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PERIODIC SOLUTIONS OF ORDINARY DIFFERENTIAL
EQUATIONS WITH BOUNDED NONLINEARITIES

James Robert Ward, Jr.

Abstract. In this article we discuss the existence and non-existence of

forced T -periodic solutions to ordinary differential equations of the form
u′′ + g(u) = e(t). The results concern equations with bounded nonlinear

terms g satisfying g(s) > 0 (or g(s) < 0) for all real numbers s, and

g(±∞) = 0. Variational and topological methods are employed.

1. Introduction

In this paper we study the existence and non-existence of T -periodic solutions
to T -periodic nonlinear second order ordinary differential equations. We consider
equations of the form (1.1) with periodic boundary conditions (1.2):

u′′ + g(u) = e(t),(1.1)

u(0) = u(T ), u′(0) = u′(T ).(1.2)

Notice that if the forcing function e(t) is defined on the entire real line and
is T -periodic then any solution to (1.1), (1.2) can be extended to the whole
real line as a T -periodic solution of (1.1). Conversely, any T -periodic solution
of (1.1) satisfies (1.2). We thus may refer to solutions of (1.1), (1.2) as T -periodic
solutions of (1.1).
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Throughout this paper we assume that g(u) is a bounded and continuous
function. The problem (1.1), (1.2) with bounded or sublinear g(u) has been the
a subject of continuing interest. Most of this work relates to nonlinearities g(u)
such that either

(i) g(u)u ≥ 0 for |u| large, and analogous conditions for second order sys-
tems, or

(ii) g(u) is periodic with zero mean, as in the pendulum equation when
g(u) = k sin(u), or g(u) is oscillatory.

In case (i) the problem and its extensions to systems and to problems at higher
eigenvalues, and to elliptic boundary value problems “at resonance”, have been
the subject of a great deal of research since the papers Lazer ([3]), and Lazer
and Leach ([4]). Both degree theoretic methods and critical point theory have
been used. A recent paper on the periodic problem for conservative second order
systems of the form (1.1) with a bounded nonlinearity was [11], in which critical
point theory was applied; this work was related to the earlier work of Mawhin
and Willem ([6]). In case (ii), the periodically forced pendulum equation and
related problems for systems have been of continuing interest, and again both
degree methods and critical point theory have been applied; see Mawhin and
Willem ([5], [6]), Fonda and Zanolin ([2]), and Ortega ([7]). In this paper we are
interested in a class of bounded nonlinearities g which do not belong to either
of classes (i) or (ii). Instead we will include functions such as g(u) = exp(−u2)
and g(u) = 1/(1 + u2).

We will make use of the following conditions.

(G1) Assume g(s) > 0 for all s and g(±∞) = 0; let m ≥ 0 be a number such
that |g(s)| ≤ m for all s ∈ R.

(G2) Let G(s) =
∫ s

0
g(t)dt, and assume there is a number M ≥ 0 such that

|G(s)| ≤ M for all s ∈ R.

Any solution of our periodic problem (1.1), (1.2) would also be a critical
point of the Lagrangian functional

Ψ(u) :=
1
T

∫ T

0

[
1
2
(u′)2 −G(u) + e · u

]
ds

on the space H1
T of absolutely continuous functions on [0, T ] with u(0) = u(T ),

and u′ ∈ L2(0, T ). However under our conditions (G1), (G2) and e > 0, Ψ will
not be bounded from below or above, nor does it have easily observed saddle
behavior. To see that is not bounded from below or above, let u = u be constant.
Then

Ψ(u) = −G(u) + e · u → ±∞ as u → ±∞.

Thus usual critical point methods cannot be applied in any readily apparent way.
Instead we will restrict Ψ to the subspace H̃1

T of T -periodic functions with mean
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value 0, and use a Lagrange multiplier. Let ũ ∈ H̃1
T , and for each fixed c ∈ R let

Φc(ũ) :=
1
T

∫ T

0

[
1
2
(ũ′)2 −G(ũ + c) + ẽũ

]
ds.

We will show that for each c, Φc has a minimum at some w̃ ∈ H̃1
T . It follows

that
1
T

∫ T

0

[w̃′ṽ′ − g(w̃ + c)ṽ + ẽṽ] ds = 0 for all ṽ ∈ H̃1
T

and thus there is a real number λ such that

w̃′′ + g(w̃ + c) = ẽ + λ.

That is, (1.1), (1.2) has a solution u = w̃+c for e = ẽ+e with e = λ. We then use
the method of sub- and supersolutions to prove the existence of periodic solutions
for 0 < e < λ. All of this will now be developed in detail in the next section. For
additional information regarding contemporary variational methods and results
the reader is referred to the books of Mawhin and Willem ([5]), Rabinowitz ([8]),
and Struwe ([10]). Regarding the method of sub- and supersolutions (also known
as lower and upper solutions), a good recent survey is the paper of De Coster
and Habets ([1]) or see the paper of Schmitt ([9]).

2. Theorems and proofs

For any function w ∈ L1((0, T ), R) let

w =
1
T

∫ T

0

w(s) ds and w̃ = w − w.

Let g ∈ C(R, R) be a continuous function on R, and e ∈ C([0, T ], R). As stated
in the Introduction, we use the conditions:

(G1) Assume g(s) > 0 for all s and g(±∞) = 0; let |g|∞ = sups∈R |g(s)|.
(G2) Let G(s) =

∫ s

0
g(t) dt, and assume there is a number M ≥ 0 such that

|G(s)| ≤ M for all s ∈ R.

Theorem 1. Let g ∈ C(R, R) satisfy (G1) and (G2). Then for e = e + ẽ ∈
C([0, T ], R) there is a number λ∗ = λ∗(ẽ) satisfying 0 < λ∗(ẽ) ≤ |g|∞ such that
the periodic problem (1.1), (1.2) has a solution if and only if 0 < e ≤ λ∗(ẽ).

Remark 1. If instead we assume

(G1’) g(s) < 0 for all s and g(±∞) = 0,

then there is a number λ∗(ẽ) satisfying − |g|∞ ≤ λ∗(ẽ) < 0 such that the con-
clusion holds provided λ∗(ẽ) ≤ e < 0.

The proof of Theorem 1 will be based upon a variational argument followed
by an application of sub- and supersolutions.
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Let H1
T = {u ∈ C([0, T ], R) | u is absolutely continuous, u(0) = u(T ), and

u′ ∈ L2(0, T )}.
The norm in H1

T may be taken to be ‖u‖ = ‖u‖L2 +‖u′‖L2 , but an equivalent
norm may be defined using the mean value u = 1

T

∫ T

0
u(s) ds. This norm is

‖u‖1 = |u|+ ‖u′‖L2

and this is the norm we shall use. H1
T is a Hilbert space with inner product

(u, v)1 = uv +
1
T

∫ T

0

u′(s)v′(s) ds.

H1
T may be written as the direct sum H1

T = H
1

T + H̃1
T in the obvious notation;

we identify H
1

T with R.

Proof of Theorem 1. Suppose u is a solution to (1.1), (1.2). Integrating
(1.1) over [0, T ] and using the periodicity conditions (1.2) we get

(2.1)
1
T

∫ T

0

g(u(s)) ds = e.

Since 0 < g(u(s)) ≤ |g|∞ we have that 0 < e ≤ |g|∞ as a necessary condition.
H̃1

T is a Hilbert space using the norm inherited from H1
T . For each c ∈ R we

define a C1 functional Φc on H̃1
T as follows: For ũ ∈ H̃1

T

Φc(ũ) :=
1
T

∫ T

0

1
2
(ũ′(s))2 −G(c + ũ(s)) + ẽ(s)ũ(s) ds.

We note that

Φc(ũ) =
1
2
‖ũ‖21 −

1
T

∫ T

0

G(c + ũ(s)) + ẽ(s)ũ(s) ds.

Thus
Φc(ũ) ≥ 1

2
‖ũ‖21 − k1 ‖ũ‖1 −M

where k1 is a constant which depends only on ẽ. Thus

lim
‖eu‖1→∞

Φc(ũ) = ∞

and Φc is coercive on H̃1
T . It is easily checked that it is also weakly lower semi-

continuous on H̃1
T . Suppose {vn} ⊂ H̃1

T and vn ⇀ v weakly in H̃1
T . Then vn → v

strongly in L2(0, T ). By dominated convergence,

lim
n→∞

1
T

∫ T

0

G(c + vn(s)) + ẽ(s)vn(s) ds =
1
T

∫ T

0

G(c + v(s)) + ẽ(s)v(s) ds.

Thus since the norm ‖ · ‖1 is weakly lower semicontinuous,

lim inf
n→∞

Φc(vn) ≥ Φc(v)
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and Φc is weakly lower semicontinuous. Coercivity and weak lower semicontinu-
ity on the Hilbert space H̃1

T implies that Φc attains its minimum at some point
w̃c ∈ H̃1

T , and Φ′c(w̃) = 0. That is, for all v ∈ H̃1
T

(2.2) (w̃c, v)1 −
1
T

∫ T

0

g(c + w̃c(s))v(s) + ẽ(s)v(s) ds = 0.

By regularity arguments (see [6]) w̃′c is absolutely continuous, and by (2.2), there
is a constant λc such that

w̃′′c (t) + g(c + w̃c(t)) = ẽ(t) + λc

and
w̃c(0) = w̃c(T ), w̃′c(0) = w̃′c(T ).

That is to say, (1.1), (1.2) with e = λc has the solution u = c + w̃c. Moreover,
we see from the differential equation that w̃′′c (t) is continuous on [0, T ].

Now obviously 0 < λc ≤ |g|∞. Let us define λ∗ = λ∗(ẽ) by

λ∗ = sup
c∈R

λc ≤ |g|∞ .

Note that certainly 0 < λ∗. Now either

(2.3) u′′ + g(u) = ẽ + λ

with λ = λ∗ has a solution u satisfying periodicity conditions (1.2) or else there
is a sequence {λn} with 0 < λn < λ∗ and λn ↗ λ∗ such that (2.3) has with
λ = λn a solution un satisfying (1.2), for each n ∈ N. In the latter case we see
that there is a constant k2 such that

|u′′n(t)| ≤ k2 for all t ∈ [0, T ] and all n ∈ N.

Thus without loss of generality, writing un = un + ũn, we may conclude that
{ũn} converges in H̃1

T to some Ũ ∈ H̃1
T . We claim that the sequence of real

numbers {un} must remain bounded; if it is not bounded; then without loss of
generality we can assume un → ∞ as n → ∞. Then un(t) = un + ũn(t) → ∞
uniformly on [0, T ] and thus

g(un + ũn(t)) → 0 as n →∞.

We may conclude that the T -periodic function Ũ satisfies

Ũ ′′ = ẽ + λ∗

which contradicts λ∗ > 0. Thus the sequence {un} must remain bounded, and
without loss of generality we may assume un → c∗. Now u = Ũ + c∗ is a solution
of (2.3) with λ = λ∗ and satisfies the periodicity conditions.

Thus in any case there is a solution of (2.3), (1.2) with λ = λ∗. We will now
show that there are also solutions of (2.3), (1.2) for all 0 < λ ≤ λ∗.
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Let 0 < λ < λ∗. Let U be a solution of (2.3), (1.2) with λ = λ∗. Then
U ∈ C2([0, T ], R), U satisfies (1.2), and

U ′′(t) + g(U(t)) = ẽ(t) + λ∗ > ẽ(t) + λ.

Thus U is a T -periodic subsolution of

u′′ + g(u) = ẽ(t) + λ.

Let c ∈ R and let Wc := U(t) + c. Now g(s) > 0 for all s, and W0(t) = U(t) has
compact range. Thus

inf
0≤t≤T

g(U(t)) = m∗ > 0.

However,
lim

c→∞
g(U(t) + c) = 0,

uniformly in t ∈ [0, T ]. Thus there is a number c0 > 0 so large that Wc0(t) =
U(t) + c0 > U(t) and

g(U(t) + c0) < m∗ ≤ g(U(t)) for 0 ≤ t ≤ T .

Since U(t) + c0 is continuous on [0, T ] we may actually conclude that there is a
number ε > 0 such that

g(U(t) + c0) < m∗ − ε for 0 ≤ t ≤ T.

Thus
W ′′

c0
(t) + g(Wc0(t)) = U ′′(t) + g(U(t) + c0)

and

U ′′(t) + g(U(t) + c0) < U ′′(t) + m∗ − ε

< U ′′(t) + m∗ ≤ U ′′(t) + g(U(t)) = ẽ(t) + λ∗.

Thus there is a number λ1 < λ∗ such that for all λ1 ≤ λ < λ∗ the function
Wc0(t) satisfies

W ′′
c0

(t) + g(Wc0(t)) < ẽ(t) + λ.

We have shown that there is a λ1 < λ∗ such that for all λ1 < λ < λ∗, the
function U(t) is a strict T -periodic subsolution, and Wc0(t) a strict T -periodic
supersolution, of

(2.4) u′′ + g(u) = ẽ(t) + λ.

Moreover,
U(t) < Wc0(t) = U(t) + c0 for 0 ≤ t ≤ T .

It now follows from results on sub- and supersolutions (see e.g. [1] or [9]) that
(2.4) has for each λ1 < λ < λ∗ a T -periodic solution wλ(t) satisfying

U(t) < wλ(t) < U(t) + c0.
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Now let λ∗ = inf{α : (2.4) has a T -periodic solution for all α < λ < λ∗}. From
what we have shown, we know that

0 ≤ λ∗ ≤ λ1 < λ∗ ≤ |g|∞ .

It remains to show that λ∗ = 0. If not, then 0 < λ∗ ≤ λ1. We claim that (2.4)
has a T -periodic solution for λ = λ∗. We know there is a T -periodic solution
for all λ∗ < λ < λ∗. Let {λn} be a sequence of numbers with λ∗ < λn < λ∗

and λn ↘ λ∗ as n → ∞. Then for each n ∈ N there is a T -periodic solution
un = un + ũn of (2.4) with λ = λn. As in our previous argument showing
that there is a T -periodic solution when λ = λ∗, we obtain a convergent (in
H̃1

T ) subsequence of the {ũn}, which we may as well assume is our original
sequence. Let W̃ = limn→∞ ũn(t). Also as before, if we suppose that {un}
is an unbounded sequence, we may as well assume un → ∞. It follows that
un(t) = un + ũn(t) →∞ uniformly on [0, T ], and thus g(un(t)) → 0 as n →∞.
It follows that W̃ (t) is T -periodic and

W̃ ′′(t) = ẽ(t) + λ∗.

Thus if 0 < λ∗ we again reach a contradiction. Thus λ∗ = 0. We have thus
shown that (2.4) has a T -periodic solution if and only if 0 < λ ≤ λ∗ = λ∗(ẽ).
Obviously there is no T -periodic solution if λ = 0. This proves the theorem in
the case that g(s) > 0 for all s ∈ R. In the case that g(s) < 0 for all s, the proof
is too much the same to write here. This completes our proof of the theorem.�

Remark 2. In most cases when g(s) > 0 we will have that λ∗ < |g|∞.

Theorem 2. Let g ∈ C(R, R) and suppose (G1) and (G2) hold. Suppose
additionally that there is no interval on which g(s) is constant. Then the con-
clusions of Theorem 1 hold, and whenever ẽ is not the zero function, we have
λ∗ = λ∗(ẽ) < |g|∞.

Proof. Suppose ẽ 6= 0 and λ∗ = λ∗(ẽ) = |g|∞. Then there is a T -periodic
solution to the differential equation

(2.5) u′′ + g(u) = ẽ + |g|∞ .

Integrating each side of the latter equation over [0, T ] and using the periodicity
conditions shows that

1
T

∫ T

0

g(u(s)) ds = |g|∞ .

Hence
1
T

∫ T

0

[|g|∞ − g(u(s))] ds = 0.

But h(s) = |g|∞ − g(u(s)) ≥ 0 and h(s) is continuous for 0 ≤ s ≤ T. Thus

g(u(s)) = |g|∞ for 0 ≤ s ≤ T.
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But as g(s) is not constant on any interval this implies that u(s) =constant= u

for s ∈ [0, T ]. Thus u′′ = 0 and since u = u is a solution of (2.5),

g(u) = ẽ(t) + |g|∞ .

But g(u) = |g|∞ , so we have ẽ(t) = 0 for all 0 ≤ t ≤ T , contrary to hypothesis.
Thus λ∗ < |g|∞. �
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