpful discussions.

2. Statement of the main results

Let Q be a bounded open subset of R, n > 3, ¢1: Q — [—00,0] and ¢9:Q —
[0, 00] be two functions such that ¢ is quasi-upper semicontinuous and ¢ is
quasi-lower semicontinuous. We consider the convex set

K ={uec H} Q) :¢1(x) <u(z) < pa(z) for qe. x in Q},

where @ is a quasi-continuous representative of u. We also consider g: Q xR — R
such that:

(a) the function {s — g(z, s)} is of class C* for a.e. x € 2 and the function
{z — g(x,s)} is measurable for every s € R,
(b) g(z,0) =0 for a.e. z € Q,
(c) there exists b € L™2(Q) such that for a.e. 2 € Q and for every s € R
[Dsg(,5)| < b(x),

(d) for a.e. x € Q there exists

D;g(z,00) := lim g(x,s).

|s|—o0 S

Let us consider the following subsets of £2:

FY ={z€Q: ¢ (x) =0},
B = (s e Qi) = —ooh,
F) ={zcQ:p(x) =0},
F3° ={z € Q: pa(x) = 00}

):u =0 for qe. x in FY NFY},

):u =0 for q.e. z outside Fy° U F5°},

):u =0 for qe. x in FY UFY},

Q) :u =0 for g.e. x outside F;° N Fy°}.

Finally, let us denote by (/\ECO))7 (;L,(fo)) the eigenvalues of the linear operator
—A—Dyg(z,0) respectively in Hy and H{), and by (/\,(:o)), (,u,(coo)) the eigenvalues

of the linear operator —A — D,g(z, 00), respectively in Ho, and H. (A is the
Laplace operator and eigenvalues are repeated according to multiplicity).
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REMARK 2.1. Since Hj C Hy and H.  C H,,, we have that
A <0 A <) for all ke N
THEOREM 2.2. Assume that

(2.1) (pr(2) # 0 and pa(x) # 0) = (p1(2) = —00 and ps(x) = o0)
(o)

g.e. in Q, and that p;, " <0< )\gf_:i for some k. Moreover, suppose there exists
h # k such that either

h<k and ’uglo) <0< AELOJZ1

or
h>k and p <0.

Then there exists a nontrivial solution u of the semilinear variational inequality

u € K,
22 {/DuD(v—u)dx—/g(x,u)(v—u)dxzo forallv € K.
Q Q

REMARK 2.3. Assumption (2.1) is satisfied, for instance, if K has the form
K ={ue H}(Q):u(x) >0 for qe. x in By and u(x) <0 for q.e. x in Fy},

where F1, Fs are two subsets of €.

The novelty of Theorem 2.2 is that we allow the cases h < k with Mgo) =0<
; and h > k with Mglo) <0= )‘5104)-17 which were excluded in [16].

The next result has been proved also in [16].

0
A0

THEOREM 2.4. Assume that there exist h # k such that
p <0< A D <0< A

Then there exists a nontrivial solution u of the semilinear variational inequality

u € K,
{/DuD(v—u)dm—/g(w,u)(v—u)dm20 forallv e K.
Q Q

3. Background in nonsmooth critical point theory

In this section we recall from [5], [7], [8] some basic facts that will be needed
in the following. Let X denote a metric space endowed with the metric d and
f: X — R a continuous function. Moreover, let B,.(u) be the open ball of radius
r > 0 centered at u € X. For every ¢ € R let us set

ff={ueX: flu) <c}
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DEFINITION 3.1. For every u € X let us denote by |df|(u) the supremum of
the o’s in [0, co[ such that there exist 6 > 0 and a continuous map H:Bs(u) x
[0,0] — X with

d(H(v,t),v) <t for all v € Bs(u) and all ¢ € [0, 4],
f(H(v,t)) < f(v) —ot for all v € Bs(u) and all ¢ € [0, d].

The extended real number |df|(u) is called the weak slope of f at w.

It is easily seen that the function |df|: X — [0, 00] is lower semicontinuous.
Moreover, if X is an open subset of a normed space and f a function of class
C1, it turns out that |df|(u) = | f'(u)|| for every u € X.

Let us point out that the above notion has been independently introduced
also in [11], while a variant can be found in [10].

DEFINITION 3.2. An element v € X is said to be a critical point of f, if
|df|(u) = 0. A real number c is said to be a critical value of f, if there exists a
critical point u € X of f such that f(u) = c¢. Otherwise c is said to be a regular
value of f.

DEFINITION 3.3. Let ¢ be a real number. The function f is said to satisfy
the Palais—Smale condition at level ¢ ((PS). for short), if every sequence (up,) in
X with |df|(un) — 0 and f(un) — ¢ admits a subsequence (uyp, ) converging in
X (any cluster point of (uy) is a critical point of f by the lower semicontinuity

of |df]).

DEFINITION 3.4. Let K be a field. For u € X and ¢ = f(u) set Cy(f;u) =
Hi(fe, fe\{u}), where H1(A, B) denotes the ¢g-th cohomology group of the pair
(A, B), with coefficients in K (here we consider the Alexander—Spanier coho-
mology [17]). The vector space C,(f;u) is called the g-th critical group of f
at u.

Because of the excision property, for every neighbourhood U of u we have
Co(fiw) = HU(fNU, (f*NU)\ {u}).
Therefore Cy(f;u) depends only on the behaviour of f near .

THEOREM 3.5. Let X be a Banach space which splits into a direct sum X =
X~ @ Xt withdimX~ =m < co and X closed. Let K be a closed subset of
X and f: K — R a continuous function. Assume there exist a,b € R with a < b
and r > 0 such that

X~ nB,(0) C K,

max f<a< inf f and max __ f <b.
X~—NoB,-(0) Knx+ X—NB,-(0)
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Suppose also that f satisfies the (PS). condition for any ¢ € [a,b]. Then f admits
a critical value in [a,b]; more precisely, either f admits infinitely many critical
points in f~([a, b)), or there exists a critical point u of f in f~'(|a,b]) such that

Cm(f,0) # {0}.

ProOF. Consider the homomorphisms, induced by inclusion maps,

H™X, X\ XT)— H™(f°, f*) - H™(X~ N B,(0), X~ NdB,.(0)).

Since the inclusion map (X~ N B,(0), X~ NIB,(0)) — (X, X \ XT) induces an
isomorphism in cohomology, the homomorphism

H™(f° f*) — H™(X ™ NB(0), X~ N8B, (0))

is surjective. On the other hand, it is well-known that H™ (X~ N B,(0), X~ N
OB,.(0)) # {0}. Tt follows that H™(f*, f*) # {0}.
From [5, Theorem 4.4] the assertion follows. O

4. The saddle point

In this section let us consider K and g as in Section 2. Let f1: H}(Q) — R
be the functional defined by

fl(u)Z%/Q|Du\2dx—/QG(m,u)dx,

where G(z, s) = [ g(x,t)dt, and let f: K — R be the restriction of f; to K. Let
also Qoo: HE(2) — R be the quadratic form defined by

Qoo (1) :/ |Dul|? da — / D,g(z, c0)u? dz.
Q Q
In the following, || - |12 and || - ||-1,2 will denote the standard norms in H{ ()
and H~1(Q).

PRroOPOSITION 4.1. The following facts hold:

(a) K is a convex closed subset of HY(Q) containing 0,

(b) the functional f1 is of class C* with f{(0) =0,

(c) for every u € K there exists n € H=Y(Q) such that ||n||-12 < |df|(w)
and

/DuD(U—u)dm—/g(m,u)(v—u)de(n,v—u) forallv e K.
Q Q

PRrROOF. Assertions (a) and (b) are well-known. Assertion (c) follows from [8,
Theorem (2.11) and Proposition (2.10)]. O
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THEOREM 4.2. Let us assume that there exists k € N such that

(0)

u <0< A

Then, if f has only a finite number of critical points, there exists a critical point

u of f such that Cy(f,u) # {0}.

PROOF. Let X~ be a maximal subspace of H. where Q) is negative defi-

nite. Since u,(coo) <0< )\,(;f% < ,ugf%, we have dim X~ = k. Let us set

)?+:{UGHOO:/DuDvda;—/Dsg(x,oo)uvd:rzofor allveX‘},
Q Q

so that Hoo = X~ @ XT. Moreover, Qo is positive definite on X+. In fact,
consider for a contradiction u € )?*, u # 0, such that Q. (u) < 0. It follows that
Q) is negative semidefinite on (X ~ @ span(u)) C Ho with dim(X ~ @ span(u)) =
k4 1: a contradiction, because /\,(ffi > 0.

Now we have the decomposition H}(Q) = X~ @ X+, where X+ = (Xt @ HL)
and HZ is the orthogonal of H, in H}(f2) with respect to the standard scalar
product.

We want to apply Theorem 3.5 to the functional f: K — R. First of all
we have that f is bounded from below on K N XT. In fact, by contradiction,
let us consider a sequence (up) in K N X* such that f(u,) — —oc. Since f is
bounded on bounded subsets, we have that ||up|1,2 — 0o. Let up = ppwp, with
pn = |lun|l12 and |jwp]|1.2 = 1. Up to a subsequence, (wp,) is weakly convergent
to some w € X*. Since

to; <wp <tps q.e. in Qforallt >0

eventually, as h — oo, we also have w € K := [),5((tK). On the other hand
K, C Hg, so that w € X+. Since Qoo is positive definite on )?*, |whrlli2 =1
and

G
lim/ dez / D,g(x, c0)w? d,
hJa Ph Q
it follows o
1
lim inf [ [ pun iz [ U’“”d} >0,

12 Ja 0 Ph

In particular, we have
1
lim f(up,) = lim p? [/ | Dwy, | dz — / G(L;wh) dm] = 00,
h h 2 O Q ph

whence a contradiction.
In a similar (and simpler) way, one can show that

fl(u) = =00,

llullr,2—o00
ueX ™
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so that there exists r > 0 such that

max f1 < inf fl-
u€X ~NOB,-(0) ue KNX+

Since X~ C H.  C K, we trivially have X~ N B,(0) C K.

Now let us prove that f satisfies (PS), for every ¢ € R. Let (up) be a sequence
in K such that f(un) — ¢ and |df|(up) — 0. First of all, let us prove that (up)
is bounded. By contradiction, let ||u||1,2 — co. By Proposition 4.1, there exists
a sequence (n) in H~(Q)) with 1, — 0 and

(4.1) / DuhD(v—uh)dx—/ g(x,up)(v—up)dx > (np,v—up) forall ve K.
Q Q

Let up, = ppwn, with pp, = [Jun|l1,2 and ||wp|1,2 = 1. As in the previous step, up
to a subsequence (wy,) is weakly convergent to some w € K, C Ho,. Moreover,
we have that

(4.2) /thD(v—wh)da:—/ M(v—wh)dﬂc > <nh,v—wh>
Q Q Ph Ph

for all v € Ko,. Going to the limit as h — oo, we get
/ DwD(v — w) dx — / Dig(z,00)w(v —w)dx >0 forall v € K.
Q Q

On the other hand, choosing v = 0 in (4.2) we obtain

/ Dup de < / 9@, pnwn), <%,wh>7
Q Q Ph Ph

whence w # 0.
Let w = w_ +w,; withw_ € X~ and wy € XT. Since X~ C H,, C K,
we may choose v = 2w_ = (w_ — w4 )+ w in (4.3), obtaining

/ D(w_ +wy)D(w_ — wy)de — / D,g(z,00)(w- + wy)(w- —wy)dx >0,
Q Q
hence

/Q\Dw_|2dx—/ﬂDsg(a:,oo)(w_)Qda:Z/Q|Dw+\2dzf/gDsg(x,oo)(w_,_)zdx.

Since (), is negative definite on X~ and positive definite on X T, we have that
w = 0 and a contradiction follows.

Being bounded, (uy) is weakly convergent, up to a subsequence, to some
u € K. If we choose v = u in (4.1), we obtain

/ \Duh|2 de < / [DupDu — g(z,up)(u — up)] de — (np, u — up).
Q Q

It follows
limsup/ |Duh|2dm§/ | Du|? dz,
h Q Q
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so that (uy,) is strongly convergent to w.
Since dim X~ = k, by Theorem 3.5 there exists a critical point u of f such

that Ci(f,u) # {0}. O

5. Critical groups for ¢ large enough

In this section we consider a reflexive Banach space X, a convex closed subset
K of X with 0 € K and a continuous function f: K — R. Let us assume that
X splits into a direct sum X =V & W, with dimV = m < oo and W closed,
and denote by Py and Py the associated projections. Moreover, let us suppose
that:
(i) for every sequence (up) in K weakly convergent to u with li}llrn flup) =
f(w), one has that (uy,) is strongly convergent to u,
(ii) for every u € K, the function f is strictly convex on K N (u+ W),
(iii) there exists a continuous function ¢:V — R such that {u — f(u) +
Y(Pyu)} is convex on K,
(iv) V C U5 (tK),
(v) f(w) > f(0) for every w e WNK.

THEOREM 5.1. We have Cy(f,0) = {0} for every ¢ > m + 1.

THEOREM 5.2. Under the previous assumptions, let us suppose that there
exists 6 > 0 such that V NBs(0) C K and f(v) < f(0) for every v € V N Bs(0).
Then

{0} ifq#m,
C‘Z(fv 0) ~ { .
K if g =m.

The section will be devoted to the proof of these results.

THEOREM 5.3. Assume that K is also bounded. Then, for everyv € Py (K),
the function {w — f(v+w)} has one and only one minimum point in (K —v)NW.
Moreover, if we denote by ®(v) such a minimum point, then the following prop-
erties hold:

(a) 0 € inty (Py(K)) and the map ®:inty (Py(K)) — W is continuous with
o(0) = 0,

(b) the function ¢:inty (Py(K)) — R defined by o(v) = f(v+ ®(v)) is
continuous,

(e) Cy(,0) = Cy(f,0) for every q.

PROOF. Suppose, for a contradiction, that 0 ¢ inty (Py (K)). Since dimV <
00, there exists n € V* \ {0} such that (n,v) <0 for any v € Py (K). It follows
(n, Pyu) <0 for any u € K, hence for any u € m.

From assumption (iv) we deduce that (n,v) < 0 for any v € V, which is
clearly impossible.
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By assumption (ii), for every v € Py (K), the function {w — f(v+ w)} has
one and only one minimum point ®(v) in (K —v) N W. From assumption (v) it
follows that ®(0) = 0.

Let us define a function f K — R by

Flu) = fu) + ¥ (Pyu).

By assumption (iii), f is convex and continuous. Moreover, for every v € Py (K),

~

we have that ®(v) is also the unique minimum point of the function {w — f(v+

~

w)} in (K —v)NW. Define ¢: Py (K) — R by §(v) = f(v+®(v)) = p(v) +1(v).
We claim that @ is convex and lower semicontinuous. Actually, let vy, v €
Py (K) and let ¢t € [0,1]. Since f is convex, we have

P((1 = t)vg +tvy) = t)vg + tvr + D((1 — t)vg + tvy))
(1 —t)vg +tvy + (1 —t)D(vg) + tP(v1))
= 1) (vo + ®(vo)) + 1 (v + @ (1))

1
1 — )3 (vo) + t5(v1)-

Now, let (vy) be a sequence in Py (K) converging to v. Up to a subsequence,
(®(vp,)) is weakly convergent to some w € W with v +w € K. It follows

-~ ~ ~

pv)=flv+P(Ww)) < flo+w) < 1imhinf flop + P(vy)) = limhinf o(vp).

Being convex and lower semicontinuous, ¢ is continuous on inty (Py (K)). There-
fore, if (vg) is convergent to v in inty (Py (K)), we have that (®(vp,)) is weakly
convergent to ®(v). From assumption (i) it follows that (®(vp)) is strongly
convergent to ®(v). At the end, also ¢ is continuous on inty (Py (K)).

Finally, let us prove property (c). Without loss of generality, we may assume
that f(0) = ¢(0) = 0. If we set

U =inty (Py(K)) + W,
M ={v+®(v) : v € inty (Py(K))},

then {v — v+ ®(v)} is a homeomorphism of inty (Py (K)) onto M. Since ®(0) =
0, the pair (¢°, "\ {0}) is homeomorphic to the pair ((fjar)°, (fia)® \ {0}). In
particular,

Cylp,0) = H (%, " \ {0}) = H((finr)", (fiar)" \ {O}).

On the other hand, since {w — f(v +w)} is convex, the map n : (f°N U, (f°N
U)\{0}) x [0,1] = (f°N T, (f*nU)\ {0}) defined by

n(u,t) = Pyu+ (1 — t)Pyu + t®(Pyu),
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is a strong deformation retraction of (f*NU, (fONU)\{0}) in ((fiar)?, (fiar)®\
{0}). In particular,

HY((fiar)°, (Fiar) " \AO}) = HI(FO U, (£7 nU)\ {0}) = Cy(f,0)
and assertion (c) follows. O

Now we may prove the main results of this section.

PROOF OF THEOREM 5.1. By substituting K with KNB1(0), we may assume
that K is also bounded. Let ¢:inty (Py(K)) — R be as in Theorem 5.3. We
know that C,(f,0) ~ C,(,0) for all g. Since p°\{0} C ¢° C V withdimV = m,
it follows that Cy(p,0) = {0} whenever ¢ > m + 1. O

PrOOF OF THEOREM 5.2. Again, we may assume K to be bounded. Let
®:inty (Py (K)) — W and ¢:inty (Py(K)) — R be as in Theorem 5.3. For every
v € K NB(0), we have

p(v) = f(v+@(v) < f(v) < f(0) = »(0).
Therefore
Cy(£,0) = Cy(,0) = HI(o" N Bs(0), (¢” N Bs(0)) \ {0})
= H?(V N B;(0), (VN Bs(0)) \ {0})

and the assertion follows. O

6. Critical groups for ¢ small enough

In this section we consider a Banach space X, a convex closed subset K of
X with 0 € K and a continuous function f: K — R. Let us assume that X splits
into a direct sum X =V & W, with dimV = m < co and W closed. Moreover,
let us suppose that:
(i) there exists § > 0 such that (V N Bs(0)) + (K NW NB;(0)) C K,
(ii) for every w € K N W N Bs(0), the function {v — f(v+ w)} is strictly
concave on V N B;(0).

THEOREM 6.1. We have Cy(f,0) = {0} for every ¢ <m — 1.

The section will be devoted to the proof of this result.

LEMMA 6.2. Let S be a symmetric subset of V and C be a convex subset of
W such that 0 € C and S+ (KNC)C K. Then S+ (KNC)=KnN((S+C).
In particular, it is

(VNBs(0) + (KNWNBs(0)) = KN[(VNBs(0)) + (W NBs(0))].

PRrROOF. Let v+ w € K withv € Sand w € C. If w € K NC, we have
—v+ @ € K, hence (w+ w)/2 € KNC. Starting from 0 € K N C, we find by
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induction that (1—27%)w € KNC for any k € N. It follows that w € K, whence
v+w € S+ (K NC). The opposite inclusion is obvious. O

LEMMA 6.3. Let V = span(e) ® Z with e # 0 and assume that f(v) < f(0)
for every v € VN Bs(0). Then there exist v > 0 and p € ]0,7] such that:

(a) for every u € (ZNB,(0)) + (KNW NB,0)) and every t € [—r,r] we
have te +u € K,

(b) for everyu € (ZNB,(0))+(KNWNB,(0)) the function {t — f(te+u)}
has one and only one mazimum point 9(u) on [—r,r] with |[H(u)| <r,

(c) the function ¥: (ZNB,(0)) + (KNW NB,(0)) — R is continuous with
9(0) =0,

(d) the function ¢: (Z NB,(0)) + (KNW NB,(0)) — R defined by p(u) =
FfW(w)e +w) is continuous,

(e) we have p(z) < ¢(0) for all z € Z N B,(0) and for every w € KNW N
B,(0) the function {z — (2 +w)} is strictly concave on Z N B,(0).

PROOF. Let r € ]0,0[ be such that |[te + z|| < 6 whenever |t| < r and
z € ZNB,(0). From assumption (i), it follows that

te+ue K forallue (ZNB,.(0))+ (KNWNB,(0)) and all t € [—r,7].

By assumption (ii) we have that f(—re) < f(0) and f(re) < f(0). Therefore,
there exists p € |0, r] such that

f(=retu) < f(u), flret+u) < f(u) for all u € (ZNB,(0))+(KNWNB,(0)).
Then assertions (a) and (b) easily follow. Moreover, since f(te) < f(0) for every
t € [—r,r], we have 9(0) = 0.

Now, let (up) be a sequence in (Z N B,(0)) + (K N W N B,(0)) converging
to u. Up to a subsequence, (9(up)) is convergent to some ¢ € [—r,r]. On the
other hand f(¢(un)e + up) > f(¥(u)e + up). Since f is continuous it follows
that f(te + u) > f(J(u)e + u), whence ¢ = ¥(u). Therefore ¢ is continuous. Of
course, ¢ also is continuous.

For every z € ZNB,(0) and t € [—r,r] we have f(te + z) < f(0), whence
©(z) < (0). Finally, let w € K N W N B,(0), 20,21 € ZNDB,(0) with 29 # 21
and let ¢ €]0, 1[. From assumtion (ii) it follows that

o((1—1t)zg +tz1 +w)
= f(((1 —t)z0 +tz1 + w)e + (1 —t)zo + tz1 + w)
> f(I(1 = 8)9(z0 + w) + tI (21 +w)]e + (1 — t)zo + tz1 + w)
>(1—=t)f(I(z0 + w)e+ 20 +w) + tf(V(z1 + w)e + 21 + w)
= (1= (0 + W)+t +w).

Therefore the function {z — ¢(z +w)} is strictly concave on Z N B,(0). O
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Let us set

Et ={te+u:ue (ZNB,0))+ (KNWNB,0)), Ju) <t
E™ ={te+u:ue(ZnNB,(0)) +(KNWNB,0)), —r <t < (u)

E=E"NE" ={d(we+u:uec(ZNB,(0))+ (KNWNB,0))},
U, =EtUE"

={te+u:ue(ZnNB,(0))+(KNWNB,0)), —r<t<r}

LEMMA 6.4. Under the assumptions of the previous lemma, we have
Cq(fa 0) ~ Cq71(<,0,0) for any q.

Proor. Without loss of generality, we may assume that f(0) = 0. From
Lemma 6.2 and (a) of Lemma 6.3, it follows that U, , is a neighbourhood of 0
in K.

Now, let 7: ET — [0, +00[ be a continuous function such that 7(u)e+u € E*
for any u € E* and 7(0) > 0. Let us define H: (f°N ET) x [0,1] — f°N ET by

H(u,s) =u+ st(u)e.

Then H is continuous and takes actually its values in fNET by assumption (ii).
Moreover, we have

H(u,0) =u, H(u,1)#0, forallue f°NET,
H(u,s) #0, for all uw € (f°N ET)\ {0} and all s € [0,1].
It follows
HUfPNET, (f°nET)\{0}) = {0} forallg.
In a similar way, we find that
HUf'NE,(f°nE")\{0}) = {0} forallgq.
Since ET and E~ are closed in U, , and we are considering Alexander—Spanier
cohomology in a metric space, we have the Mayer—Vietoris exact sequence
— HTHfONE, (P nET)\{0Y) @ HH(fP N ET, (f°n ET)\ {0})
— HH PN E, (f° N E)\{0}) — HI(f* N U, (f° N U,p) \ {0})
— H(fPNE, (fSnE)\{0p) & H'(S*nET, (f* nE")\{0}).
It follows that
HI(fNUpp, (FO N U )\ {O}) = HH(fO N E, (2 1 E)\ {0}),
hence Cy(f,0) =~ Cy_1(fg,0). On the other hand, ®(u) = J(u)e + u is a

homeomorphism of (Z N B,(0)) + (K N W NB,(0)) onto E with ®(0) = 0. It
follows that Cy_1(,0) = Cy_1(f|E,0). O
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PROOF OF THEOREM 6.1. If there exists vg € V N B;(0) such that f(vg) >
£(0), then |df|(0) # 0. Actually, by assumption (ii) we may assume that ||vo|| <
§/2. If
f(wo) = f(0)

ool
by Lemma 6.2 there exists ¢’ > 0 such that, for every u € K N By (0), one has
that {u+ svg: =6’ < s <1} C K, f is concave on {u + svg : —¢ < s <1} and

fu+wvo) — f(u)

[[vol|

O<o<

> 0.

Let H: (K N By (0)) x [0,0'] — K be defined by

Vo

lvol|”

H(u,t) =u—t

Then H is continuous and ||H(u,t) —u|| = t. Moreover, for every u € K NBg (0)
and ¢ € [0,0'], we have

| ool
u=——(u+wvy) + H(u,t),
ool U e T
hence
F) > — et o) + gy,
1 ool £+ ool

which is equivalent to

4
fH(u, ) < flu) - m(f(u +vo) — f(u)).
It follows f(H(u,t)) < f(u)—ot, whence |[df|(0) > o > 0. By [5, Proposition 3.4]
we deduce that C,(f,0) = {0} for every g. Therefore, we may assume that
f(v) < £(0) for every v € V N Bs(0). Let us argue by induction on m = dim V.

If m =0, i.e. V = {0}, there is nothing to prove. Now let m > 1 and assume

the assertion is true for m — 1. Let ¢: (ZNB,(0)) + (KNWNB,(0)) — R be as
in Lemma 6.4. We know that

Cy(f,0) = Cy_1(p,0) for all g.

On the other hand, by Lemma 6.3 ¢ satisfies the same assumptions of f, with V'
substituted by Z and K by (ZNB,(0))+(KNWNB,(0)). Since dimZ =m—1,
by the inductive assumption we have that

Cyl(p,0) ={0} forallg<m—2

and the assertion follows. O
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7. Proof of the main results

This section is devoted to the proof of Theorems 2.2 and 2.4.
Let K, g, fi and f be as in Section 4. Let also Qo: Hi(Q2) — R be the
quadratic form defined by

u):/ |Du|2dx—/DSg(:1c7O)u2d:E.
Q Q

By Proposition 4.1, each critical point of f is a solution of (2.2). Therefore,
without loss of generality, we may assume that f has only a finite number of
critical points. By Theorem 4.2 there exists a critical point @ of f such that
Cr(f, @) # {0}. Therefore, it is sufficient to show that Cy(f,0) = {0}.

PROOF OF THEOREM 2.2. Suppose first that there exists h < k such that
Mgo) <0< /\ggzl Let V be a maximal subspace of H|, where Qg is negative
semidefinite and let T be a maximal closed subspace of Hy where Qg is positive
definite. Since u( ) <0< )\gzl, we have dimV = codimHOW = h. Let Hy =
VoW and let P , P be the projections associated with the decomposition.
We clearly have VﬂW {0}. Therefore Py:V — Vis 1nject1ve hence bijective.
For any u € Hy, let u =7+ w with v € V and @ € W. Let also v € V with
Ppv =7. Then we have

u:P‘A/v—&—@:v—i—(@—PWU)EV—i—/W.

Therefore Hy =V @ w.

Consequently, we have the decomposition HE(Q) = V @& W, where W =
(W@Hd‘) and Hy is the orthogonal of Hy in HE () with respect to the standard
scalar product. Let Py be the associated projection on V.

We want to apply Theorem 5.1. Assumption (i) is clearly satisfied. Since f;
is of class C2, f{(0) = 0 and f{'(0) is positive definite on W, there exist w,§ > 0
such that

o fi(w) > f1(0) for all w € W N B;(0),
e the function f; is strictly convex on Bs(0) N (u + W) for all u € Bs(0),
o {u— fi(u)+ w||Pyul|?} is convex on Hy N Bs(0).

Since we want to estimate the critical groups of f at 0, we may substitute K
with K N Bs(0). As K C Hy, it follows that assumptions (ii), (iii) and (v) are
satisfied. Finally, according to [16], we have

U(tK) ={uec HYQ) : u(z) >0 qe. in FY and u(xr) <0 q.e. in FY}.
>0

It follows V' C Hy C ;o (tK). We conclude that Cy(f,0) = {0} by Theo-
rem 5.1.
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Now, suppose that there exists h > k such that ugo) < 0. Arguing as in the

proof of Theorem 4.2, we find a decomposition of the form HZ(2) = V & W,
where W is closed and V' is a subspace of H} with dimV = h such that Qo =

1(0) is negative definite on V. By assumption (2.1) we have H| C K, hence
V + K = K. Moreover, there exists 6 > 0 such that, for every w € Bs(0), the
function {v — fi(v +w)} is strictly concave on V' N Bs(0). By Theorem 6.1 we

conclude that Ci(f,0) = {0}. O

PROOF OF THEOREM 2.4. Arguing as in the proof of Theorem 4.2, we find

a decomposition of the form H}(Q) = VaoaWao Hy-, where W is closed in Hy,

V is a subspace of Hj) with dimV = h, Qo = f/'(0) is negative definite on V

and positive definite on W. Set also W = W & Hy. Tt is readily seen that

H) C UK N(=K))). Let {z1,...,2,} be a basis in V. Given ¢ > 0, there
>0

exist t; > 0 and v; € t;(K N (—K)) with |jv; — zj|| < e. Let V be the linear
subspace spanned by {vy,...,v,}. If € is sufficiently small, we have dimV = h,
HYQ) =V @& W and f]'(0) is negative definite also on V. Moreover, we have
[—t;l,tj_l]vj C K, hence

11 11
1 == ol — |y K
(7.1) [ htl’htl]vlJr +{ hth’hth}”h—

As in the proof of Theorem 2.2, we see that assumptions (i)—(v) of Section 5 are
satisfied. Since f{'(0) is negative definite on V', by (7.1) we find ¢ > 0 such that
V NBs(0) C K and f1(v) < f1(0) for any v € V N Bs(0). From Theorem 5.2 we
conclude that Cy(f,0) = {0}. O

REMARK 7.1. Let us point out that assumption (2.1) is actually needed only
to treat the case h > k with ’ugo) < 0, while it is not used in the case h < k with

MELO) <0< )‘Ezo-s)-l'
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