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SETS OF SOLUTIONS OF NONLINEAR
INITIAL-BOUNDARY VALUE PROBLEMS

Vladiḿır Ďurikovič — Monika Ďurikovičová

Abstract. In this paper we deal with the general initial-boundary value
problem for a second order nonlinear nonstationary evolution equation.

The associated operator equation is studied by the Fredholm and Nemitskĭı

operator theory. Under local Hölder conditions for the nonlinear member
we observe quantitative and qualitative properties of the set of solutions of

the given problem. These results can be applied for the different mechanical

and natural science models.

Introduction

The generic properties of solutions of the second order ordinary differential
equations was studied by L. Brüll and J. Mawhin in [2], J. Mawhin in [16] and
by V. Šeda in [21]. Such questions were solved for nonlinear diffusional type
problems with the especial Dirichlet, Neumann and Newton type conditions in
the papers [9]–[10].

In the present paper we study the set structure of classic solutions, bifurcation
points and the surjectivity of an associated operator to a general second order
nonlinear evolution problem, by the Fredholm operator theory. The present
results allows us to search the generic properties of non-parabolic models which
decribe mechanical, physical, reaction-diffusion and ecology processes.
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1. The formulation of problem and basic notions

Throughout this paper we assume that the set Ω ⊂ Rn for n ∈ N is a bounded
domain with the sufficiently smooth boundary ∂Ω. The real number T is positive
and Q := (0, T ]× Ω, Γ := (0, T ]× ∂Ω.

We use the notation Dt for ∂/∂t and Di for ∂/∂xi and Dij for ∂2/∂xi∂xj ,
where i, j = 1, . . . , n and D0u for u. The symbol cl M means the closure of set M
in Rn.

We consider the nonlinear differential equation (possibly a non-parabolic
type)

(1.1) Dtu−A(t, x,Dx)u + f(t, x, u,D1u, . . . , Dnu) = g(t, x)

for (t, x) ∈ Q, where the coefficients aij , ai, a0 for i, j = 1, . . . , n of the second
order linear operator

A(t, x,Dx)u =
n∑

i,j=1

aij(t, x)Diju +
n∑

i=1

ai(t, x)Diu + a0(t, x)u

are continuous functions from the space C(cl Q, R). The function f is from the
space C(cl Q× Rn+1, R) and g ∈ C(cl Q, R).

Together with the equation (1.1) we consider the following general homoge-
neous boundary condition

(1.2) B3(t, x, Dx)u|Γ :=
n∑

i=1

bi(t, x)Diu + b0(t, x)u|Γ = 0,

where the coefficients bi for i = 1, . . . , n and b0 are continuos functions from
C(cl Γ, R).

Furthermore we require for the solution of (1.1) to satisfy the homogeneous
initial condition

(1.3) u|t=0 = 0 on clΩ.

Remark 1.1. In the case, if bi = 0 for i = 1, . . . , n and b0 = 1 in (1.2) we
get the Dirichlet problem studied in [9].

If we consider the vector function ν := (0, ν1, . . . , νn) : cl Γ → Rn+1 which the
value ν(t, x) means the unit inner normal vector to cl Γ at the point (t, x) ∈ cl Γ
and we put bi = νi for i = 1, . . . , n on cl Γ, then the problem (1.1)–(1.3) represents
the Newton or Neuman problem investigated in [10].

Our considerations are concerned to a broad class of nonparabolic operators.
However let us remind the definition of the uniform parabolicity for a operator
of the type Dt −A(t, x,Dx) (see [14, p. 12]), which we need in Proposition 2.2.
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Definition 1.1 (The uniform parabolicity condition (P)). We say that the
differential operator

Dt −A(t, x, Dx)

is uniform parabolic on cl Q in the sense of I. G. Petrovskĭı with the constant δ or
shortly, the operator satisfies the parabolicity condition (P) if there is a constant
δ > 0 such that for all (t, x) ∈ cl Q and each σ = (σ1, . . . , σn) ∈ Rn the inequality

n∑
i,j=1

aij(t, x)σiσj ≥ δ

[ n∑
i=1

σ2
i

]

holds.

In the following definitions we shall use the notations

〈u〉st,µ,Q := sup
(t,x),(s,x)∈cl Q

t6=s

|u(t, x)− u(s, x)|
|t− s|µ

,(1.4)

〈u〉yx,ν,Q := sup
(t,x),(t,y)∈cl Q

x6=y

|u(t, x)− u(t, y)|
|x− y|ν

,(1.5)

〈f〉s,y,v
t,x,u := |f(t, x, u0, . . . , un)− f(s, y, v0, . . . , vn)|,

〈f〉s,y,v(s,y)
t,x,u(t,x) := |f [t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]

− f [s, y, v(s, y), D1v(s, y), . . . , Dnv(s, y)]|,

where x = (x1, . . . , xn), y = (y1, . . . , yn) are from Rn and |x− y| = [
∑n

i=1(xi −
yi)2]1/2 and µ, ν ∈ R.

The concept of a domain with a locally smooth boundary is given in the
following definition.

Definition 1.2. Let r ∈ (1,∞) and Ω ⊂ Rn be a bounded domain. We say
that the boundary ∂Ω belongs to the class Cr, r ≥ 1 if:

(i) there exists a tangential space to ∂Ω in any point from boundary ∂Ω,
(ii) assume y ∈ ∂Ω and let (y; z1, . . . , zn) be a local orthonormal coordinate

system with the center y and with the axis zn oriented like the inner
normal to ∂Ω at the point y. Then there exists a number b > 0 such
that for every y ∈ ∂Ω there exists a neighbourhood O(y) ⊂ Rn of the
point y and a function F ∈ Cr(cl B, R) such that the part of boundary

∂Ω ∩O(y) = {(z′, F (z′)) ∈ Rn, z′ = (z1, . . . , zn−1) ∈ B},

where B = {z′ ∈ Rn−1 | |z′| < b}.
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Here Cr(cl B, R) is a vector space of the functions u ∈ Cl(cl B, R) for l = [r]
with the finite norm

‖u‖l+α =
∑

0≤k≤l

sup
x∈cl B

|Dk
xu(x)|+

∑
k=l

〈Dk
xu〉yx,α,B ,

whereby α = r − [r] ∈ [0, 1) and r = l + α.
Further, we shall need the following Hölder spaces (see [6, p. 147]).

Definition 1.3. Let α ∈ (0, 1).
(1) By the symbol C

(1+α)/2,1+α
t,x (cl Q, R) we denote the vector space of con-

tinuous functions u : clQ → R which have continuous derivatives Diu for
i = 1, . . . , n on cl Q and the norm

‖u‖(1+α)/2,1+α,Q :=
n∑

i=0

sup
(t,x)∈clQ

|Diu(t, x)|+ 〈u〉st,(1+α)/2,Q+(1.6)

+
n∑

i=1

〈Diu〉st,α/2,Q +
n∑

i=1

〈Diu〉yx,α/2,Q

is finite.
(2) The symbol C

(2+α)/2,2+α
(t,x) (cl Q, R) means the vector space of continuous

functions u : clQ → R for which there exist continuous derivatives Dtu, Diu,
Diju on cl Q, i, j = 1, . . . , n and the norm

‖u‖(2+α)/2,2+α,Q =
n∑

i=0

sup
(t,x)∈cl Q

|Diu(t, x)|+ sup
(t,x)∈cl Q

|Dtu(t, x)|(1.7)

+
n∑

i,j=1

sup
(t,x)∈cl Q

|Diju(t, x)|+
n∑

i=1

〈Diu〉st,(1+α)/2,Q + 〈Dt〉us
t,α/2,Q

+
n∑

i,j=1

〈Diju〉st,α/2.Q + 〈Dtu〉yx,α,Q +
n∑

i,j=1

〈Diju〉yx,α,Q

is finite.
(3) The symbol C

(3+α)/2,3+α
t,x (cl Q, R) means the vector space of continuous

functions u : cl Q → R for which the derivatives Dt, Diu, DtDiu, Diju, Dijku,
i, j, k = 1, . . . , n are continuous on clQ and the norm

‖u‖(3+α)/2,3+α,Q :=
n∑

i=0

sup
(t,x)∈clQ

|Diu(t, x)|+
n∑

i,j=1

sup
(t,x)∈clQ

|Diju(t, x)|(1.8)

+
n∑

i=0

sup
(t,x)∈cl Q

|DtDiu(t, x)|+
n∑

i,j,k=1

sup
(t,x)∈cl Q

|Dijku(t, x)|

+ 〈Dtu〉st,(1+α)/2,Q +
n∑

i,j=1

〈Diju〉st,(1+α)/2,Q +
n∑

i=1

〈DtDiu〉st,α/2,Q



Sets of Solutions of Nonlinear Initial-Boundary Value Problems 161

+
n∑

i,j,k=1

〈Dijku〉st,α/2,Q +
n∑

i=1

〈DtDiu〉yx,α,Q +
n∑

i,j,k=1

〈Dijku〉yx,α,Q

is finite.
The above defined norm spaces are Banach ones.

Now we can define the Hölder space of functions defined on the manifold cl Γ
(see [14, p. 10]).

Definition 1.4. Let the boundary ∂Ω of a domain Ω ⊂ Rn belong to Cr

for r ≥ 1 (see Definition 1.2). We put Sy := ∂Ω ∩O(y) and Γy = (0, T ]× Sy for
y ∈ ∂Ω, where O(y) is a neighbourhood of the point y from Definition 1.2.

The symbol C
(2+α)/2,2+α
t,x (cl Γ, R) means the vector space of continuous func-

tions u : cl Γ → R for which there exist continuous derivates Dtu, Diu, Diju on
cl Γ, i, j = 1, . . . , n and the norm

‖u‖(2+α)/2,2+α,Γ = sup
y∈∂Ω

‖u‖(2+α)/2,2+α,Γy

is finite. Here α ∈ (0, 1) and the norm on the right hand side of the last equality
is defined by the formula (1.7) in which we write Γy instead of Q.

Definition 1.5. (The smoothness condition (S1+α
3 )). Let α ∈ (0, 1). We

say that the differential operator A(t, x,Dx) from (1.1) and B3(t, x,Dx) from
(1.2), respectively satisfies the smoothness condition (S1+α

3 ) if

(i) the coefficients aij , ai, a0 from (1.1) for i, j = 1, . . . , n belong to the
space C

(1+α)/2,1+α
t,x (cl Q, R) and ∂Ω ∈ C3+α and

(ii) the coefficients bi from (1.2) for i = 1, . . . , n belong to the space
C

(2+α)/2,2+α
t,x (cl Γ, R).

Definition 1.6 (The complementary condition (C)). If at least one of the
coefficients bi for i = 1, . . . , n of the differential operator B3(t, x,Dx) in (1.2) is
not zero we say that B3(t, x,Dx) satisfies the complementary condition (C).

Now we are prepared to formulate hypotheses for the deriving of fundamental
lemmas.

Definition 1.7. (1) Fredholm conditions:

(A3.1) Consider the operator A3 : X3 → Y3, where

A3u = Dtu−A(t, x,Dx)u, u ∈ X3

and the operators A(t, x,Dx) and B3(t, x,Dx) satisfy the smoothness
condition (S1+α

3 ) for α ∈ (0, 1) and the complementary condition (C).
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Here we consider the vector spaces

D(A3) := {u ∈ C
(3+α)/2,3+α
t,x (cl Q, R) | B3(t, x,Dx)u|Γ = 0,

u|t=0(x) = 0 for x ∈ cl Q},

H(A3) := {v ∈ C
(1+α)/2,1+α
t,x (cl Q, R) | B3(t, x,Dx)v(t, x)|t=0,x∈∂Ω = 0}

and Banach subspaces (of the given Hölder spaces)

X3 = (D(A3), ‖ · ‖(3+α)/2,3+α,Q) and Y3 = (H(A3), ‖ · ‖(1+α)/2,1+α,Q).

(A3.2) There is a second order linear homeomorphism C3 : X3 → Y3 with

C3u = Dtu− C(t, x,Dx)u, u ∈ X3,

where

C(t, x,Dx)u =
n∑

i,j=1

cij(t, x)Diju +
n∑

i=1

ci(t, x)Diu + c0(t, x)u

satisfying the smoothness condition (S1+α
3 ). The operator C3 is not

necessary parabolic one.

(2) Local Hölder and compatibility conditions:
Let f := f(t, x, u0, . . . , un) : clQ× Rn+1 → R, α ∈ (0, 1) and let p, q, pr for

r = 0, . . . , n be nonnegative constants. Here, D represents any compact subset
of (cl Q)× Rn+1. For f we need the following assumtions:

(N3.1) Let f ∈ C1(cl Q×Rn+1, R) and let the first derivatives ∂f/∂xi, ∂f/∂uj

be locally Hölder continuous on clQ× Rn+1 such that

(1.9) 〈∂f/∂xi〉s,y,v
t,x,u

(1.10) 〈∂f/∂uj〉s,y,v
t,x,u

 ≤ p|t−s|α/2+q|x−y|α+
n∑

r=0

pr|ur−vr|

for i = 1, . . . , n and j = 0, . . . , n and any D.
(N3.2) Let f ∈ C3(cl Q× Rn+1, R) and let the local growth conditions for the

third derivatives of f hold on any D:

(1.11) 〈∂3f/∂τ∂xi∂uj〉t,x,v
t,x,u

(1.12) 〈∂3f/∂τ∂uj∂uk〉t,x,v
t,x,u

(1.13) 〈∂3f/∂xi∂xl∂uj〉t,x,v
t,x,u

(1.14) 〈∂3f/∂xi∂uj∂uk〉t,x,v
t,x,u

(1.15) 〈∂3f/∂uj∂uk∂ur〉t,x,v
t,x,u


≤

n∑
s=0

ps|us − vs|βs

where βs > 0 for s = 0, . . . , n and i, l = 1, . . . , n, j, k, r = 0, . . . , n.
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(N3.3) The equality of compatibility
n∑

i=1

bi(t, x)Dif(t, x, 0, . . . , 0) + b0(t, x)f(t, x, 0, . . . , 0)|t=0, x∈S = 0

holds.

(3) Almost coercive condition:
Let for any bounded set M3 ⊂ Y3 there be the number K > 0 such that for

all solutions u ∈ X3 of the problem (1.1), (1.2), (1.3) with the right hand side
g ∈ M3, the following alternative holds:

(F3.1) Either

(α3) ‖u‖(1+α)/2,1+α,Q ≤ K, f := f(t, x, u0) : clQ × R → R and the coef-
ficients of the operators A3 and C3 (see (1.1) and (A3.2)) satisfy the
equations

aij = cij , ai = ci for i, j = 1, . . . , n, a0 6= c0 on cl Q

or
(β3) ‖u‖(2+α)/2,2+α,Q ≤ K, f : f(t, x, u0, . . . , un) : clQ×Rn+1 → R and the

coefficients of the operators A3 and C3 satisfy the relations

aij = cij for i, j = 1, . . . , n and ai 6= ci for at least one i = 1, . . . , n

on cl Q.

Remark 1.2. (1) Especialy, the condition (A3.2) is satisfied for the diffusion
operator

C3u = Dtu− M u, u ∈ X3

or for any uniformly parabolic operator C3 with sufficiently smooth coefficients
(see Definition 1.1 and Proposition 2.2). However the operator C3 is not neces-
sarily uniform parabolic.

(2) The local Hölder condition in (N3.1) and (N3.2) admit sufficiently strong
growths of f in the last variables u0, . . . , un. For example, it includes exponential
and power type growths.

Definition 1.8.

(1) A couple (u, g) ∈ X3 × Y3 will be called the bifurcation point of the
mixed problem (1.1)–(1.3) if u is a solution of that mixed problem and
there exists a sequence {gk} ⊂ Y3 such that gk → g in Y3 as k →∞ and
the problem (1.1)–(1.3) for g = gk has at least two different solutions
uk, vk for each k ∈ N and uk → u, vk → u in X3 as k →∞.

(2) The set of all solutions u ∈ X3 of (1.1)–(1.3) (or the set of all functions
g ∈ Y3) such that (u, g) is a bifurcation point of the problem (1.1)–(1.3)
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will be called the domain of bifurcation (the bifurcation range) of that
problem.

Recall some other notions in the following definitions:

Definition 1.9. Let X and Y be two Banach spaces either both real or
both complex.

(1) The mapping F : X → Y is proper (resp. σ-proper) if for each compact
K ⊂ Y , the set F−1(K) is compact (resp. is a countable union of
compact sets).

(2) The mapping F : X → Y is closed if for each closed set S ⊂ X, the set
of image f(S) is closed in Y .

(3) We call F : X → Y a coercive mapping if for each bounded set S ⊂ Y ,
the set F−1(S) is bounded in X.

Definition 1.10. Let M1,M2 be two metric spaces.

(1) The mapping F : M1 → M2 is said locally injective at a point u0 ∈ M1 if
there is a neighbourhood U(u0) of u0 such that F is injective in U(u0).
F is injective in M1 if it is locally injective at each points u ∈ M1.

(2) Let the mapping F : M1 → M2 be continuous. Then F is said locally
invertible at a point u0 ∈ M1 if there is neighbourhood U(u0) of u0 and
a neighbourhood U1(F (u0)) of F (u0) such that F is a homeomorphism
of U(u0) onto U1(F (u0)). F je locally invertible in M1 if it is locally
invertible at each point u ∈ M1.

(3) Let the mapping F : X → Y be continuous (X, Y are Banach spaces,
F ∈ C(X, Y )). We denote by Σ the set of all points u ∈ X for which F

is not locally invertible.

Definition 1.11. We say that G = I − g : X → X is strict solvable field,
if it is a condensing field and there is a sequence rk → ∞ as k → ∞ such that
the degree of the mapping G deg(G, U(0, rk), 0) 6= 0, where U(0, rk) ⊂ X is the
sphere with the center 0 and the radius rk for k = 1, 2, . . .

Definition 1.12.

(1) If D ⊂ X is a nonempty open set and F : (D ⊂ X) → Y is a Frèchet
differentiable mapping, then u0 ∈ D is called a regular point of F if
the Frèchet derivative F ′(u0) is a linear homeomorphism of X onto Y

(F ′(u0) : X → Y is bijective). The point u1 ∈ D is called a critical
point of F , if the equation F ′(u1)h = 0 ∈ Y has a nontrivial solution
h ∈ X.

(2) If u0 ∈ D is not regular point of F , then it is called a singular point
of F .
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(3) The image by F of a singular point is called a singular value of F . If S

is the set of all singular point of F : X → Y , then F (S) is called the set
of all singular values of F and Y − F (S) is the set of all regular values
of F .

(4) A subset of a topological space Z is residual, when it is a countable
intersection of dense open subset of Z.

Definition 1.13. The mapping F : X → Y is called a local C1-diffeomor-
phism at u0, if there exists a neighbourhood U(u0) of u0 and U1(F (u0)) of F (u0)
such that F bijectively maps U1(u0) onto U2(F (u0)) and both F and F−1 are
C1-maps.

Remark 1.2.

(1) The set X − Σ is open. Hence Σ is closed subset of X.
(2) It is clear that if F is locally invertible at u0, then F is locally injective

at u0.
(3) By the Baire theorem, if Z is a complete metric space or if Z is a locally

compact Hausdorff topological space, then a residual set is dense in Z.

2. General results

The following results will be used to prove fundamental lemmas and main
results for the nonlienar problem (1.1)–(1.3). Here X and Y are Banach spaces
either both real or complex.

Proposition 2.1 (S. M. Nikol’skĭı, see [25, p. 233]). A linear bounded op-
erator A : X → Y is Fredholm of the zero index if and only if A = C + T, where
C : X → Y is a linear homeomorphism and T : X → Y is a linear completly con-
tinuous operator. (For the definition of a linear and nonlinear Fredholm operator
(see [27, p. 365–366]))

The following proposition deals with the solution of a linear parabolic prob-
lem (see [14, p. 21], or [11]).

Proposition 2.2. Let the operator A be from (1.1) and the assumptions
(P), (C), (S1+α

3 ) satisfy. The necessary and sufficient condition for the existence
and uniqueness of the solution u ∈ C

(3+α)/2,3+α
t,x (cl Q, R) of the linear parabolic

problem for the equation

Dtu−A(t, x,Dx)u = f(t, x) on Ω

with the data (1.2), (1.3) is that for f ∈ C
(1+α)/2, 1+α
t,x (cl Q, R) and the compati-

bility condition from (N3.3)
n∑

i=1

bi(t, x)Dif(t, x) + b0(t, x)f(t, x)|t=0, x∈∂Ω = 0
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holds. Then moreover, there exists a constant K > 0 independent of f such that

K−1‖f‖(1+α)/2,1+α,Q ≤ ‖u‖(3+α)/2,3+α,Q ≤ K‖f‖(1+α)/2,1+α,Q.

Proposition 2.3 ([21, Proposition 2.1]). Let F : X → Y be a coutinuous
mapping. If F is proper, then F is a nonconstant closed mapping. Conversely if
dim X = ∞ and F : X → Y is a nonconstant closed mapping, then F is proper.

Proposition 2.4 ([21, Proposition 2.2]). Let F : X → Y , F = F1 + F2,
where F1 : X → Y is a coutinuous proper mapping and F2 : X → Y is a
completely continuous one. Then

(j) The restriction of the mapping F to an arbitrary bounded closed set in
X is a proper mapping.

(jj) If moreover, F is coercive, then F is a proper mapping.

The relation between the local invertibility and homeomorphism of X on Y

gives R. Caccioppoli in [3]; see [27, p. 174].

Proposition 2.5 (The global inverse mapping theorem). Let F ∈ C(X, Y )
be locally invertible mapping in X, then F is a homeomorphism of X onto Y if
and only if F is proper.

Proposition 2.6 (The Ambrosetti theorem [1, p. 216]). Let F ∈ C(X, Y ) be
a proper mapping. Then the cardinal number card F−1({q}) of the set F−1({q})
is constant and finite (it may be zero) for each q taken from the same (connected)
component of the set Y − F (Σ).

Proposition 2.7 ([21, Theorem 3.2, Corollary 3.3, Remark 3.1]). Let the
assumptions:

(i) F = I − f : X → X is a condensing and coercive map,
(ii) there exists a strictly solvable field G = I − g : X → X and K > 0 such

that for all solution u ∈ X of the equation

F (u) = kG(u) and for all k < 0,

the estimate ||u||X < K holds,

or the assumptions:

(i’) F = A + N : X → Y is a coercive mapping, where A = C + T :
X → Y and C is linear homeomorphism of X onto Y , T : X → Y is
a linear completely continuous operator and N : X → Y is completely
continuous,

(ii’) there is a strictly solvable field G = I−g : X → X and K > 0 such that
for all solution u ∈ X of the equation

F (u) = kC ◦G(u) and for all k < 0,
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the estimate ‖u‖X < K holds,

be satisfied, respectively. Then the following statements are true:

(j) F is a proper map,
(jj) F is surjective.

The following proposition gives the important theorem for nonlinear Fred-
holm mapping.

Proposition 2.8 (S. Smale [19], F. Quinn [17]). If F : X → Y is a Fredholm
mapping of class Cq, q > max(indF, 0) and either X has a countable basis
(Smale) or F is σ-proper (Quinn), then the set RF of all regular values of F is
residual in Y . If F is proper, then RF is open and dense in Y .

Proposition 2.9 ([27, p. 172]). Let F : (U(u0) ⊂ X) → Y be a C1-
mapping. Then F is a local C1-diffeomorphism at u0 if and only if u0 is a regular
point of F .

Proposition 2.10 ([18, Corollary 2.3.14, p. 89]). Let dim Y ≥ 3 and let
F : X → Y be a Fredholm mapping of the zero index. If u0 is an isolated
singular point of F , then the mapping F is localy invertibly at u0.

3. Fundamental lemmas

Lemma 3.1. Let the conditions (A3.1) and (A3.2) hold (see Definition 1.7).
Then

(j) dim X3 = ∞.
(jj) The operator A3 : X3 → Y3 is a linear bounded Fredholm operator of

the zero index.

Proof. (j) To prove the first part of this lemma we use the decomposition
theorem from [24, p. 139]:

Let X be linear space and x∗ : X → R be a linear functional on X such that
x∗ 6= 0. Further put M = {x ∈ X | x∗(x) = 0} and x0 ∈ X − M . Then every
element x ∈ X can be expressed by the formula

x =
[

x∗(x)
x∗(x0)

]
x0 + m for m ∈ M,

i.e. there is a one-dimensional subspace L1 of X such that X = L1 ⊕M .
If we put now

M1 := {u ∈ C
(3+α)/2,3+α
t,x (cl Q, R) =: H3+α | B3(t, x,Dx)u|Γ = 0},

which is the linear subspace of H3+α, then there exists a linear subspace L1

of H3+α with dim L1 = 1 such that H3+α = L1 ⊕ M1. Similar, if we take
M2 := {u ∈ M1 | u|t=0 = 0 on clQ}, then there is a subspace L2 of M1 with
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dim L2 = 1 such that M1 = L2⊕M2. Hence, we have H3+α = L1⊕L2⊕D(A3).
Since dim H3+α = ∞ we get that dim X3 = ∞.

(jj) 1. In the first step we prove the boundedness of the linear operator A3.
For this aim we observe the norm ‖A3u‖(1+α)/2,1+α,Q for u ∈ D(A3). From the
assumption (S1+α

3 ) we get for k = 0, 1, . . . , n

(3.1) sup
(t,x)∈cl Q

|DkA3u(t, x)| ≤ K1‖u‖(3+α)/2,3+α,Q, for K1 > 0.

Applying again the smoothness assumption (S1+α
3 ), the mean value theorem

for the function u and Diu and the boundedness of Q we obtain for the second
member of the above mentioned norm the following estimation:

〈A3u〉st,(1+α)/2,Q = sup
(t,x),(s,x)∈cl Q

t6=s

|A3u(t, x)−A3u(s, x)|
|t− s|(1+α)/2

(3.2)

≤ K2‖u‖(3+α)/2,3+α,Q, for K2 > 0.

The third member of the norm (1.6) we estimate for k = 1, . . . , n as follows:

〈DkA3u〉st,α/2,Q = sup
(t,x),(s,x)∈cl Q

t6=s

|DkA3u(t, x)−DkA3u(s, x)|
|t− s|α/2

(3.3)

≤ K3‖u‖(3+α)/2,3+α,Q, for K3 > 0.

An estimation of the last member in (1.6) for A3u is given by the following
inequality for k = 1, . . . , n

〈DkA3u〉yx,α/2,Q = sup
(t,x),(t,y)∈cl Q

x6=y

|DkA3u(t, x)−DkA3u(t, y)|
|x− y|α/2

(3.4)

≤ K4‖u‖(3+α)/2,3+α,Q for K4 > 0.

From the estimations (3.1)–(3.4) we can conclude that

‖A3u‖Y3 = ‖A3u‖(1+α)/2,1+α,Q ≤ K(n, T, α, Ω, aij , ai, a0)‖u‖X3 .

2. To prove that A3 is a Fredholm operator with the zero index we express
it in the form

A3u = C3u + [C(t, x,Dx)−A(t, x,Dx)]u =: C3u + T3u,

where C3 is the linear homeomorphism and C is the linear operator from (A3.2).
By the decomposition Nikol’skĭı theorem from Proposition 2.1, it is sufficient to
show that T3 : X3 → Y3 is the linear completely continuous operator.

The complete continuity of T3 can be proved by the Ascoli–Arzela theorem
(see [23, p. 141]).
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From (S1+α
3 ) the uniform boundedness of the operator

T3u =
n∑

i,j=1

[cij(t, x)− aij(t, x)]Diju

+
n∑

i=1

[ci(t, x)− ai(t, x)]Diu + [c0(t, x)− a0(t, x)]u

follows by the same way as the boundedness of operator A3 in the previous
part 1. Thus for all u ∈ M ⊂ X3, where M is a bounded set by the constant
K1 > 0, we obtain the estimate

‖T3u‖Y3 ≤ K(n, αT,Ω, aij , cij , ai, ci, a0, c0)‖u‖X3 ≤ KK1.

Using the smoothness condition of the operators A and C we get inequalities:

|T3u(t, x)− T3u(s, y)| ≤
n∑

i,j=1

|[cij − aij ](t, x)− [cij − aij ](s, y)||Diju(t, x)|

+
n∑

i,j=1

|cij(s, y)− aij(s, y)||Diju(t, x)−Diju(s, y)|

+
n∑

i=1

|[ci − ai](t, x)− [ci − ai](s, y)||Diu(t, x)|

+
n∑

i=1

|ci(s, y)− ai(s, y)||Diu(t, x)−Diu(s, y)|

+ |[c0 − a0](t, x)− [c0 − a0](s, y)||u(t, x)|
+ |c0(s, y)− a0(s, y)||u(t, x)− u(s, y)|

≤ 4K1Kn2[|t− s|α/2 + |x− y|α]

+ 2K1Kn[(|t− s|α/2 + |x− y|α) + (|t− s|(1+α)/2 + |x− y|)]
+ 2K1K[(|t− s|α/2 + |x− y|α) + (|t− s|+ |x− y|)],

where K1,K are positive constants. Hence the equicontinuity of T3M ⊂ Y3

follows. This finishes the proof of Lemma 3.1. �

The Lemma 3.1 implies the following alternative.

Corollary 3.1. Let L mean the set of all second order linear differential
operators

A3 = Dt −A(t, x,Dx) : X3 → C
(1+α)/2,1+α
t,x (cl Q, R)

satifying the condition (C) and (S1+α
2 ). Then for each A3 ∈ L the mixed ho-

mogeneous problem A3u = 0 on Q, (1.2), (1.3) has a nontrivial solution or any
A3 ∈ L is a linear bounded Fredholm operator of the zero index mapping X3

onto Y3.
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The following lemma establishes the complete continuity of the Nemitskĭı
operator from the nonlinear part of the equation (1.1).

Lemma 3.2. Let the assumptions (N3.1) and (N3.3) satisfy. Then the Ne-
mitskĭı operator N3 : X3 → Y3 defined by

(3.5) (N3u)(t, x) = f [t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]

for u ∈ X3 and (t, x) ∈ cl Q is completely continuous.

Proof. Let M3 ⊂ X3 be a bounded set. By the Ascoli–Arzela theorem it is
sufficient to show that the set N3(M3) is uniform bounded and equicontinuous.
The assumption (N3.3) we use to prove the inclusion N3(M3) ⊂ Y3.

Take u ∈ M3. According to the assumption (N3.1) we obtain the local
boundedness of the function f and its derivatives ∂f/∂xi on (clQ) × Rn+1 for
i = 1, . . . , n. Hence and from the equation

Di(N3u)(t, x) = {Dif [ · ] +
n∑

l=0

∂f

∂ul
[ · ]DiDlu}[ · , · , u,D1u, . . . , Dnu](t, x)

we have the estimation

sup
(t,x)∈cl Q

|Di(N3u)(t, x)| ≤ K1

for i = 0, . . . , n with a positive sufficiently large constant K1 not depending on
u ∈ M3.

Using the differentiability of f and the mean value theorem in the variable t

for the difference of the derivatives of u we can write

〈N3u〉st,(1+α)/2,Q ≤ K1.

Similarly, by (1.9) and (1.10), we have

〈DiN3u〉st,α/2,Q ≤ K1 and 〈DiN3u〉yx,α,Q ≤ K1

for i = 1, . . . , n and u ∈ M3. The previous estimations yield the inequality

‖N3u‖Y3 ≤ K1 for all u ∈ M3.

With respect to (N3.1) for any u ∈ M3 and (t, x), (s, y) ∈ cl Q such that
|t− s|2 + |x− y|2 < δ2 with a sufficiently small δ > 0 we have

|N3u(t, x)−N3u(s, y)| < ε, ε > 0,

which is the equicontinuity of N3(M3). This finishes the proof of Lemma 3.2. �
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Lemma 3.3. Let the assumptions (A3.1), (A3.2), (N3.1), (N3.3) and (F3.1)
hold. Then the operator F3 = A3 + N3 : X3 → Y3 is coercive.

Proof. We need prove that if the set M3 ⊂ Y3 is bounded in Y3, then the
set of arguments F−1

3 (M3) ⊂ X3 is bounded in X3.
In the both cases (α3) and (β3) we get for all u ∈ F−1

3 (M3)

‖N3u‖(1+α)/2,1+α,Q ≤ K1,

where K1 > 0 is a sufficiently large constant. Hence ‖A3u‖Y3 ≤ K1 for any
u ∈ F−1

3 (M3).
The hypothesis (A3.2) ensures the existence and uniqueness of the solution

u ∈ X3 of the linear equation C3u = y and for any y ∈ Y3

(3.6) ‖u‖X3 ≤ K1‖y‖Y3

If we write

C3u = A3u +
n∑

i,j=1

[aij(t, x)− cij(t, x)]Diju

+
n∑

i=1

[ai(t, x)− ci(t, x)]Diu + [a0(t, x)− c0(t, x)]u,

then in the both cases and for each u ∈ F−1
3 (M3) we obtain

‖y‖Y3 ≤ ‖C3u‖Y3 ≤ K1

whence by the inequality (3.6) we can conclude that the operator F3 is coercive.�

Lemma 3.4. Let the Nemitskĭı operator N3 : X3 → Y3 from (3.5) satisfy
the conditions (N3.2), (N3.3). Then the operator N3 is continuously Fréchet
differentiable, i.e. N3 ∈ C1(X3, Y3) and it is completely continuous.

Proof. From (N3.2) we obtain (N3.1) which implies by Lemma 3.2 the
complete continuity of N3. To obtain the first part of the assertion of this
lemma we need prove that the Fréchet derivative N ′

3 : X3 → L(X3, Y3) defined
by the equation

N ′
3(u)h(t, x) =

n∑
j=0

∂f

∂uj
(t, x, u(t, x), D1u(t, x), . . . , Dnu(t, x)]Djh(t, x)

for u, h ∈ X3 is continuous on X3. Thus we must prove for every v ∈ X3:

(3.7) ∀ε > 0 ∃δ(ε, v) > 0 ∀u ∈ X3, ‖u− v‖X3 < δ :

sup
h∈X3,‖h‖X3≤1

‖N ′
3(u)−N ′

3(v)h‖Y3 < ε.
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Using the norms (1.6), (1.8) and the estimation ‖u − v‖X3 < δ we have for the
first term of (3.7) by the mean value theorem:

n∑
i=0

sup
(t,x)∈cl Q

|Di[N ′
3(u)−N ′

3(v)]h(t, x)|

≤
n∑

i,j=0

sup
(t,x)∈cl Q

[
〈∂2f/∂xi∂uj〉t,x,v(t,x)

t,x,u(t,x) |Djh(t, x)|

+
n∑

k=0

〈∂2f/∂uj∂uk〉t,x,v(t,x)
t,x,u(t,x)|Diku|.|Djh|(t, x)

+
n∑

k=0

|∂2f/∂uj∂uk(t, x, v(t, x), . . . )||Diku−Dikv||Djh|(t, x)

+ 〈∂f/∂uj〉t,x,v(t,x)
t,x,u(t,x)|Dijh(t, x)|

]
< Kδ for K > 0.

The second term of (3.7) we estimate as follows:

〈[N ′
3(u)−N ′

3(v)]h〉st,(1+α)/2,Q

≤
n∑

j=0

sup
cl Q,t6=s

|t− s|−(1+α)/2

[∣∣∣∣ ∫ t

s

Dτ 〈∂f/∂uj〉τ,x,v(τ,x)
τ,x,u(τ,x) dτ

∣∣∣∣|Djh(t, x)|

+ 〈∂f/∂uj〉s,x,v(s,x)
s,x,u(s,x)

∣∣∣∣ ∫ t

s

DτDjh(τ, x) dτ

∣∣∣∣] ≤ Kδ for K > 0.

Here we have used the mean value theorem for ∂2f/∂τ∂uj , ∂
2f/∂uj∂uk and

∂f/∂uj for j, k = 0, . . . , n.
The third term of (3.7) gives by (1.11), (1.12), (1.14), (1.15):

n∑
i=1

〈Di{[N ′
3(u)−N ′

3(v)]h}〉st,α/2,Q

≤
n∑

i=1

n∑
j=0

sup
cl Q,t6=s

|t− s|−α/2

{∣∣∣∣ ∫ t

s

Dτ 〈∂2f/∂xi∂uj〉τ,x,v(τ,x)
τ,x,u(τ,x) dτ

∣∣∣∣|Djh(t, x)|

+ 〈∂2f/∂xi∂uj〉s,x,v(s,x)
s,x,u(s,x)

∣∣∣∣ ∫ t

s

DτDjh(τ, x) dτ

∣∣∣∣
+

n∑
k=0

[∣∣∣∣ ∫ t

s

Dτ 〈∂2f/∂uj∂uk〉τ,x,v(τ,x)
τ,x,u(τ,x) dτ

∣∣∣∣|Diku||Djh|(t, x)

+
∣∣∣∣ ∫ t

s

Dτ [∂2f/∂uj∂uk(τ, x, v, . . . ) dτ

∣∣∣∣|Diku(t, x)−Dikv(t, x)||Djh(t, x)|

+ 〈∂2f/∂uj∂uk〉s,x,v(s,x)
s,x,u(s,x)|Diku(t, x)−Diku(s, x)||Djh(t, x)|

+ |∂2f/∂uj∂uk(s, x, v, . . . )||Diku(t, x)−Dikv(t, x)

− [Diku(s, x)−Dikv(s, x)]||Djh(t, x)|
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+ 〈∂2f/∂uj∂uk〉s,x,v(s,x)
s,x,u(s,x) |Diku(s, x)|

∣∣∣∣ ∫ t

s

DτDjh(τ, x) dτ

∣∣∣∣
+ |∂2f/∂uj∂uk(s, x, v, . . . )||Diku(s, x)−Dikv(s, x)|

∣∣∣∣ ∫ t

s

DτDjh(τ, x) dτ

∣∣∣∣
+

∣∣∣∣∫ t

s

Dτ 〈∂f/∂uj〉τ,x,v(τ,x)
τ,x,u(τ,x)dτ

∣∣∣∣ |Dijh(t, x)|

+ 〈∂f/∂uj〉s,x,v(s,x)
s,x,u(s,x)|Dijh(t, x)−Dijh(s, x)|

]}
≤ K

( n∑
s=0

δβs + δ

)
for K > 0.

Making the corresponding changes the last term of (3.7)
n∑

i=1

〈Di{[N ′
3(u)−N ′

3(v)]h}〉yx,α,Q

by the condition (N3.2) gives the required estimation. This finishes the proof of
Lemma 3.4. �

The results of Lemmas 3.1–3.4 we can sum up in

Theorem 3.1. The following implications are true:

(1) (A3.1), (A3.2) imply that the operator A3 : X3 → Y3 is linear bounded
Fredholm operator of the zero index.

(2) (N3.1), (N3.3) imply that the Nemitskĭı operator N3 : X3 → Y3 is com-
pletely continuous.

(3) (A3.1), (A3.2), (N3.1), (N3.3), (F3.1) imply that the operator F3 = A3 +
N3 : X3 → Y3 is coercive.

(4) (N3.2), (N3.3) imply that N3 ∈ C1(X3, Y3) and completely continuous.

4. Generic properties for continuous operators

On a mutual equivalence between the solution of the given initial-boundary
value problem and an operator equation says the following lemma.

Lemma 4.1. Let A3 : X3 → Y3 be the linear operator from Lemma 3.1 and
let N3 : X3 → Y3 be the Nemitskĭı operator from Lemma 3.2 and F3 = A3 +N3 :
X3 → Y3. Then

(j) the function u ∈ X3 is a solution of the initial-boundary value problem
(1.1)–(1.3) for g ∈ Y3 if and only if F3u = g,

(jj) the couple (u, g) ∈ X3×Y3 is the bifurcation point of the initial-boundary
value problem (1.1)–(1.3) if and only if F3(u) = g and u ∈ Σ, where Σ
means the set of all points of X3 at which F3 is not locally invertible
(see Definition 1.10).
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Proof. (j) The first equivalence directly follows from the definition of op-
erator F3 and the mixed problem (1.1)–(1.3).

(jj) If (u, g) is a bifurcation point of the mixed problem (1.1)–(1.3) and uk, vk

and gk for k = 1, 2 . . . have the same meaning as in Definition 1.8, then with
respect to (j) we have F3(u) = g, F3(uk) = gk = F3(vk). Thus F3 is not locally
injective at u. Hence, F3 is not locally invertible at u, i.e. u ∈ Σ. Conversely, if
F3 is not locally invertible at u and F3(u) = g, then F3 is not locally injective
at u. Indirectly, from Definition 1.8, we see that the couple (u, g) is a bifurcation
point of (1.1)–(1.3). �

Lemma 4.2. Let

(i) the operator A(t, x,Dx) 6= 0 from (1.1) and the operator B3(t, x,Dx)
from (1.2) satisfy the smoothness condition (S1+α

3 ),
(ii) the nonlinear part f of the equation (1.1) belong to C(cl Q× Rn+1, R),
(iii) the operator A3 + N3 : X3 → Y3 be nonconstant.

Then for any compact set of the right hand sides g ∈ Y3 from (1.1), the set of
all solutions of problem (1.1)–(1.3) is compact (possibly empty).

Proof. Following the proof of Lemma 3.1 we see that dim X3 = ∞ and the
linear operator A3 : X3 → Y3 is continuous and accordingly closed. From the
hypothesis (ii) the Nemitskĭı operator N3 : X3 → Y3 given in (3.5) is closed, too.
By the Proposition 2.3 the operator F3 = A3 +N3 : X3 → Y3 is proper and with
respect to Definition 1.9 and Lemma 4.1 we get our assertion. �

Theorem 4.1. Under the assumptions (A3.1), (A3.2) and (N3.1), (N3.3) the
following statements hold for the problem (1.1)–(1.3):

(a) the operator F3 = A3 + N3 : X3 → Y3 is continuous,
(b) for any compact set of the right hand sides g ∈ Y3 from (1.1), the

corresponding set of all solutions is a countable union of compact sets,
(c) for u0 ∈ X3 there exists a neighbourhood U(u0) of u0 and U(F3(u0)) of

F3(u0) ∈ Y3 such that for each g ∈ U(F3(u0)) there is a unique solution
of (1.1)–(1.3) if and only if the operator F3 is locally injective at u0.

Moreover, if (F3.1) is assumed, then

(d) for each compact set of Y3 the corresponding set of all solutions is com-
pact (possibly empty).

Proof. Assertion (a) is evident by Lemma 3.1 and Lemma 3.2.
Using the Nikol’skĭı theorem (Proposition 2.1) for A3 we can write

(4.1) F3 = C3 + (T3 + N3),

where C3 : X3 → Y3 is a continuous homeomorpism and is proper (see Propo-
sition 2.3) and T3 + N3 : X3 → Y3 is a completely continuous mapping. Now
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take the compact set K ⊂ Y3 and F−1
3 (K). Then there exists a sequence of

the closed and bounded sets Mn ⊂ F−1
3 (K) ⊂ X3 for n = 1, 2, . . . such that⋃∞

n=1 Mn = F−1
3 (K)

According to Proposition 2.4(j) the restrictions F3|Mn
for n = 1, 2, . . . are

proper mappings and (F3|Mn)−1(K) = Mn is compact set. Hence, the operator
F3 is σ-proper, which gives the result (b).

The assertion (d) is a direct consequence of Proposition 2.4(jj).
Suppose, now, that F3 is injective in a neighbourhood U(u0) of u0 ∈ X3.

From decomposition (4.1) the mapping

C−1
3 F3 = I + C−1

3 (T3 + N3),

where I : X → Y is the identity, is completely continuous and injective in U(u0).
On the basis of the Schauder domain invariance theorem (see [5, p. 66]) the set
C−1

3 F3(U(u0)) is open in X3 and the restriction C−1
3 F3|U(u0) is a homeomor-

phism of U(u0) onto C−1
3 F3(U(u0)). Therefore F3 is locally invertible. From the

Definition 1.10.2 and Lemma 4.1 we obtain (c).
The most important properties of the mapping F3, whereby A3 is linear

bounded Fredholm operator of zero index, N3 is copletely continuous and F3 is
coercive, gives the following theorem. �

Theorem 4.2. If the hypotheses (A3.1), (A3.2), (N3.1), (N3.3) and (F3.1)
are satysfied, then for the initial-boundary value problem (1.1)–(1.3) the following
statements hold:

(e) For each g ∈ Y3 the set S3g of all solutions is compact (possibly empty).
(f) The set R(F3) = {g ∈ Y3; there exists at least one solution of the given

problem} is closed and connected in Y3.
(g) The domain of bifurcation D3b is closed in X3 and the bifurcation range

R3b is closed in Y3. F3(X3 −D3b) is open in Y3.
(h) If Y3 − R3b 6= ∅, then each component of Y3 − R3b is a nonempty open

set (i.e. a domain).

The number n3g of solutions is finite, constant (it may be zero) on each com-
ponent of the set Y3 − R3b, i.e. for every g belonging to the same component of
Y3 −R3b.

(i) If R3b = 0, then the given problem has a unique solution u ∈ X3 for
each g ∈ Y3 and this solution continuously depends on g as a mapping
from Y3 onto X3.

(j) If R3b 6= ∅, then the boundary of the F3-image of the set of all points
from X3 in which the operator F3 is locally invertible, is a subset of the
F3-image of all points from X3 in which F3 is not locally invertible, i.e.

∂F3(X3 −D3b) ⊂ F3(D3b) = R3b.
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Proof. The statement (e) follows immediately from Theorem 4.1(d).
(f) Let the sequence {gn}n∈N ⊂ R(F3) ⊂ Y3 converge to g ∈ Y3 as n → ∞.

By Theorem 4.1(d) there is a compact set of all solutions {uγ}γ∈I ⊂ X3 (I is
a index set) of the equations F3(u) = gn for all n = 1, 2, . . . Then there exists
a sequence {unk

}k∈N ⊂ {uγ}γ∈I converging to u ∈ X3 for which F3(unk
) =

gnk
→ g. Since, the operator F3 is proper (Theorem 4.1(d)), whence it is closed

(Proposition 2.3), such we have F3(u) = g. Hence g ∈ R(F3) and R(F3) is a
closed set.

The connectedness of R(F3) = F3(X3) follows from the fact that R(F3) is a
conditinuous image of the connected set X3.

(g) According to Lemma 4.1(jj) D3b = Σ3 and R3b = F3(D3b). Since X3−Σ3

is an open set, D3b and its coutinuous image R3b are the closed sets in X3 and
Y3, respectively.

Since X3 − D3b is a set of all points in which the mapping F3 is locally
invertible, the Definition 1.10.2 ensures that to each u0 ∈ X3 − D3b there is a
neighborhood U1(F3(u0)) ⊂ F3(X3−D3b) which means that the set F3(X3−D3b)
is open.

(h) The set Y3 − R3b = Y3 − F3(D3b) 6= 0 is open in Y3, then each its
component is noempty and open.

The second part of (h) follows from A. Ambrosetti theorem (Proposition 2.6).
(i) Since R3b = ∅, the mapping F3 is a locally invertible in X3. From Propo-

sition 2.4(jj) we get that F3 is a proper mapping. Then The Global Inverse
Mapping Theorem (Proposition 2.5) proves this statement.

(j) By (f) and (g), we have (Σ3 = D3b)

(4.2) F3(X3) = F3(Σ3) ∪ F3(X3 − Σ3) = F3(Σ3) ∪ F3(X3 − Σ3) = F (X3).

Furter ∂F3(X3−Σ3) = F (X3 − Σ3)−F (X3−Σ3) and thus the previous equality
implies the assertion (j). �

Theorem 4.3. Under the assumption (A3.1), (A3.2), (N3.1), (N3.3) and
(F3.1) each of the following conditions is sufficient for the solvability of problem
(1.1)–(1.3) for each g ∈ Y3:

(k) For each g ∈ R3b there is a solution u of (1.1)–(1.3) such that u ∈
X3 −D3b.

(l) The set Y3 −R3b is connected and there is a g ∈ R(F3)−R3b.

Proof. First of all we see that the conditions (k) and (l) are mutualy equiv-
alent to the conditions:

(k’) F3(D3b) ⊂ F3(X3 −D3b),
(l’) Y3 −R3b is a connected set and

(4.3) F3(X3 −D3b)−R3b 6= ∅,
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respectively (D3b = Σ3). Then it is sufficient to show that the conditions
(k’) and (l’), respectively are sufficient for the surjectivity of the operator F3 :
X3 → Y3.

(k’) From the first equality of (4.2) we obtain F3(X3) = F3(X3 − D3b).
Hence R(F3) is an open as well as closed subset of the connected space Y3. Thus
R(F3) = Y3.

(l’) By (h) of Theorem 4.2 card F−1
3 ({q}) = const =: k ≥ 0 for every q ∈

Y3 −R3b.
If k = 0, then F3(X3) = R3b and F3(X3−D3b) ⊂ R3b. This is a contradiction

to (4.3). Then k > 0 and R(F3) = Y3. �

The other surjecivity theorem is true:

Theorem 4.4. Let the hypotheses (A3.1), (A3.2), (N3.1), (N3.3), (F3.1) and

(i) there exists a constant K > 0 such that all solutions u ∈ X3 of the
initial-boundary value problem for the equation

(4.4) C3u + µ[A3u− C3u + N3u] = 0, µ ∈ (0, 1)

with data (1.2), (1.3) fulfill one of the conditions (α3) or (β3) of the
almost coercive condition (F3.1). Then

(m) the problem (1.1)–(1.3) has at least one solution for each g ∈ Y3,
(n) the number n3g of solutions (1.1)–(1.3) is finite, constant and different

from zero on each component of the set Y3 −R3b (for all g belonging to
the same component of Y3 −R3b).

Proof. (m) It is sufficient to prove the surjectivity of the mapping F3 :
X3 → Y3. From Lemma 3.1 we can write

F3 = A3 + N3 = C3 + (T3 + N3),

where C3 : X3 → Y3 is a linear homeomorphism X3 onto Y3 and T3 +N3 : X3 →
Y3 is a completely continuous operator. Then the operator

C−1
3 F3 = I + C−1

3 (T3 + N3) : X3 → X3

is a completely continuous and condensing (see [27, p. 496]). The set Σ3 = D3b is
the set of all points u ∈ X3 where C−1

3 F3, as well as F3, is not locally invertible.
Denote S1 ⊂ X3 a bounded set. Then C3(S1) =: S is bounded in Y3 and by

Lemma 3.3 F−1
3 (S) = F−1

3 (C3(S1)) = (C−1
3 ◦ F3)−1(S1) is a bounded set in X3.

Thus the operator C−1
3 ◦ F3 is coercive.

Now we show that the condition (i) implies (ii) in Proposition 2.7 for F (u) =
C−1

3 ◦ F3(u) and C(u) = G(u) = u, u ∈ X3.
In fact, as C−1

3 ◦ F3(u) = ku if and only if F3(u) = kC3(u) we get for k < 0

(4.5) C3u + (1− k)−1[A3u− C3u + N3u] = 0,
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where (1−k)−1 ∈ (0, 1). This implies by (i): in the case (α3), there is a constant
K > 0 such that, for all solution u ∈ X3 of (4.5), ||u||(1+α)/2,1+α,Q ≤ K and,
in the case (β3), ||u||(2+α)/2,2+α,Q ≤ K. Further, by the same method as in
Lemma 3.3 we get the estimation ||u||X3 < K1, K1 > 0 for all solution u ∈ X3 of
C−1

3 ◦ F3u = ku. By Proposition 2.7 we get the surjectivity of F3 and thus (m).
(n) From the Theorem 4.2(h) and the surjectivity of F3 it follows that there

is n3g 6= 0. This finishes the proof of Theorem 4.4. �

5. Generic properties for C1-differentiable operator

In the case, if the Nemitskĭı operator N3 ∈ C1(X, Y ), we get stronger results,
than in the Section 4.

Theorem 5.1. Assume that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3)
hold. Then the open set Y3−R3b is dense in Y3 and thus the range of bifurcation
R3b of initial-boundary value problem (1.1)–(1.3) is nowhere dense in Y3.

Proof. The Theorem 3.1 ensures that the operator A3 is a linear Fredholm
operator of the zero index, the Nemitskĭı operator N3 : X3 → Y3 is completely
continuous and N3 ∈ C1(X3, Y3).

Since N ′
3(u) : X3 → Y3 is complete continuous, by Proposition 2.1 the oper-

ator F ′
3(u) = = A3 + N ′

3(u) : X3 → Y3 is a linear Fredholm operator of the zero
index for each u ∈ X3 and F3 ∈ C1(X3, Y3) is also a Fredholm operator of the
zero index (see [27, p. 366]).

F ′
3(u) is a linear homeomorphism if and only if it is bijective. Since F ′

3(u)
is a Fredholm mapping of zero index so F ′

3(u) is bijective if and only if it is
injective. Thus u ∈ X3 is a singular point of Fredholm operator F3 if and only
if u is a critical point of F3. Since Σ3 is a subset of all critical points of F3 (see
Proposition 2.9), then evidently Σ3 is a subset of all singular points S3 of F3,
i.e. Σ3 ⊂ S3. Hence, the open set of the regular values of F3

RF3 = Y3 − F3(S3) ⊂ Y3 − F3(Σ3) ⊂ Y3 −R3b.

By Theorem 4.1(b) and Proposition 2.8, RF3 is a residual set in Y3. From
Proposition 2.3 the operator F3 is proper. Then again from Proposition 2.8 the
set RF3 is dense in Y3. Applying Lemma 4.1 we get our assertion. �

Recall that the point u ∈ X3 means a singular or critical or regular solution
of the mixed problem (1.1)–(1.3) if it is singular or critical or regular point of the
operator F3, respectively. Also we shall investigate the linear problem in h ∈ X3

for some u ∈ X3

(5.1) A3h(t, x)+
n∑

j=0

∂f

∂uj
[t, x, u(t, x), D1u(t, x), . . . Dnu(t, x)]Djh(t, x) = g(t, x)

with the conditions (1.2), (1.3).
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Theorem 5.2. Assume that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3)
and (F3.1) hold. Then

(a) For any compact set of Y3 (of the right hand sides g ∈ Y3 of the equation
(1.1)) the set of all corresponding solutions of the initial-boundary value
problem (1.1)–(1.3) is compact.

(b) The number of solutions of (1.1)–(1.3) is constant and finite (it may be
zero) on each connected component of the open set Y3 − F (S3), i.e. for
any g belonging to the same connected component of Y3 −F3(S3). Here
S3 means the set of all critical points of problem (1.1)–(1.3).

(c) Let u0 ∈ X3 is regular solutions of (1.1)–(1.3) with the right hand side
g0 ∈ Y3. Then there exists a neighbourhood U(g0) ⊂ Y3 of g0 such that
for any g ∈ U(g0) the initial-boundary value problem (1.1)–(1.3) has
one and only one solution u ∈ X3. This solution continuously depends
on g.

The associated linear problem (5.1), (1.2), (1.3) for u = u0 has a unique solution
h ∈ X3 for any g from a neighbourhood U(g0) of g0 = F3(u0). This solution
continuously depends on g.

(d) Denote by G3 the set of all right hand side g ∈ Y3 of equation (1.1) for
which the corresponding solutions u ∈ X3 of the problem (1.1)–(1.3) are
its critical solutions. Then G3 is closed and nowhere dense in Y3.

(e) If the singular points set of the initial-boundary value problem (1.1)–
(1.3) is empty, then this problem has unique solution u ∈ X3 for each
g ∈ Y3. It continuously depends of the right hand side g.

Proof. By the given hypotheses we obtain the assertions (1)–(4) from The-
orem 3.1.

With respect to assertion (jj) of Proposition 2.4 the operator F3 is proper,
what implies (a).

In the proof of Theorem 5.1 we have showed that the set of all singular points
of F3 is equal to the set of all critical points of F3. Then the assertion (b) follows
from Proposition 2.6 (Ambrosetti).

(c) Since u0 ∈ X3−S3, where S3 is a set of all singular (under our assumptions
all critical) points, then according to Proposition 2.9 the mapping F3 is a local
homeomorphism at u0, which proves the first part of (c).

However, F3 is a local C1-diffeomorphism. Thus F ′
3 ∈ C(X3, Y3), where

F ′
3(u)h = A3h +

n∑
j=0

∂f

∂uj
[t, x, u,D1u, . . .Dnu]Djh

and (F−1
3 )′ ∈ C(Y3, X3), where (F−1

3 )′(F3u) = [F ′
3(u)]−1 for every u ∈ X3 (see

[8, p. 115]). Hence the linear problem (5.1), (1.2), (1.3) for u = u0 has a unique
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solution h ∈ X3 for any g from a neighbourhood U(g0) of g0 = F3(u0). This
solution continuously depends of the right hand side g. The proof of (c) is
completed.

(d) In our case the set of all singular points S3 of F3 is equal to the set of all
critical point F3 and G3 = F3(S3). We get (d) from the Proposition 2.8 (Smale,
Quinn).

(e) By Proposition 2.9, the operator F3 : X3 → Y3 is locally C1-diffeomor-
phism at any point u ∈ X3, i.e. it is C1-deffeomorphism on X3. Hence we get
the last assertion. �

Corollary 5.1. Let the hypothesis of Theorem 5.2 hold and

(i) the linear homogeneous problem (5.1), (1.2), (1.3) (for g = 0) has only
zero solution h = 0 ∈ X3 for any u ∈ X3.

Then the initial-boundary value nonlinear problem (1.1)–(1.3) has a unique so-
lution u ∈ X3 for any g ∈ Y3. This solution u is continuously depend of g.
Moreover, linear problem (5.1), (1.2), (1.3) has a unique solution h ∈ X3 for
any u ∈ X3 and right hand side g ∈ Y3 of (5.1) and this solution continuously
depends on g.

The proof of Corollary 5.1 follows by (c) of Theorem 5.2.

Corollary 5.2. Let the hypothesis of Theorem 5.2 hold. Then

(f) If S3 6= ∅, then ∂F3(X3 − S3) ⊂ F3(S3).
(g) If F3(S3) ⊂ F3(X3 − S3) then the problem (1.1)–(1.3) has the solution

u ∈ X3 for any g ∈ Y3, i.e. R(F3) = Y3, (F3 is a surjectivity X3

onto Y3).
(h) If Y3 − F3(S3) is connected and X3 − S3 6= ∅, then R(F3) = Y3 (the

surjectivity of F3 or the solvability of (1.1)–(1.3) for any g ∈ Y3).

Proof. By (f) of Theorem 4.2 and (d) of Theorem 5.2 the sets F3(X3) and
F3(S3) are closed and F3(X3 − S3) is open. Hence we have the relation

(5.2) F3(X3) = F3(S3) ∪ F3(X3 − S3) = F3(S3) ∪ F3(X3 − S3) = F3(X3)

which is similar to (4.2).
(f) Since F ∈ C1(X3, Y3), such as in Theorem 5.1 we get Σ3 ⊂ S3. Hence

and from Theorem 4.2(j)

∂F (X3 − S3) ⊂ ∂F (X3 − Σ3) ⊂ F (Σ3) ⊂ F (S3).

(g) From the first equation of (5.2) we have F3(X3) = F3(X3 − S3) and so
R(F3) is an open as well as a closed subset of the connected space Y3. Thus
R(F3) = Y3.
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(h) Since Y3 − F3(S3) is connected, then by Amhnesetti theorem (Proposi-
tion 2.6) we obtain that card F−1

3 ({g}) =const=: k ≥ 0 for each g ∈ Y3−F3(S3).
If k = 0, then F3(X3) = F3(S3) and F (X3 − S3) ⊂ F (S3). This is a contra-

diction with X3 − S3 6= ∅. Hence k > 0. Then R(F3) = Y3. �

Theorem 5.3. Suppose that the hypotheses (A3.1), (A3.2), (N3.2), (N3.3)
and (F3.1) hold together with the condition

(i) Each point u ∈ X3 is either a regular point or an isolated critical point
of problem (1.1)–(1.3).

Then to each g ∈ Y3 there exists one solution u ∈ X3 of the problem (1.1)–(1.3)
and it is continuously depends on g.

Proof. The associated operator F3 : X3 → Y3 is a proper C1-Fredholm
mapping of the zero index. By Proposition 2.9 and 2.10 F3 is a locally homeomor-
phic mapping of X3 into Y3, and Proposition 2.5 (the global inversion theorem)
implies the statement of this theorem. �
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