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NONTRIVIAL SOLUTIONS OF VARIATIONAL INEQUALITIES.
THE DEGENERATE CASE

Sergio Lancelotti

Abstract. We consider a class of asymptotically linear variational in-

equalities. We show the existence of a nontrivial solution under assump-
tions which allow the problem to be degenerate at the origin.

1. Introduction

Let Ω be a bounded open subset of Rn and g: R → R be a function of class C1

with g(0) = 0 and linear growth at infinity. The existence of nontrivial solutions
u to the semilinear elliptic problem{

∆u+ g(u) = 0 in Ω,

u = 0 on ∂Ω,

was first studied by Amann and Zehnder in [1] by means of Conley index. The
main result was then refind by Chang, Lazer and Solimini ([3], [13]), using Morse
theory, and Saccon ([15]), again by means of Conley index. The key assumptions
are that there exists

g′(∞) := lim
|s|→∞

g(s)
s

2000 Mathematics Subject Classification. Primary 35J85; Secondary 58E05.
Key words and phrases. Variational inequalities, nonsmooth critical point theory, Morse

theory.
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and that the quadratic forms

Q0(u) =
∫

Ω

(|Du|2 − g′(0)u2) dx,

Q∞(u) =
∫

Ω

(|Du|2 − g′(∞)u2) dx,

have different index in H1
0 (Ω).

More recently, the result has been also extended to variational inequalities
by Saccon ([16]) and to quasilinear equations by Corvellec, Degiovanni, and
Lancelotti ([6], [12]). In the first case, one also considers a closed convex subset
K ofH1

0 (Ω) with 0 ∈ K and looks for nontrivial solutions u ∈ K of the variational
inequality

(1.1)
∫

Ω

[DuD(v − u)− g(u)(v − u)] dx ≥ 0 for all v ∈ K.

It is interesting to remark that the constraint K can induce the existence of
nontrivial solutions also when g(s) = λs with λ ∈ R. However, if for instance

K = {u ∈ H1
0 (Ω) : ϕ1 ≤ u ≤ ϕ2}

with ϕ1 < 0 < ϕ2, the assumptions considered in [16] require the quadratic
form Q0 to be nondegenerate at the origin, a restriction which is not needed for
semilinear equations (see [13]).

Our purpose is to prove the existence of nontrivial solutions to (1.1) without
assuming such a nondegeneracy at 0. While the approach of [16] was based on
Conley index, we find it more convenient to use Morse theory. More precisely,
since the precence of the constraint K makes the problem nonsmooth, we take
advantage of the extension of Morse theory to continuous functionals developed
in [5].

Our main result is Theorem 2.2, where we prove the existence of a nontrivial
solution to (1.1) in the degenerate case, even if the family of constraints K
considered is not so wide as in [16] (see assumption (2.1)). Since our approach is
different, we also treat in Theorem 2.4 the nondegenerate case already considered
in [16].

As in [13], the first step in the proof is to find a saddle point u of the functional
f :K → R defined by

f(u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

G(u) dx, G(s) =
∫ s

0

g(t) dt,

with a suitable information about its critical groups. This is done by an adapta-
tion of Rabinowitz saddle theorem (see Theorem 4.2). Then the main point is to
obtain estimates about the critical groups of f at the origin. Since 0 is possibly
degenerate, we adapt to our nonsmooth setting some ideas of the generalized
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Morse lemma (see [4], [9], [14]). After that, it is possible to show that u 6= 0,
obtaining the existence of a nontrivial solution.

Acknowledgements. The author wishes to thank Marco Degiovanni for
helpful discussions.

2. Statement of the main results

Let Ω be a bounded open subset of Rn, n ≥ 3, ϕ1: Ω → [−∞, 0] and ϕ2: Ω →
[0,∞] be two functions such that ϕ1 is quasi-upper semicontinuous and ϕ2 is
quasi-lower semicontinuous. We consider the convex set

K = {u ∈ H1
0 (Ω) : ϕ1(x) ≤ ũ(x) ≤ ϕ2(x) for q.e. x in Ω},

where ũ is a quasi-continuous representative of u. We also consider g: Ω×R → R
such that:

(a) the function {s 7→ g(x, s)} is of class C1 for a.e. x ∈ Ω and the function
{x 7→ g(x, s)} is measurable for every s ∈ R,

(b) g(x, 0) = 0 for a.e. x ∈ Ω,
(c) there exists b ∈ Ln/2(Ω) such that for a.e. x ∈ Ω and for every s ∈ R

|Dsg(x, s)| ≤ b(x),

(d) for a.e. x ∈ Ω there exists

Dsg(x,∞) := lim
|s|→∞

g(x, s)
s

.

Let us consider the following subsets of Ω:

F 0
1 = {x ∈ Ω : ϕ1(x) = 0},

F∞1 = {x ∈ Ω : ϕ1(x) = −∞},
F 0

2 = {x ∈ Ω : ϕ2(x) = 0},
F∞2 = {x ∈ Ω : ϕ2(x) = ∞}.

Moreover, let us consider the following closed linear subspaces of H1
0 (Ω):

H0 = {u ∈ H1
0 (Ω) : ũ = 0 for q.e. x in F 0

1 ∩ F 0
2 },

H∞ = {u ∈ H1
0 (Ω) : ũ = 0 for q.e. x outside F∞1 ∪ F∞2 },

H ′
0 = {u ∈ H1

0 (Ω) : ũ = 0 for q.e. x in F 0
1 ∪ F 0

2 },
H ′
∞ = {u ∈ H1

0 (Ω) : ũ = 0 for q.e. x outside F∞1 ∩ F∞2 }.

Finally, let us denote by (λ(0)
k ), (µ(0)

k ) the eigenvalues of the linear operator
−∆−Dsg(x, 0) respectively in H0 and H ′

0, and by (λ(∞)
k ), (µ(∞)

k ) the eigenvalues
of the linear operator −∆ − Dsg(x,∞), respectively in H∞ and H ′

∞ (∆ is the
Laplace operator and eigenvalues are repeated according to multiplicity).
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Remark 2.1. Since H ′
0 ⊆ H0 and H ′

∞ ⊆ H∞, we have that

λ
(0)
k ≤ µ

(0)
k , λ

(∞)
k ≤ µ

(∞)
k for all k ∈ N.

Theorem 2.2. Assume that

(2.1) (ϕ1(x) 6= 0 and ϕ2(x) 6= 0) ⇒ (ϕ1(x) = −∞ and ϕ2(x) = ∞)

q.e. in Ω, and that µ(∞)
k < 0 < λ

(∞)
k+1 for some k. Moreover, suppose there exists

h 6= k such that either

h < k and µ
(0)
h ≤ 0 < λ

(0)
h+1

or
h > k and µ

(0)
h < 0.

Then there exists a nontrivial solution u of the semilinear variational inequality

(2.2)

{
u ∈ K,∫

Ω

DuD(v − u) dx−
∫

Ω

g(x, u)(v − u) dx ≥ 0 for all v ∈ K.

Remark 2.3. Assumption (2.1) is satisfied, for instance, if K has the form

K = {u ∈ H1
0 (Ω) : ũ(x) ≥ 0 for q.e. x in E1 and ũ(x) ≤ 0 for q.e. x in E2},

where E1, E2 are two subsets of Ω.
The novelty of Theorem 2.2 is that we allow the cases h < k with µ(0)

h = 0 <
λ

(0)
h+1 and h > k with µ(0)

h < 0 = λ
(0)
h+1, which were excluded in [16].

The next result has been proved also in [16].

Theorem 2.4. Assume that there exist h 6= k such that

µ
(∞)
k < 0 < λ

(∞)
k+1, µ

(0)
h < 0 < λ

(0)
h+1.

Then there exists a nontrivial solution u of the semilinear variational inequality{
u ∈ K,∫

Ω

DuD(v − u) dx−
∫

Ω

g(x, u)(v − u) dx ≥ 0 for all v ∈ K.

3. Background in nonsmooth critical point theory

In this section we recall from [5], [7], [8] some basic facts that will be needed
in the following. Let X denote a metric space endowed with the metric d and
f :X → R a continuous function. Moreover, let Br(u) be the open ball of radius
r > 0 centered at u ∈ X. For every c ∈ R let us set

fc = {u ∈ X : f(u) ≤ c}.
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Definition 3.1. For every u ∈ X let us denote by |df |(u) the supremum of
the σ’s in [0,∞[ such that there exist δ > 0 and a continuous map H: Bδ(u) ×
[0, δ] → X with

d(H(v, t), v) ≤ t for all v ∈ Bδ(u) and all t ∈ [0, δ],

f(H(v, t)) ≤ f(v)− σt for all v ∈ Bδ(u) and all t ∈ [0, δ].

The extended real number |df |(u) is called the weak slope of f at u.

It is easily seen that the function |df |:X → [0,∞] is lower semicontinuous.
Moreover, if X is an open subset of a normed space and f a function of class
C1, it turns out that |df |(u) = ‖f ′(u)‖ for every u ∈ X.

Let us point out that the above notion has been independently introduced
also in [11], while a variant can be found in [10].

Definition 3.2. An element u ∈ X is said to be a critical point of f , if
|df |(u) = 0. A real number c is said to be a critical value of f , if there exists a
critical point u ∈ X of f such that f(u) = c. Otherwise c is said to be a regular
value of f .

Definition 3.3. Let c be a real number. The function f is said to satisfy
the Palais–Smale condition at level c ((PS)c for short), if every sequence (uh) in
X with |df |(uh) → 0 and f(uh) → c admits a subsequence (uhk

) converging in
X (any cluster point of (uh) is a critical point of f by the lower semicontinuity
of |df |).

Definition 3.4. Let K be a field. For u ∈ X and c = f(u) set Cq(f ;u) =
Hq(fc, f c \{u}), where Hq(A,B) denotes the q-th cohomology group of the pair
(A,B), with coefficients in K (here we consider the Alexander–Spanier coho-
mology [17]). The vector space Cq(f ;u) is called the q-th critical group of f
at u.

Because of the excision property, for every neighbourhood U of u we have

Cq(f ;u) ≈ Hq(fc ∩ U, (fc ∩ U) \ {u}).

Therefore Cq(f ;u) depends only on the behaviour of f near u.

Theorem 3.5. Let X be a Banach space which splits into a direct sum X =
X− ⊕X+ with dimX− = m < ∞ and X+ closed. Let K be a closed subset of
X and f :K → R a continuous function. Assume there exist a, b ∈ R with a < b

and r > 0 such that

X− ∩ Br(0) ⊆ K,

max
X−∩∂Br(0)

f < a < inf
K∩X+

f and max
X−∩Br(0)

f < b.
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Suppose also that f satisfies the (PS)c condition for any c ∈ [a, b]. Then f admits
a critical value in [a, b]; more precisely, either f admits infinitely many critical
points in f−1([a, b]), or there exists a critical point u of f in f−1([a, b]) such that
Cm(f, 0) 6= {0}.

Proof. Consider the homomorphisms, induced by inclusion maps,

Hm(X,X \X+) → Hm(f b, fa) → Hm(X− ∩ Br(0), X− ∩ ∂Br(0)).

Since the inclusion map (X− ∩ Br(0), X− ∩ ∂Br(0)) → (X,X \X+) induces an
isomorphism in cohomology, the homomorphism

Hm(f b, fa) → Hm(X− ∩ Br(0), X− ∩ ∂Br(0))

is surjective. On the other hand, it is well-known that Hm(X− ∩ Br(0), X− ∩
∂Br(0)) 6= {0}. It follows that Hm(f b, fa) 6= {0}.

From [5, Theorem 4.4] the assertion follows. �

4. The saddle point

In this section let us consider K and g as in Section 2. Let f1:H1
0 (Ω) → R

be the functional defined by

f1(u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

G(x, u) dx,

where G(x, s) =
∫ s

0
g(x, t) dt, and let f :K → R be the restriction of f1 to K. Let

also Q∞:H1
0 (Ω) → R be the quadratic form defined by

Q∞(u) =
∫

Ω

|Du|2 dx−
∫

Ω

Dsg(x,∞)u2 dx.

In the following, ‖ · ‖1,2 and ‖ · ‖−1,2 will denote the standard norms in H1
0 (Ω)

and H−1(Ω).

Proposition 4.1. The following facts hold:

(a) K is a convex closed subset of H1
0 (Ω) containing 0,

(b) the functional f1 is of class C2 with f ′1(0) = 0,
(c) for every u ∈ K there exists η ∈ H−1(Ω) such that ‖η‖−1,2 ≤ |df |(u)

and∫
Ω

DuD(v − u) dx−
∫

Ω

g(x, u)(v − u) dx ≥ 〈η, v − u〉 for all v ∈ K.

Proof. Assertions (a) and (b) are well-known. Assertion (c) follows from [8,
Theorem (2.11) and Proposition (2.10)]. �
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Theorem 4.2. Let us assume that there exists k ∈ N such that

µ
(∞)
k < 0 < λ

(∞)
k+1.

Then, if f has only a finite number of critical points, there exists a critical point
u of f such that Ck(f, u) 6= {0}.

Proof. Let X− be a maximal subspace of H ′
∞ where Q∞ is negative defi-

nite. Since µ(∞)
k < 0 < λ

(∞)
k+1 ≤ µ

(∞)
k+1, we have dimX− = k. Let us set

X̂+ =
{
u ∈ H∞ :

∫
Ω

DuDv dx−
∫

Ω

Dsg(x,∞)uv dx = 0 for all v ∈ X−
}
,

so that H∞ = X− ⊕ X̂+. Moreover, Q∞ is positive definite on X̂+. In fact,
consider for a contradiction u ∈ X̂+, u 6= 0, such that Q∞(u) ≤ 0. It follows that
Q∞ is negative semidefinite on (X−⊕ span(u)) ⊆ H∞ with dim(X−⊕ span(u)) =
k + 1: a contradiction, because λ(∞)

k+1 > 0.
Now we have the decompositionH1

0 (Ω) = X−⊕X+, whereX+ = (X̂+⊕H⊥
∞)

and H⊥
∞ is the orthogonal of H∞ in H1

0 (Ω) with respect to the standard scalar
product.

We want to apply Theorem 3.5 to the functional f :K → R. First of all
we have that f is bounded from below on K ∩ X+. In fact, by contradiction,
let us consider a sequence (uh) in K ∩X+ such that f(uh) → −∞. Since f is
bounded on bounded subsets, we have that ‖uh‖1,2 →∞. Let uh = ρhwh, with
ρh = ‖uh‖1,2 and ‖wh‖1,2 = 1. Up to a subsequence, (wh) is weakly convergent
to some w ∈ X+. Since

tϕ1 ≤ wh ≤ tϕ2 q.e. in Ω for all t > 0

eventually, as h → ∞, we also have w ∈ K∞ :=
⋂

t>0(tK). On the other hand
K∞ ⊆ H∞, so that w ∈ X̂+. Since Q∞ is positive definite on X̂+, ‖wh‖1,2 = 1
and

lim
h

∫
Ω

G(x, ρhwh)
ρ2

h

dx =
∫

Ω

Dsg(x,∞)w2 dx,

it follows

lim inf
h

[
1
2

∫
Ω

|Dwh|2 dx−
∫

Ω

G(x, ρhwh)
ρ2

h

dx

]
> 0.

In particular, we have

lim
h
f(uh) = lim

h
ρ2

h

[
1
2

∫
Ω

|Dwh|2 dx−
∫

Ω

G(x, ρhwh)
ρ2

h

dx

]
= ∞,

whence a contradiction.
In a similar (and simpler) way, one can show that

lim
‖u‖1,2→∞

u∈X−

f1(u) = −∞,
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so that there exists r > 0 such that

max
u∈X−∩∂Br(0)

f1 < inf
u∈K∩X+

f1.

Since X− ⊆ H ′
∞ ⊆ K, we trivially have X− ∩ Br(0) ⊆ K.

Now let us prove that f satisfies (PS)c for every c ∈ R. Let (uh) be a sequence
in K such that f(uh) → c and |df |(uh) → 0. First of all, let us prove that (uh)
is bounded. By contradiction, let ‖uh‖1,2 →∞. By Proposition 4.1, there exists
a sequence (ηh) in H−1(Ω) with ηh → 0 and

(4.1)
∫

Ω

DuhD(v−uh) dx−
∫

Ω

g(x, uh)(v−uh) dx ≥ 〈ηh, v−uh〉 for all v ∈ K.

Let uh = ρhwh, with ρh = ‖uh‖1,2 and ‖wh‖1,2 = 1. As in the previous step, up
to a subsequence (wh) is weakly convergent to some w ∈ K∞ ⊆ H∞. Moreover,
we have that

(4.2)
∫

Ω

DwhD(v − wh) dx−
∫

Ω

g(x, ρhwh)
ρh

(v − wh) dx ≥
〈
ηh

ρh
, v − wh

〉
for all v ∈ K∞. Going to the limit as h→∞, we get∫

Ω

DwD(v − w) dx−
∫

Ω

Dsg(x,∞)w(v − w) dx ≥ 0 for all v ∈ K∞.

On the other hand, choosing v = 0 in (4.2) we obtain∫
Ω

|Dwh|2 dx ≤
∫

Ω

g(x, ρhwh)
ρh

wh dx+
〈
ηh

ρh
, wh

〉
,

whence w 6= 0.
Let w = w− + w+ with w− ∈ X− and w+ ∈ X̂+. Since X− ⊆ H ′

∞ ⊆ K∞,
we may choose v = 2w− = (w− − w+) + w in (4.3), obtaining∫

Ω

D(w− + w+)D(w− − w+) dx−
∫

Ω

Dsg(x,∞)(w− + w+)(w− − w+) dx ≥ 0,

hence∫
Ω

|Dw−|2 dx−
∫

Ω

Dsg(x,∞)(w−)2 dx ≥
∫

Ω

|Dw+|2 dx−
∫

Ω

Dsg(x,∞)(w+)2 dx.

Since Q∞ is negative definite on X− and positive definite on X̂+, we have that
w = 0 and a contradiction follows.

Being bounded, (uh) is weakly convergent, up to a subsequence, to some
u ∈ K. If we choose v = u in (4.1), we obtain∫

Ω

|Duh|2 dx ≤
∫

Ω

[DuhDu− g(x, uh)(u− uh)] dx− 〈ηh, u− uh〉.

It follows
lim sup

h

∫
Ω

|Duh|2 dx ≤
∫

Ω

|Du|2 dx,
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so that (uh) is strongly convergent to u.
Since dimX− = k, by Theorem 3.5 there exists a critical point u of f such

that Ck(f, u) 6= {0}. �

5. Critical groups for q large enough

In this section we consider a reflexive Banach space X, a convex closed subset
K of X with 0 ∈ K and a continuous function f :K → R. Let us assume that
X splits into a direct sum X = V ⊕W , with dimV = m < ∞ and W closed,
and denote by PV and PW the associated projections. Moreover, let us suppose
that:

(i) for every sequence (uh) in K weakly convergent to u with lim
h
f(uh) =

f(u), one has that (uh) is strongly convergent to u,
(ii) for every u ∈ K, the function f is strictly convex on K ∩ (u+W ),
(iii) there exists a continuous function ψ:V → R such that {u 7→ f(u) +

ψ(PV u)} is convex on K,
(iv) V ⊆

⋃
t>0(tK),

(v) f(w) ≥ f(0) for every w ∈W ∩K.

Theorem 5.1. We have Cq(f, 0) = {0} for every q ≥ m+ 1.

Theorem 5.2. Under the previous assumptions, let us suppose that there
exists δ > 0 such that V ∩ Bδ(0) ⊆ K and f(v) ≤ f(0) for every v ∈ V ∩ Bδ(0).
Then

Cq(f, 0) ≈

{
{0} if q 6= m,

K if q = m.

The section will be devoted to the proof of these results.

Theorem 5.3. Assume that K is also bounded. Then, for every v ∈ PV (K),
the function {w 7→ f(v+w)} has one and only one minimum point in (K−v)∩W .
Moreover, if we denote by Φ(v) such a minimum point, then the following prop-
erties hold:

(a) 0 ∈ intV (PV (K)) and the map Φ: intV (PV (K)) →W is continuous with
Φ(0) = 0,

(b) the function ϕ: intV (PV (K)) → R defined by ϕ(v) = f(v + Φ(v)) is
continuous,

(c) Cq(ϕ, 0) ≈ Cq(f, 0) for every q.

Proof. Suppose, for a contradiction, that 0 6∈ intV (PV (K)). Since dimV <

∞, there exists η ∈ V ∗ \ {0} such that 〈η, v〉 ≤ 0 for any v ∈ PV (K). It follows
〈η, PV u〉 ≤ 0 for any u ∈ K, hence for any u ∈

⋃
t>0(tK).

From assumption (iv) we deduce that 〈η, v〉 ≤ 0 for any v ∈ V , which is
clearly impossible.
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By assumption (ii), for every v ∈ PV (K), the function {w 7→ f(v + w)} has
one and only one minimum point Φ(v) in (K − v) ∩W . From assumption (v) it
follows that Φ(0) = 0.

Let us define a function f̂ :K → R by

f̂(u) = f(u) + ψ(PV u).

By assumption (iii), f̂ is convex and continuous. Moreover, for every v ∈ PV (K),
we have that Φ(v) is also the unique minimum point of the function {w 7→ f̂(v+
w)} in (K−v)∩W . Define ϕ̂:PV (K) → R by ϕ̂(v) = f̂(v+Φ(v)) = ϕ(v)+ψ(v).

We claim that ϕ̂ is convex and lower semicontinuous. Actually, let v0, v1 ∈
PV (K) and let t ∈ [0, 1]. Since f̂ is convex, we have

ϕ̂((1− t)v0 + tv1) = f̂((1− t)v0 + tv1 + Φ((1− t)v0 + tv1))

≤ f̂((1− t)v0 + tv1 + (1− t)Φ(v0) + tΦ(v1))

≤ (1− t)f̂(v0 + Φ(v0)) + tf̂(v1 + Φ(v1))

= (1− t)ϕ̂(v0) + tϕ̂(v1).

Now, let (vh) be a sequence in PV (K) converging to v. Up to a subsequence,
(Φ(vh)) is weakly convergent to some w ∈W with v + w ∈ K. It follows

ϕ̂(v) = f̂(v + Φ(v)) ≤ f̂(v + w) ≤ lim inf
h

f̂(vh + Φ(vh)) = lim inf
h

ϕ̂(vh).

Being convex and lower semicontinuous, ϕ̂ is continuous on intV (PV (K)). There-
fore, if (vh) is convergent to v in intV (PV (K)), we have that (Φ(vh)) is weakly
convergent to Φ(v). From assumption (i) it follows that (Φ(vh)) is strongly
convergent to Φ(v). At the end, also ϕ is continuous on intV (PV (K)).

Finally, let us prove property (c). Without loss of generality, we may assume
that f(0) = ϕ(0) = 0. If we set

U = intV (PV (K)) +W,

M = {v + Φ(v) : v ∈ intV (PV (K))},

then {v 7→ v+Φ(v)} is a homeomorphism of intV (PV (K)) onto M . Since Φ(0) =
0, the pair (ϕ0, ϕ0 \ {0}) is homeomorphic to the pair ((f|M )0, (f|M )0 \ {0}). In
particular,

Cq(ϕ, 0) = Hq(ϕ0, ϕ0 \ {0}) ≈ Hq((f|M )0, (f|M )0 \ {0}).

On the other hand, since {w 7→ f(v + w)} is convex, the map η : (f0 ∩ U, (f0 ∩
U) \ {0})× [0, 1] → (f0 ∩ U, (f0 ∩ U) \ {0}) defined by

η(u, t) = PV u+ (1− t)PWu+ tΦ(PV u),
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is a strong deformation retraction of (f0 ∩U, (f0 ∩U) \ {0}) in ((f|M )0, (f|M )0 \
{0}). In particular,

Hq((f|M )0, (f|M )0 \ {0}) ≈ Hq(f0 ∩ U, (f0 ∩ U) \ {0}) ≈ Cq(f, 0)

and assertion (c) follows. �

Now we may prove the main results of this section.

Proof of Theorem 5.1. By substitutingK withK∩B1(0), we may assume
that K is also bounded. Let ϕ: intV (PV (K)) → R be as in Theorem 5.3. We
know that Cq(f, 0) ≈ Cq(ϕ, 0) for all q. Since ϕ0\{0} ⊆ ϕ0 ⊆ V with dimV = m,
it follows that Cq(ϕ, 0) = {0} whenever q ≥ m+ 1. �

Proof of Theorem 5.2. Again, we may assume K to be bounded. Let
Φ: intV (PV (K)) →W and ϕ: intV (PV (K)) → R be as in Theorem 5.3. For every
v ∈ K ∩ Bδ(0), we have

ϕ(v) = f(v + Φ(v)) ≤ f(v) ≤ f(0) = ϕ(0).

Therefore

Cq(f, 0) ≈ Cq(ϕ, 0) ≈ Hq(ϕ0 ∩ Bδ(0), (ϕ0 ∩ Bδ(0)) \ {0})
= Hq(V ∩ Bδ(0), (V ∩ Bδ(0)) \ {0})

and the assertion follows. �

6. Critical groups for q small enough

In this section we consider a Banach space X, a convex closed subset K of
X with 0 ∈ K and a continuous function f :K → R. Let us assume that X splits
into a direct sum X = V ⊕W , with dimV = m <∞ and W closed. Moreover,
let us suppose that:

(i) there exists δ > 0 such that (V ∩ Bδ(0)) + (K ∩W ∩ Bδ(0)) ⊆ K,
(ii) for every w ∈ K ∩W ∩ Bδ(0), the function {v 7→ f(v + w)} is strictly

concave on V ∩ Bδ(0).

Theorem 6.1. We have Cq(f, 0) = {0} for every q ≤ m− 1.

The section will be devoted to the proof of this result.

Lemma 6.2. Let S be a symmetric subset of V and C be a convex subset of
W such that 0 ∈ C and S + (K ∩ C) ⊆ K. Then S + (K ∩ C) = K ∩ (S + C).
In particular, it is

(V ∩ Bδ(0)) + (K ∩W ∩ Bδ(0)) = K ∩ [(V ∩ Bδ(0)) + (W ∩ Bδ(0))].

Proof. Let v + w ∈ K with v ∈ S and w ∈ C. If ŵ ∈ K ∩ C, we have
−v + ŵ ∈ K, hence (w + ŵ)/2 ∈ K ∩ C. Starting from 0 ∈ K ∩ C, we find by
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induction that (1−2−k)w ∈ K∩C for any k ∈ N. It follows that w ∈ K, whence
v + w ∈ S + (K ∩ C). The opposite inclusion is obvious. �

Lemma 6.3. Let V = span(e)⊕ Z with e 6= 0 and assume that f(v) ≤ f(0)
for every v ∈ V ∩ Bδ(0). Then there exist r > 0 and ρ ∈ ]0, r] such that:

(a) for every u ∈ (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)) and every t ∈ [−r, r] we
have te+ u ∈ K,

(b) for every u ∈ (Z∩Bρ(0))+(K∩W ∩Bρ(0)) the function {t 7→ f(te+u)}
has one and only one maximum point ϑ(u) on [−r, r] with |ϑ(u)| < r,

(c) the function ϑ: (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)) → R is continuous with
ϑ(0) = 0,

(d) the function ϕ: (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)) → R defined by ϕ(u) =
f(ϑ(u)e+ u) is continuous,

(e) we have ϕ(z) ≤ ϕ(0) for all z ∈ Z ∩ Bρ(0) and for every w ∈ K ∩W ∩
Bρ(0) the function {z 7→ ϕ(z + w)} is strictly concave on Z ∩ Bρ(0).

Proof. Let r ∈ ]0, δ[ be such that ‖te + z‖ < δ whenever |t| ≤ r and
z ∈ Z ∩ Br(0). From assumption (i), it follows that

te+ u ∈ K for all u ∈ (Z ∩ Br(0)) + (K ∩W ∩ Br(0)) and all t ∈ [−r, r].

By assumption (ii) we have that f(−re) < f(0) and f(re) < f(0). Therefore,
there exists ρ ∈ ]0, r] such that

f(−re+u) < f(u), f(re+u) < f(u) for all u ∈ (Z∩Bρ(0))+(K∩W∩Bρ(0)).

Then assertions (a) and (b) easily follow. Moreover, since f(te) ≤ f(0) for every
t ∈ [−r, r], we have ϑ(0) = 0.

Now, let (uh) be a sequence in (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)) converging
to u. Up to a subsequence, (ϑ(uh)) is convergent to some t ∈ [−r, r]. On the
other hand f(ϑ(uh)e + uh) ≥ f(ϑ(u)e + uh). Since f is continuous it follows
that f(te+ u) ≥ f(ϑ(u)e+ u), whence t = ϑ(u). Therefore ϑ is continuous. Of
course, ϕ also is continuous.

For every z ∈ Z ∩ Bρ(0) and t ∈ [−r, r] we have f(te + z) ≤ f(0), whence
ϕ(z) ≤ ϕ(0). Finally, let w ∈ K ∩W ∩ Bρ(0), z0, z1 ∈ Z ∩ Bρ(0) with z0 6= z1
and let t ∈ ]0, 1[. From assumtion (ii) it follows that

ϕ((1− t)z0 + tz1 + w)

= f(ϑ((1− t)z0 + tz1 + w)e+ (1− t)z0 + tz1 + w)

≥ f([(1− t)ϑ(z0 + w) + tϑ(z1 + w)]e+ (1− t)z0 + tz1 + w)

> (1− t)f(ϑ(z0 + w)e+ z0 + w) + tf(ϑ(z1 + w)e+ z1 + w)

= (1− t)ϕ(z0 + w) + tϕ(z1 + w).

Therefore the function {z 7→ ϕ(z + w)} is strictly concave on Z ∩ Bρ(0). �
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Let us set

E+ = {te+ u : u ∈ (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)), ϑ(u) ≤ t ≤ r},
E− = {te+ u : u ∈ (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)), −r ≤ t ≤ ϑ(u)},
E = E+ ∩ E− = {ϑ(u)e+ u : u ∈ (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0))},

Ur,ρ = E+ ∪ E−

= {te+ u : u ∈ (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)), −r ≤ t ≤ r}.

Lemma 6.4. Under the assumptions of the previous lemma, we have

Cq(f, 0) ≈ Cq−1(ϕ, 0) for any q.

Proof. Without loss of generality, we may assume that f(0) = 0. From
Lemma 6.2 and (a) of Lemma 6.3, it follows that Ur,ρ is a neighbourhood of 0
in K.

Now, let τ :E+ → [0,+∞[ be a continuous function such that τ(u)e+u ∈ E+

for any u ∈ E+ and τ(0) > 0. Let us define H: (f0 ∩ E+)× [0, 1] → f0 ∩ E+ by

H(u, s) = u+ sτ(u)e.

Then H is continuous and takes actually its values in f0∩E+ by assumption (ii).
Moreover, we have

H(u, 0) = u, H(u, 1) 6= 0, for all u ∈ f0 ∩ E+,

H(u, s) 6= 0, for all u ∈ (f0 ∩ E+) \ {0} and all s ∈ [0, 1].

It follows
Hq(f0 ∩ E+, (f0 ∩ E+) \ {0}) = {0} for all q.

In a similar way, we find that

Hq(f0 ∩ E−, (f0 ∩ E−) \ {0}) = {0} for all q.

Since E+ and E− are closed in Ur,ρ and we are considering Alexander–Spanier
cohomology in a metric space, we have the Mayer–Vietoris exact sequence

→ Hq−1(f0 ∩ E−, (f0 ∩ E−) \ {0})⊕Hq−1(f0 ∩ E+, (f0 ∩ E+) \ {0})
→ Hq−1(f0 ∩ E, (f0 ∩ E) \ {0}) → Hq(f0 ∩ Ur,ρ, (f0 ∩ Ur,ρ) \ {0})
→ Hq(f0 ∩ E−, (f0 ∩ E−) \ {0})⊕Hq(f0 ∩ E+, (f0 ∩ E+) \ {0}).

It follows that

Hq(f0 ∩ Ur,ρ, (f0 ∩ Ur,ρ) \ {0}) ≈ Hq−1(f0 ∩ E, (f0 ∩ E) \ {0}),

hence Cq(f, 0) ≈ Cq−1(f|E , 0). On the other hand, Φ(u) = ϑ(u)e + u is a
homeomorphism of (Z ∩ Bρ(0)) + (K ∩W ∩ Bρ(0)) onto E with Φ(0) = 0. It
follows that Cq−1(ϕ, 0) ≈ Cq−1(f|E , 0). �
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Proof of Theorem 6.1. If there exists v0 ∈ V ∩ Bδ(0) such that f(v0) >
f(0), then |df |(0) 6= 0. Actually, by assumption (ii) we may assume that ‖v0‖ <
δ/2. If

0 < σ <
f(v0)− f(0)

‖v0‖
,

by Lemma 6.2 there exists δ′ > 0 such that, for every u ∈ K ∩ Bδ′(0), one has
that {u+ sv0 : −δ′ ≤ s ≤ 1} ⊆ K, f is concave on {u+ sv0 : −δ′ ≤ s ≤ 1} and

f(u+ v0)− f(u)
‖v0‖

≥ σ.

Let H: (K ∩ Bδ′(0))× [0, δ′] → K be defined by

H(u, t) = u− t
v0
‖v0‖

.

Then H is continuous and ‖H(u, t)−u‖ = t. Moreover, for every u ∈ K ∩Bδ′(0)
and t ∈ [0, δ′], we have

u =
t

t+ ‖v0‖
(u+ v0) +

‖v0‖
t+ ‖v0‖

H(u, t),

hence

f(u) ≥ t

t+ ‖v0‖
f(u+ v0) +

‖v0‖
t+ ‖v0‖

f(H(u, t)),

which is equivalent to

f(H(u, t)) ≤ f(u)− t

‖v0‖
(f(u+ v0)− f(u)).

It follows f(H(u, t)) ≤ f(u)−σt, whence |df |(0) ≥ σ > 0. By [5, Proposition 3.4]
we deduce that Cq(f, 0) = {0} for every q. Therefore, we may assume that
f(v) ≤ f(0) for every v ∈ V ∩ Bδ(0). Let us argue by induction on m = dimV .

If m = 0, i.e. V = {0}, there is nothing to prove. Now let m ≥ 1 and assume
the assertion is true for m− 1. Let ϕ: (Z ∩Bρ(0)) + (K ∩W ∩Bρ(0)) → R be as
in Lemma 6.4. We know that

Cq(f, 0) ≈ Cq−1(ϕ, 0) for all q.

On the other hand, by Lemma 6.3 ϕ satisfies the same assumptions of f , with V
substituted by Z and K by (Z∩Bρ(0))+(K∩W ∩Bρ(0)). Since dimZ = m−1,
by the inductive assumption we have that

Cq(ϕ, 0) = {0} for all q ≤ m− 2

and the assertion follows. �
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7. Proof of the main results

This section is devoted to the proof of Theorems 2.2 and 2.4.
Let K, g, f1 and f be as in Section 4. Let also Q0:H1

0 (Ω) → R be the
quadratic form defined by

Q0(u) =
∫

Ω

|Du|2 dx−
∫

Ω

Dsg(x, 0)u2 dx.

By Proposition 4.1, each critical point of f is a solution of (2.2). Therefore,
without loss of generality, we may assume that f has only a finite number of
critical points. By Theorem 4.2 there exists a critical point u of f such that
Ck(f, u) 6= {0}. Therefore, it is sufficient to show that Ck(f, 0) = {0}.

Proof of Theorem 2.2. Suppose first that there exists h < k such that
µ

(0)
h ≤ 0 < λ

(0)
h+1. Let V be a maximal subspace of H ′

0 where Q0 is negative
semidefinite and let Ŵ be a maximal closed subspace of H0 where Q0 is positive
definite. Since µ(0)

h ≤ 0 < λ
(0)
h+1, we have dimV = codimH0Ŵ = h. Let H0 =

V̂ ⊕ Ŵ and let P
bV , P

cW
be the projections associated with the decomposition.

We clearly have V ∩Ŵ = {0}. Therefore P
bV :V → V̂ is injective, hence bijective.

For any u ∈ H0, let u = v̂ + ŵ with v̂ ∈ V̂ and ŵ ∈ Ŵ . Let also v ∈ V with
P
bV v = v̂. Then we have

u = P
bV v + ŵ = v + (ŵ − P

cW
v) ∈ V + Ŵ .

Therefore H0 = V ⊕ Ŵ .
Consequently, we have the decomposition H1

0 (Ω) = V ⊕ W , where W =
(Ŵ⊕H⊥

0 ) and H⊥
0 is the orthogonal of H0 in H1

0 (Ω) with respect to the standard
scalar product. Let PV be the associated projection on V .

We want to apply Theorem 5.1. Assumption (i) is clearly satisfied. Since f1
is of class C2, f ′1(0) = 0 and f ′′1 (0) is positive definite on Ŵ , there exist ω, δ > 0
such that

• f1(w) ≥ f1(0) for all w ∈ Ŵ ∩ Bδ(0),
• the function f1 is strictly convex on Bδ(0) ∩ (u+ Ŵ ) for all u ∈ Bδ(0),
• {u 7→ f1(u) + ω‖PV u‖2} is convex on H0 ∩ Bδ(0).

Since we want to estimate the critical groups of f at 0, we may substitute K
with K ∩ Bδ(0). As K ⊆ H0, it follows that assumptions (ii), (iii) and (v) are
satisfied. Finally, according to [16], we have⋃

t>0

(tK) = {u ∈ H1
0 (Ω) : u(x) ≥ 0 q.e. in F 0

1 and u(x) ≤ 0 q.e. in F 0
2 }.

It follows V ⊆ H ′
0 ⊆

⋃
t>0(tK). We conclude that Ck(f, 0) = {0} by Theo-

rem 5.1.



318 S. Lancelotti

Now, suppose that there exists h > k such that µ(0)
h < 0. Arguing as in the

proof of Theorem 4.2, we find a decomposition of the form H1
0 (Ω) = V ⊕W ,

where W is closed and V is a subspace of H ′
0 with dimV = h such that Q0 =

f ′′1 (0) is negative definite on V . By assumption (2.1) we have H ′
0 ⊆ K, hence

V + K = K. Moreover, there exists δ > 0 such that, for every w ∈ Bδ(0), the
function {v 7→ f1(v + w)} is strictly concave on V ∩ Bδ(0). By Theorem 6.1 we
conclude that Ck(f, 0) = {0}. �

Proof of Theorem 2.4. Arguing as in the proof of Theorem 4.2, we find
a decomposition of the form H1

0 (Ω) = Ṽ ⊕ Ŵ ⊕H⊥
0 , where Ŵ is closed in H0,

Ṽ is a subspace of H ′
0 with dim Ṽ = h, Q0 = f ′′1 (0) is negative definite on Ṽ

and positive definite on Ŵ . Set also W = Ŵ ⊕ H⊥
0 . It is readily seen that

H ′
0 ⊆

⋃
t>0

(t(K ∩ (−K))). Let {z1, . . . , zh} be a basis in Ṽ . Given ε > 0, there

exist tj > 0 and vj ∈ tj(K ∩ (−K)) with ‖vj − zj‖ < ε. Let V be the linear
subspace spanned by {v1, . . . , vh}. If ε is sufficiently small, we have dimV = h,
H1

0 (Ω) = V ⊕W and f ′′1 (0) is negative definite also on V . Moreover, we have
[−t−1

j , t−1
j ]vj ⊆ K, hence

(7.1)
[
− 1
ht1

,
1
ht1

]
v1 + . . .+

[
− 1
hth

,
1
hth

]
vh ⊆ K.

As in the proof of Theorem 2.2, we see that assumptions (i)–(v) of Section 5 are
satisfied. Since f ′′1 (0) is negative definite on V , by (7.1) we find δ > 0 such that
V ∩ Bδ(0) ⊆ K and f1(v) ≤ f1(0) for any v ∈ V ∩ Bδ(0). From Theorem 5.2 we
conclude that Ck(f, 0) = {0}. �

Remark 7.1. Let us point out that assumption (2.1) is actually needed only
to treat the case h > k with µ(0)

h < 0, while it is not used in the case h < k with
µ

(0)
h ≤ 0 < λ

(0)
h+1.
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