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CHARACTERIZATION OF THE LIMIT
OF SOME HIGHER DIMENSIONAL

THIN DOMAIN PROBLEMS

Thomas Elsken — Martino Prizzi

Abstract. A reaction-diffusion equation on a family of three dimensional

thin domains, collapsing onto a two dimensional subspace, is considered.

In [13] it was proved that, as the thickness of the domains tends to zero,
the solutions of the equations converge in a strong sense to the solutions of

an abstract semilinear parabolic equation living in a closed subspace of H1.

Also, existence and upper semicontinuity of the attractors was proved. In
this work, for a specific class of domains, the limit problem is completely

characterized as a system of two-dimensional reaction-diffusion equations,

coupled by mean of compatibility and balance boundary conditions.

1. Introduction

Let Ω ⊂ RN+M be an open bounded domain with Lipschitz boundary. Write
(x, y) for a generic point of RN+M . For ε > 0, let us consider the “squeezing
operator” Tε: RN+M → RN+M , (x, y) 7→ (x, εy), and define Ωε := Tε(Ω). Let
Γ be a relatively closed portion of ∂Ω and let Γε := Tε(Γ). Let us consider the
following reaction-diffusion equation

(1.1)


ut = ∆u + f(u) for t > 0, (x, y) ∈ Ωε,

∂νεu = 0 for t > 0, (x, y) ∈ ∂Ωε \ Γε,

u = 0 for t > 0, (x, y) ∈ Γε.
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Here νε is the exterior normal vector field on ∂Ωε. We assume that f satisfies
the following condition:

(H1) f ∈ C1(R → R) and |f ′(s)| ≤ C(|s|β + 1) for s ∈ R, where C and
β ∈ [0,∞[ are arbitrary real constants. If n := M + N > 2 then in
addition, β ≤ (p∗/2)− 1, where p∗ = 2n/(n− 2) > 2.

Let H1
Γε

(Ωε) be the closure in H1(Ωε) of the space of all C1(Ωε)-functions
such that u = 0 on Γε. Then it is well known that equation (1.1) generates a
semiflow π̃ε on H1

Γε
(Ωε). If we suppose in addition that f satisfies the dissipa-

tiveness condition

(H2) lim sup|s|→∞ f(s)/s ≤ −ζ for some ζ > 0,

then the semiflow π̃ε is defined for all t ≥ 0 and it posseses a compact global
attractor Ãε.

As ε → 0 the thin domain Ωε degenerates to an N -dimensional domain. Then
the question arises, what happens in the limit to the family (π̃ε)ε>0 of semiflows
and to the family (Ãε)ε>0 of attractors. Does there exist a limit semiflow and a
corresponding limit attractor?

This problem was first considered by Hale and Raugel in [7] for the case when
M = 1 and the domain Ω is the ordinate set of a smooth positive function g

defined on an N -dimensional domain ω, i.e.

Ω = {(x, y) | x ∈ ω and 0 < y < g(x)},

with Γ = ∅ (resp. Γ = {(x, y) | x ∈ ∂ω and 0 < y < g(x)}).
The authors prove that, in this case, there exists a limit semiflow π̃0, which

is defined by the N -dimensional boundary value problem

(1.2)


ut =

1
g
div(g∇u) + f(u) for t > 0, x ∈ ω,

∂u

∂ν
u = 0 (resp. u = 0) for t > 0, x ∈ ∂ω.

Moreover, π̃0 has a global attractor Ã0 and, in some sense, the family (Ãε)ε≥0 is
upper-semicontinuous at ε = 0. See also [16] and the rich bibliography contained
therein.

If the domain Ω is not the ordinate set of some function (e.g. if Ω has holes
or different horizontal branches) then (1.2) can no longer be a limiting equation
for (1.1). Nevertheless, K. Rybakowski and the second author proved in [13]
that the family π̃ε still has a limit semiflow. Moreover, there exists a limit global
attractor and the upper-semicontinuity result continues to hold.

In order to describe the main results of [13] we first transfer the family (1.1)
to boundary value problems on the fixed domain Ω. More explicitly, we use the
linear isomorphism Φε:H1(Ωε) → H1(Ω), u 7→ u◦Tε, to transform problem (1.1)
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to the equivalent problem

(1.3)


ut = ∆xu +

1
ε2

∆yu + f(u) for t > 0, (x, y) ∈ Ω,

∇xu · νx +
1
ε2
∇yu · νy = 0 for t > 0, (x, y) ∈ ∂Ω \ Γ,

u = 0 for t > 0, (x, y) ∈ Γ,

on Ω. Here, ν = (νx, νy) is the exterior normal vector field on ∂Ω.
Let H1

Γ(Ω) be the closure in H1(Ω) of the space of all C1(Ω)-functions such
that u = 0 on Γ. Then equation (1.3) can be written in the abstract form

(1.4) u̇ + Aεu = f̂(u)

where f̂ :H1
Γ(Ω) → L2(Ω) is the Nemytskĭı operator generated by the function

f , and Aε is the selfadjoint linear operator (with compact resolvent) induced by
the following bilinear form

aε(u, v) :=
∫

Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv

)
dx dy, u, v ∈ H1

Γ(Ω).

Equation (1.4) then defines a semiflow πε on H1
Γ(Ω) which is equivalent to

π̃ε and has the global attractor Aε := Φε(Ãε), consisting of the orbits of all full
bounded solutions of (1.4).

Notice that, for every fixed ε > 0 and u ∈ H1
Γ(Ω), the formula

|u|ε = (aε(u, u) + |u|2L2(Ω))
1/2

defines a norm on H1
Γ(Ω) which is equivalent to | · |H1

Γ(Ω). However, |u|ε →∞ as
ε → 0+ whenever ∇yu 6= 0 in L2(Ω). In fact, we see that for u ∈ H1

Γ(Ω)

lim
ε→0+

aε(u, u) =

{ ∫
Ω

|∇xu|2 dx dy if ∇yu = 0,

∞ otherwise.

Thus the family aε(u, u), ε > 0, of real numbers has a finite limit (as ε → 0) if
and only if u ∈ H1

Γ,s(Ω), where we define

H1
Γ,s(Ω) := {u ∈ H1

Γ(Ω) | ∇yu = 0}.

This is a closed linear subspace of H1
Γ(Ω).

The corresponding limit bilinear form is given by the formula:

(1.5) a0(u, v) :=
∫

Ω

∇xu · ∇xv dx dy, u, v ∈ H1
Γ,s(Ω).

Assume from now on that H1
Γ,s(Ω) is infinite dimensional. Then the form a0

uniquely determines a densely defined selfadjoint linear operator A0:D(A0) ⊂
H1

Γ,s(Ω) → L2
Γ,s(Ω) by the usual formula

(1.6) a0(u, v) = 〈A0u, v〉L2(Ω), for u ∈ D(A0) and v ∈ H1
Γ,s(Ω).
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Notice that A0 has compact resolvent. Here, L2
Γ,s(Ω) is the closure of H1

Γ,s(Ω)
in the L2-norm, so L2

Γ,s(Ω) is a closed linear subspace of L2(Ω).
One can show that the Nemytskĭı operator f̂ maps the space H1

Γ,s(Ω) into
L2

Γ,s(Ω). Consequently the abstract parabolic equation

(1.7) u̇ + A0u = f̂(u)

defines a semiflow π0 on the space H1
Γ,s(Ω). This is the limit semiflow of the

family πε. The following results are proved in [13]:

Theorem A. Let (εn)n∈N be an arbitrary sequence of positive numbers con-
vergent to zero and (un)n∈N be a sequence in L2(Ω) converging in the norm of
L2(Ω) to some u0 ∈ L2

Γ,s(Ω). Moreover, let (tn)n∈N be an arbitrary sequence of
positive numbers converging to some positive number t0. Then

|e−tnAεn un − e−t0A0u0|εn
→ 0 as n →∞.

If, in addition, un ∈ H1(Ω) for every n ∈ N and if u0 ∈ H1
Γ,s(Ω), then

|unπεn
tn − u0π0t0|εn

→ 0 as n →∞.

The limit semiflow π0 possesses a global attractor A0. The upper-semiconti-
nuity result alluded to above reads as follows:

Theorem B. The family of attractors (Aε)ε∈[0,1] is upper-semicontinuous
at ε = 0 with respect to the family of norms | · |ε. This means that

lim
ε→0+

sup
u∈Aε

inf
v∈A0

|u− v|ε = 0.

In particular, there exists an ε1 > 0 and an open bounded set U in H1(Ω)
including all the attractors Aε, ε ∈ [0, ε1].

Remark. Theorems A and B were actually proved in the case Γ = ∅, but
the proof is valid (with only minor changes) also in the general case, as long as
H1

Γ,s(Ω) is infinite dimensional.

The definition of the linear operator A0, as given above, is not very explicit.
If N = M = 1, however, it was shown in [13] and [14] that there is a large class of
the so-called nicely decomposed domains on which A0 can be characterized as a
system of one-dimensional second order linear differential operators, coupled to
each other by certain compatibility and Kirchhoff type balance conditions. In this
case, the abstract limit equation (1.7) is equivalent to a parabolic equation on a
finite graph. Roughly speaking, a planar domain Ω admits a nice decomposition
if, up to a set of measure zero contained in a set Z of finitely many vertical lines,
Ω can be decomposed into finitely many domains Ωk, k = 1, . . . , r in such a
way that at Z the various sets Ωk and Ωl “join” in a nice way. Points of Ω ∩ Z

are, intuitively speaking, those at which connected components of the vertical
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sections Ωx bifurcate (see Figure 3 in [13]). In higher dimensions it is not clear
whether it is possible to describe a reasonable, sufficiently large, class of domains
for which an explicit characterization of H1

Γ,s(Ω) and of D(A0) can be carried
on. Nevertheless, in some concrete cases, one can go along the same ideas of [13]
and give a nice characterization of these spaces. In this paper we concentrate
on the case N = 2 and M = 1 and we illustrate with two examples how this is
possible. Our examples deal with a set Ω which is obtained by removing from a
cylinder a smaller cylinder contained in the interior of the first. More precisely,
take open sets ω, ω1, ω2 and ω3 in R2 such that

ω is bounded, connected and has C2-boundary,

ω2 = ω3 b ω have C2-boundary,

ω1 := ω \ ω2.

Notice that ω1 is not necessarily connected. Moreover, let h1, h2 and h3 be
positive real numbers, with h1 > h2 + h3. Then we define

(1.8) Ω := (ω × ]0, h1[) \ (ω2 × ]h3, h1 − h2[).

Figure 1 represents the domain Ω, when ω and ω2 are balls centered at 0.

�
Ω2

Ω1 Ω1

Ω3

h2

h3

h1

r
R

Figure 1. The Domain Ω

For later use we need also to define

Ω1 := ω1 × ]0, h1[ , Ω2 := ω2 × ]h1 − h2, h1[ , Ω3 := ω3 × ]0, h3[ ,

and

Ω4 := ω1 × ]h3, h1 − h2[ , Ω5 := ω × ]h1 − h2, h1[ ,

Ω6 := ω × ]0, h3[ , Ω7 := R2 × ]h3, h1 − h2[ .
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Finally, we set

Γ1 := ∂ω × [0, h1], Γ2 := ∂ω2 × [h3, h1 − h2], ΓL := Γ1 ∪ Γ2.

We shall consider equation (1.1) on Ωε = Tε(Ω), where Ω is the domain defined
above, with two different sets of boundary conditions, namely with Γ = ∅ and
with Γ = ΓL. We shall see that these different boundary conditions give rise to
completely different behaviors as ε → 0. In fact, when Γ = ∅, i.e. we impose the
Neumann boundary condition on the whole ∂Ωε, equation (1.7) is equivalent to
the following system of two-dimensional reaction-diffusion equations

(1.9)


uit = ∆ui + f(ui) for t > 0, x ∈ ωi, i = 1, 2, 3,

u1(x) = u2(x) = u3(x) for t > 0, x ∈ ∂ω2,

∂ν1u1 = 0 for t > 0, x ∈ ∂ω,∑3
i=1 hi∇ui · νi = 0 for t > 0, x ∈ ∂ω2.

Here νi, i = 1, 2, 3, is the outward normal vector field on ∂ωi for i = 1, 2, 3, re-
spectively. Observe that the three equations in (1.9) are coupled by compatibility
and Kirchoff type balance conditions on the “interface” ∂ω2. Figure 2 below il-
lustrates the “limit” of the family (Ωε) as ε → 0 for the domain represented in
Figure 1.

�R

rr r

ω1

ω2 ω3

Figure 2. The “limit” of the Ωε

On the other hand, when Γ = ΓL, i.e. we impose the Dirichlet boundary
condition on the ‘lateral’ surface ΓL, equation (1.7) is equivalent to the following
system of two-dimensional reaction-diffusion equations

(1.10)

{
uit = ∆ui + f(ui) for t > 0, x ∈ ωi, i = 1, 2, 3,

ui(x) = 0 for t > 0, x ∈ ∂ωi, i = 1, 2, 3.

So in this case the “limit” problem is a completely decoupled system of scalar
reaction-diffusion equations.

These two examples furnish a prototype for many concrete situations that
may occur in practice. In particular, we point out that the core of the problem
consists in proving regularity of the solutions of the linear equation

A0u = w with w ∈ L2
Γ,s(Ω).
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Once the spaces L2
Γ,s(Ω), H1

Γ,s(Ω) and D(A0) have been characterized, one can
easily show that (1.7) is equivalent to a system of concrete reaction-diffusion
equations of type (1.9) or (1.10).

Finally, as we shall explain in Section 3, the characterization of A0 and of
its domain can be exploited to compute the eigenvalues of A0 in some specific
situations, like the one represented in Figure 1. Of course, informations on the
location and on the multiplicity of the eigenvalues of A0 are very important in
the study of local bifurcations of (1.7).

2. Characterization of H1
Γ,s(Ω)

We begin by recalling a general notion introduced in [13]: we say that an
open set Ω ∈ RN+M has connected vertical sections if for every x ∈ RN the
x-section Ωx is connected. Of course, this section is nonempty if and only if
x ∈ P (Ω), where P : RN × RM → RN , (x, y) 7→ x is the projection onto the first
N components. The following proposition was proved in [13]:

Proposition 2.1. Suppose Ω has connected vertical sections. Let J := P (Ω)
and define the function p: J → ]0,∞[ by x 7→ µM (Ωx). If u ∈ L2(Ω) satisfies
∇yu = 0 in the distributional sense, then there is a null set S in RN+M and a
function v ∈ L1

loc(J) such that u(x, y) = v(x) for every (x, y) ∈ Ω\S. Moreover,
p1/2v ∈ L2(J). If u ∈ H1(Ω) then ∂xi

v ∈ L1
loc(J) for i = 1, . . . , N and we can

choose the null set S so that u(x, y) = v(x) and ∂xi
u(x, y) = ∂xi

v(x) for every
i = 1, . . . , N and (x, y) ∈ Ω \ S. Moreover, p1/2∂xiv ∈ L2(J) for every i = 1,
. . . , N .

Now we come back to the domain Ω defined by (1.8). In what follows, we
may assume indifferently that Γ = ΓL or Γ = ∅. For k = 1, . . . , 7 let us define

H1
s (Ωk) := {u ∈ H1(Ωk) | ∇yu = 0 a.e.}.

Moreover, let us define L2
s(Ωk) as the closure of H1

s (Ωk) in L2(Ωk).

Lemma 2.2. For k = 1, . . . , 6, the following properties hold:

(a) whenever u ∈ L2
Γ,s(Ω), then u|Ωk

∈ L2
s(Ωk),

(b) whenever u ∈ H1
Γ,s(Ω), then u|Ωk

∈ H1
s (Ωk).

Proof. Part (b) is obvious and part (a) follows directly from part (b) and
from the definition of L2

Γ,s(Ω) and L2
s(Ωk). �

For k = 1, 2, 3, let us define the spaces Lk := L2(ωk) and Hk := H1(ωk).
Define on Lk and Hk the scalar products

〈u, v〉Lk
:=

∫
ωk

hku(x)v(x) dx,
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〈u, v〉Hk
:=

∫
ωk

hku(x)v(x) dx +
∫

ωk

hk∇u(x) · ∇v(x) dx,

respectively. Moreover, for k = 1, 2, 3, let us define the mapping

ık:L2
s(Ωk) → Lk, u 7→ v,

where v is the function given by proposition 2.1. It turns out that ık is an
isometry of L2

s(Ωk) onto Lk for k = 1, 2, 3. Moreover, ık restricts to an isometry
of H1

s (Ωk) onto Hk for k = 1, 2, 3. Let us define the product spaces

L⊕ := L1 ⊕ L2 ⊕ L3 := {[u] = (u1, u2, u3) | uk ∈ Lk, k = 1, 2, 3},
H⊕ := H1 ⊕H2 ⊕H3 := {[u] = (u1, u2, u3) | uk ∈ Hk, k = 1, 2, 3}

with the scalar products

〈[u], [v]〉L⊕ := 〈u1, v1〉L1 + 〈u2, v2〉L2 + 〈u3, v3〉L3 ,

〈[u], [v]〉H⊕ := 〈u1, v1〉H1 + 〈u2, v2〉H2 + 〈u3, v3〉H3 ,

respectively. It is easy to check that L⊕ and H⊕ are Hilbert spaces. Besides, let
us define the map

ı⊕:L2
Γ,s(Ω) → L⊕, ı⊕u := (ı1(u|Ω1), ı2(u|Ω2), ı3(u|Ω3)).

Observe that

〈u, v〉L2(Ω) = 〈ı⊕u, ı⊕v〉L⊕ for u and v ∈ L2
Γ,s(Ω),

〈u, v〉L2(Ω) + a0(u, v) = 〈ı⊕u, ı⊕v〉H⊕ for u and v ∈ H1
Γ,s(Ω).

It follows by Lemma 2.2 that ı⊕ is an isometry of L2
Γ,s(Ω) into L⊕ and that ı⊕

restricts to an isometry of H1
Γ,s(Ω) into H⊕. Finally, let us define

H0
⊕ := {[u] ∈ H⊕ | uk ∈ H1

0 (ωk) for k = 1, 2, 3},
HC
⊕ := {[u] ∈ H⊕ | τu1(x) = τu2(x) = τu3(x) H1-a.e. on ∂ω2},

where H1 is the one-dimensional Hausdorff measure in R2 and τuk is the trace
of uk on ∂ωk for k = 1, 2, 3. We call

(2.1) τu1(x) = τu2(x) = τu3(x) H1-a.e. on ∂ω2

the compatibility condition on ∂ω2.
Now we are able to characterize the spaces H1

Γ,s(Ω) and L2
Γ,s(Ω):

Theorem 2.3. The following properties hold:

(a) ı⊕(L2
Γ,s(Ω)) = L⊕,

(b) ı⊕(H1
Γ,s(Ω)) = HC

⊕ if Γ = ∅ and ı⊕(H1
Γ,s(Ω)) = H0

⊕ if Γ = ΓL.



Higher Dimensional Thin Domain Problems 159

Proof. We begin by proving (b). Let Γ = ΓL or Γ = ∅ and let u ∈ H1
Γ,s(Ω).

Let ı⊕u := [v] = (v1, v2, v3). We shall prove that

(2.2) τv1(x) = τv2(x) = τv3(x) H1-a.e. on ∂ω2.

By the definition of ı⊕ and by Proposition 2.1, there exists a null set S ⊂ R3

such that

u(x, y) = vk(x) for all (x, y) ∈ Ωk \ S and for k = 1, 2, 3.

On the other hand, again by Proposition 2.1, we can find two functions v5 and
v6 ∈ H1(ω) and we can choose the set S in such a way that

u(x, y) = vl(x) for all (x, y) ∈ Ωl \ S and for l = 5, 6.

It follows that

v1(x) = v5(x) = v6(x) a.e. in ω1,

v2(x) = v5(x) a.e. in ω2,

v3(x) = v6(x) a.e. in ω3.

Define the functions ṽ5 and ṽ6:ω → R by

ṽ5(x) :=


v1(x) if x ∈ ω1,

v2(x) if x ∈ ω2,

0 otherwise,

and ṽ6(x) :=


v1(x) if x ∈ ω1,

v3(x) if x ∈ ω3,

0 otherwise.

It follows that ṽ5 = v5 and ṽ6 = v6 almost everywhere in ω and hence ṽ5 and
ṽ6 ∈ H1(ω). This in turns implies (2.2) (see [1, Lemma A 5.10, p. 195]). This
proves that ı⊕H1

Γ,s(Ω) ⊂ HC
⊕ . Assume now that Γ = ΓL. We shall show that in

this case v1 ∈ H1
0 (ω1). Let us define the function ũ: Ω7 → R by

ũ(x, y) :=

{
u(x, y) if x ∈ Ω4,

0 otherwise.

Since τu(x, y) = 0 H2-a.e. on ΓL, it follows that ũ ∈ H1
s (Ω7) (here H2 is the

two-dimensional Hausdorff measure in R3 and τu is the trace of u on ∂Ω). By
Proposition 2.1, there exist a null set S ⊂ R3 and a function v7 ∈ H1(R2) such
that

ũ(x, y) = v7(x) for all (x, y) ∈ Ω7 \ S.

Observe that v7 = 0 a.e. in R2\ω1. On the other hand, again by Proposition 2.1,
we can find a function v4 ∈ H1(ω1) and we can choose the set S in such a way
that

u(x, y) = v4(x) for all (x, y) ∈ Ω4 \ S.
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It follows that v1 = v4 = v7 almost everywhere in ω1. This in turn implies that
τv1(x) = 0 H1-a.e. on ∂ω1 (see again [1]), i.e. v1 ∈ H1

0 (ω1). So far, we have
proved that ı⊕(H1

Γ,s(Ω)) ⊂ HC
⊕ and, if Γ = ΓL, ı⊕(H1

Γ,s(Ω)) ⊂ H0
⊕.

Assume now that [v] ∈ HC
⊕ . We shall prove that there exists a function

u ∈ H1
Γ,s(Ω), with Γ = ∅, such that ı⊕u = [v]. Let us define a function u on Ω

in the following way:

u(x, y) :=

{
vk(x) if (x, y) ∈ Ωk, k = 1, 2, 3,

0 otherwise.

Obviously, u|Ω1 ∈ H1(Ω1). Moreover, u|Ω5 ∈ H1(Ω5). In fact, the function
ṽ5:ω → R defined by

ṽ5(x) :=


v1(x) if x ∈ ω1,

v2(x) if x ∈ ω2,

0 otherwise,

is in H1(ω), since τv1(x) = τv2(x) H1-a.e. on ∂ω2 (see again [1]). Analogously,
u|Ω6 ∈ H1(Ω6). Now since (Ωl)l=1,5,6 is an open covering of Ω, it follows imme-
diately that u ∈ H1(Ω). It is easily verified that ∇yu = 0 almost everywhere, so
u ∈ H1

Γ,s(Ω). By construction, ı⊕u = [v].
Assume now that [v] ∈ H0

⊕. We shall prove that there exists a function
u ∈ H1

Γ,s(Ω), with Γ = ΓL, such that ı⊕u = [v]. As before, let us define a
function u on Ω in the following way:

u(x, y) :=

{
vk(x) if (x, y) ∈ Ωk, k = 1, 2, 3,

0 otherwise.

By the same arguments as above, it follows easily that u ∈ H1(Ω) and that
∇yu = 0 almost everywhere. We shall show that τu = 0 on ΓL. To this end,
let us choose sequences (vn

k )n∈N, vn
k ∈ C1

0 (ωk), vn
k → vk in H1(ωk) as n → ∞,

k = 1, 2, 3, and let us define

un(x, y) :=

{
vn

k (x) if (x, y) ∈ Ωk, k = 1, 2, 3,

0 otherwise,

for n ∈ N. Then un ∈ C1(Ω) and un(x) = 0 on ΓL for all n ∈ N. Moreover,
it is easy to verify that un → u in H1(Ω), so we deduce that u ∈ H1

Γ,s(Ω). By
construction we have that ı⊕u = [v]. This concludes the proof of part (b).

Now we prove (a). Let [v] ∈ L⊕. We shall prove that there exists v ∈ L2
Γ,s(Ω)

such that ı⊕u = [v]. Again, we define a function u on Ω in the following way:

u(x, y) :=

{
vk(x) if (x, y) ∈ Ωk, k = 1, 2, 3,

0 otherwise.
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Then u ∈ L2(Ω). We claim that u ∈ L2
Γ,s(Ω), both with Γ = ΓL and with Γ = ∅.

This means that u can be approximated in the L2-norm by functions of H1
Γ,s(Ω).

To this end, let us choose sequences (vn
k )n∈N, vn

k ∈ C1
0 (ωk), vn

k → vk in L2(ωk)
as n →∞, k = 1, 2, 3, and let us define

un(x, y) :=

{
vn

k (x) if (x, y) ∈ Ωk, k = 1, 2, 3,

0 otherwise.

for n ∈ N. Then, as in the proof of part (a), un ∈ H1
Γ,s(Ω) for all n ∈ N, both

with Γ = ΓL and with Γ = ∅. Moreover, it is easy to verify that un → u in
L2(Ω), so we deduce that u ∈ L2

Γ,s(Ω). By construction we have that ı⊕u = [v]
and the proof is complete. �

Corollary 2.4. The space H1
Γ,s(Ω) is infinite dimensional, both with Γ = ∅

and with Γ = ΓL.

3. H2-regularity and characterization of D(A0)

Let us define the bilinear forms

ak(u, v) :=
∫

ωk

hk∇u(x) · ∇v(x) dx, u, v ∈ Hk

on Hk ×Hk, k = 1, 2, 3, and the bilinear form

a⊕([u], [v]) := a1(u1, v1) + a2(u2, v2) + a3(u3, v3), [u], [v] ∈ H⊕

on H⊕ ×H⊕. Let us indicate by aC
⊕ and a0

⊕ the restrictions of a⊕ to HC
⊕ ×HC

⊕
and H0

⊕ × H0
⊕, respectively. Let AC

⊕ (resp. A0
⊕) be the self-adjoint operator

generated by aC
⊕ (resp. a0

⊕) in HC
⊕ (resp. H0

⊕). Finally, let us indicate simply
by a the bilinear form a0 on H1

Γ,s(Ω) ×H1
Γ,s(Ω) defined in (1.5), and by A the

corresponding self-adjoint operator A0 defined in (1.6). Observe that

a(u, v) = a⊕(ı⊕u, ı⊕v) for u and v ∈ H1
Γ,s(Ω).

Assume that Γ = ∅. If u ∈ D(A), then, for all v ∈ H1
Γ,s(Ω), we have

〈Au, v〉L2(Ω) = a(u, v) = aC
⊕(ı⊕u, ı⊕v).

On the other hand, 〈Au, v〉L2(Ω) = 〈ı⊕Au, ı⊕v〉L⊕ . It follows that

aC
⊕(ı⊕u, ı⊕v) = 〈ı⊕Au, ı⊕v〉L⊕

for all v ∈ H1
Γ,s(Ω), so ı⊕u ∈ D(AC

⊕) and AC
⊕ı⊕u = ı⊕Au. Similarly, one can

prove that, whenever [u] ∈ D(AC
⊕), then ı−1

⊕ [u] ∈ D(A) and Aı−1
⊕ [u] = ı−1

⊕ AC
⊕[u].

This means that ı⊕ restricts to an isometry of D(A) onto D(AC
⊕) and that

A = ı−1
⊕ AC

⊕ı⊕.
In the same way we can prove that, if Γ = ΓL, then ı⊕ restricts to an isometry

of D(A) onto D(A0
⊕) and that A = ı−1

⊕ A0
⊕ı⊕.
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So the problem of characterizing D(A) reduces to the problem of character-
izing D(AC

⊕) and D(A0
⊕).

We need the following regularity result:

Proposition 3.1. Let [u] ∈ H⊕ and [w] ∈ L⊕. Assume that one of the
following properties holds:

(a) [u] ∈ HC
⊕ and a⊕([u], [v]) = 〈[w], [v]〉L⊕ for all [v] ∈ HC

⊕ ,
(b) [u] ∈ H0

⊕ and a⊕([u], [v]) = 〈[w], [v]〉L⊕ for all [v] ∈ H0
⊕.

Then uk ∈ H2(ωk) for k = 1, 2, 3.

Proof. See the Appendix. �

For k = 1, 2, 3 let us define the spaces

Zk := H2(ωk) and Z0
k := H2(ωk) ∩H1

0 (ωk).

Moreover, let us define the spaces

Z⊕ := Z1 ⊕ Z2 ⊕ Z3 and Z0
⊕ := Z0

1 ⊕ Z0
2 ⊕ Z0

3 .

Then we have the following characterization of D(AC
⊕) and D(A0

⊕):

Theorem 3.2. The following properties hold

(a) D(A0
⊕) = Z0

⊕ and A0
⊕[u] = (−∆u1,−∆u2,−∆u3) for [u] ∈ Z0

⊕,
(b) D(AC

⊕) = ZC
⊕ and AC

⊕[u] = (−∆u1,−∆u2,−∆u3) for [u] ∈ ZC
⊕ , where

ZC
⊕ is the subspace of Z⊕ consisting of all [u] = (u1, u2, u3) satisfying

τu1(x) = τu2(x) = τu3(x) H1-a.e. on ∂ω2,

∂ν1u1(x) = 0 H1-a.e. on ∂ω,

and

(3.1) h1∇u1 · ν1 + h2∇u2 · ν2 + h3∇u3 · ν3 = 0 H1-a.e. on ∂ω2,

where νk is the outward normal vector field on ∂ωk for k = 1, 2, 3. We
call (3.1) the (Kirchoff type) balance condition on ∂ω2.

Proof. First we prove (a). Let [u] ∈ D(A0
⊕). Then by definition there

exists [w] ∈ L⊕ such that

a⊕([u], [v]) = 〈[w], [v]〉L⊕ for all [v] ∈ H0
⊕.
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Since by Proposition 3.1 uk ∈ H2(ωk)∩H1
0 (ωk) for k = 1, 2, 3, we obtain imme-

diately that [u] ∈ Z0
⊕. Moreover, a simple integration by parts yields

−
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx =
3∑

k=1

∫
ωk

hk∇vk(x) · ∇uk(x) dx

=
3∑

k=1

∫
ωk

hkvk(x)wk(x) dx

for all [v] ∈ H0
⊕. Choose [v] = (v1, 0, 0), with v1 ∈ H1

0 (ω1) arbitrary. Then by
definition [v] ∈ H0

⊕. With this choice, we obtain

−
∫

ω1

h1v1(x)∆u1(x) dx =
∫

ω1

h1v1(x)w1(x) dx

for all v1 ∈ H1
0 (ω1). This implies that w1 = −∆u1. In the same way, we obtain

that wk = −∆uk for k = 1, 2, 3, i.e. A0
⊕[u] = (−∆u1,−∆u2,−∆u3).

Assume conversely that [u] ∈ Z0
⊕. Then integration by parts implies that

3∑
k=1

∫
ωk

hk∇vk(x) · ∇uk(x) dx = −
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx

for all [v] ∈ H0
⊕. Since (−∆u1,−∆u2,−∆u3) ∈ L⊕, it follows that [u] ∈ D(A0

⊕)
and the proof of part (a) is complete.

Part (b) is a little more involved. Let [u] ∈ D(AC
⊕). Then by definition there

exists [w] ∈ L⊕ such that

a⊕([u], [v]) = 〈[w], [v]〉L⊕ for all [v] ∈ HC
⊕ .

By Proposition 3.1, uk ∈ H2(ωk) for k = 1, 2, 3, so we obtain immediately that
[u] ∈ Z⊕. Moreover, since [u] ∈ HC

⊕ , we have of course τu1(x) = τu2(x) = τu3(x)
H1-a.e. on ∂ω2. A simple integration by parts yields

−
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx +
3∑

k=1

∫
∂ωk

hkvk(x)∇uk(x) · νk(x) dH1x

=
3∑

k=1

∫
ωk

hk∇vk(x) · ∇uk(x) dx =
3∑

k=1

∫
ωk

hkvk(x)wk(x) dx

for all [v] ∈ HC
⊕ . Choose [v] = (v1, 0, 0), with v1 ∈ H1

0 (ω1) arbitrary. Then
[v] ∈ HC

⊕ . With this choice, we obtain

−
∫

ω1

h1v1(x)∆u1(x) dx =
∫

ω1

h1v1(x)w1(x) dx for all v1 ∈ H1
0 (ω1).

Since H1
0 (ω1) is dense in L2(ω1), we obtain that w1 = −∆u1. In the same way,

we obtain that wk = −∆uk for k = 1, 2, 3, i.e. AC
⊕[u] = (−∆u1,−∆u2,−∆u3).
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Now choose [v] = (v1, 0, 0) with τv1 = 0 H1-a.e. on ∂ω2. Then [v] ∈ HC
⊕ and we

obtain

−
∫

ω1

h1v1(x)∆u1(x) dx +
∫

∂ω

h1v1(x)∇u1(x) · ν1(x) dH1x

=
∫

ω1

h1∇v1(x) · ∇u1(x) dx = aC
⊕([v], [u])

= 〈[v], AC
⊕[u]〉L⊕ = −

∫
ω1

h1v1(x)∆u1(x) dx.

It follows that ∫
∂ω

h1v1(x)∇u1(x) · ν1(x) dH1x = 0.

Since τv1 can be chosen arbitrarily in a dense subspace of L2(∂ω), we obtain that
∂ν1u1(x) = 0 H1-a.e. on ∂ω. Finally, choose [v] in such a way that τv1(x) = 0
H1-a.e. on ∂ω. Then we have

−
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx +
3∑

k=1

∫
∂ω2

hkvk(x)∇uk(x) · νk(x) dH1x

=
3∑

k=1

∫
ωk

hk∇vk(x) · ∇uk(x) dx = aC
⊕([v], [u]) = 〈[v], AC

⊕[u]〉L⊕

= −
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx.

It follows that
3∑

k=1

∫
∂ω2

hkvk(x)∇uk(x) · νk(x) dH1x = 0.

Since [v] ∈ HC
⊕ , we have τv1(x) = τv2(x) = τv3(x) H1-a.e. on ∂ω2. Finally, since

τv1 can be chosen arbitrarily in a dense subspace of L2(∂ω2), we obtain that
h1∇u1 · ν1 + h2∇u2 · ν2 + h3∇u3 · ν3 = 0 H1-a.e. on ∂ω2, and hence [u] ∈ ZC

⊕ .
Assume conversely that [u] ∈ ZC

⊕ . Then integration by parts implies that

3∑
k=1

∫
ωk

hk∇vk(x) · ∇uk(x) dx

= −
3∑

k=1

∫
ωk

hkvk(x)∆uk(x) dx +
3∑

k=1

∫
∂ωk

hkvk(x)∇uk(x) · νk(x) dH1x

for all [v] ∈ HC
⊕ .

Since [v] ∈ HC
⊕ , we have τv1(x) = τv2(x) = τv3(x)H1-a.e. on ∂ω2. Moreover,

since [u] ∈ ZC
⊕ , we have ∂ν1u1(x) = 0 H1-a.e. on ∂ω and h1∇u1 · ν1 + h2∇u2 ·
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ν2 + h3∇u3 · ν3 = 0 H1-a.e. on ∂ω2. This implies immediately that
3∑

k=1

∫
∂ωk

hkvk(x)∇uk(x) · νk(x) dH1x = 0.

Since (−∆u1,−∆u2,−∆u3) ∈ L⊕, it follows that [u] ∈ D(A0
⊕) and the proof is

complete. �

Remark. Thanks to Theorem 3.2, one can easily prove that the semiflow
generated by equation (1.7) in H1

Γ,s(Ω) with Γ = ∅ (resp. Γ = ΓL) and the
semiflow generated by equation (1.9) (resp. (1.10)) are conjugate by mean of the
isometry ı⊕.

4. An application: computation of the eigenvalues

In this section we shall explain how the characterization of A0 and of its
domain, obtained in Section 3, can be exploited, in some specific situations, to
compute the eigenvalues of A0. We shall consider the domain Ω described in
Figure 1: we choose two real numbers r and R, 0 < r < R, and we define

ω := {x ∈ R2 | 0 ≤ |x|2 < R2}, ω2 = ω3 := {x ∈ R2 | 0 ≤ |x|2 < r2}.

First, we observe that, thanks to Theorem 3.2, in the case Γ = ΓL the
abstract eigenvalue problem

A0u = λu

is equivalent to the system

(4.1)

{
−∆uj = λuj for x ∈ ωj , j = 1, 2, 3,

uj = 0, for x ∈ ∂ωj , j = 1, 2, 3.

The equations in this system are completely decoupled, so in this case the se-
quence of the eigenvalues of A0 is just the union of the sequences of eigenvalues
of the three Dirichlet problems considered separately. These problems can be
easily treated in the standard way by writing the equations in polar coordinates
and then using separation of variables. This is a classical result and we don’t
discuss it here.

The case Γ = ∅ is more interesting. Thanks to Theorem 3.2, the abstract
eigenvalue problem

A0u = λu

is equivalent to the system

(4.2)


−∆uj = λuj , x ∈ ωj , j = 1, 2, 3,

u1(x) = u2(x) = u3(x), |x| = r,

∂ν1u1 = 0, |x| = R,∑3
j=1 hj∇uj · νj = 0, |x| = r.
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Also in this case the computation exploits polar coordinates and separation of
variables, but we have to be a little careful because of the coupling at the “in-
terface” {|x| = r}. Let us write for simplicity A := AC

⊕ and let us indicate by
AC the complexification of A. Then AC is a self-adjoint operator in the com-
plex Hilbert space LC

⊕ := L⊕ + iL⊕ with domain D(AC) = D(A) + iD(A). The
action of AC is defined in the obvious way by AC([u] + i[v]) := A[u] + iA[v].
The operators A and AC have the same eigenvalues with the same multiplicity.
Let Φ: ]0,∞[ × ]0, 2π[ → R2, Φ(ρ, θ) 7→ (ρ cos θ, ρ sin θ) be the system of polar
coordinates on R2 \ (R+ × {0}).

Set I1 := ]r, R[ and Ij := ]0, r[ for j = 2, 3. We look for eigenvalue-eigenvector
pairs (λ, [u]), where λ ≥ 0 and [u] has the form

[u] = (u1, u2, u3)

with (uj ◦ Φ)(ρ, θ) = vj(ρ)einθ, (ρ, θ) ∈ Ij × ]0, 2π[ , j = 1, 2, 3.(4.3)

Here n ∈ Z and vj : Ij → R for j = 1, 2, 3. Let us recall that the Laplacian in
two-dimensional polar coordinates assumes the form

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2
.

Let us fix n ∈ Z. Then an eigenvalue-eigenvector pair of the form (4.3) must
satisfy

(4.4)



−
(

v′′j +
1
ρ
v′j −

n2

ρ2
vj

)
= λvj , ρ ∈ Ij , j = 1, 2, 3,

v2 and v3 regular at 0,

v1(r) = v2(r) = v3(r),

v′1(R) = 0,

h1v
′
1(r) = h2v

′
2(r) + h3v

′
3(r).

If λ = 0 and n = 0, the space of solutions of (4.4) is one-dimensional, and is
generated by (v1, v2, v3) = (1, 1, 1). In fact a fundamental system of solutions
for the equation

v′′j +
1
ρ
v′j = 0

is given by 1 and log ρ. If λ = 0 and n 6= 0, then (4.4) has no non-trivial solutions.
In fact, a fundamental system of solutions for the equation

v′′j +
1
ρ
v′j −

n2

ρ2
vj = 0

is given by ρn and ρ−n.
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Assume now that λ 6= 0. Setting ṽj(ξ) := vj(ξ/
√

λ), we transform the
equations

(4.5) −
(

v′′j +
1
ρ
v′j −

n2

ρ2
vj

)
= λvj , j = 1, 2, 3

to

(4.6) ṽ′′j +
1
ξ
ṽ′j +

(
1− n2

ξ2

)
ṽj = 0, j = 1, 2, 3.

The latter are Bessel equations of order |n| and, for j = 1, 2, 3, a corresponding
fundamental system of solutions is given by J|n|(ξ) and Y|n|(ξ), where J|n| and
Y|n| are the first and the second Bessel function of order |n| (see e.g. [19]).
It follows that a fundamental system of solutions for the equations (4.5) for
j = 1, 2, 3 is given by

J|n|(
√

λρ), Y|n|(
√

λρ).

It is well known that Y|n| is singular at 0. It follows that, for a given positive λ,
(4.4) admits nontrivial solutions if and only if we can find real constants ci,
i = 1, . . . , 4, with (c1, c2, c3, c4) 6= (0, 0, 0, 0), such that

(4.7)


c1J

′
|n|(

√
λR) + c4Y

′
|n|(

√
λR) = 0,

c1J|n|(
√

λr) + c4Y|n|(
√

λr) = c2J|n|(
√

λr),

c2J|n|(
√

λr) = c3J|n|(
√

λr),

c1h1J
′
|n|(

√
λr) + c4h1Y

′
|n|(

√
λr) = c2h2J

′
|n|(

√
λr) + c3h3J

′
|n|(

√
λr).

This is possible if and only if detM(n, λ, r,R) = 0, where

M(n, λ, r,R) =


J ′|n|(

√
λR) 0 0 Y ′|n|(

√
λR)

J|n|(
√

λr) −J|n|(
√

λr) 0 Y|n|(
√

λr)
0 J|n|(

√
λr) −J|n|(

√
λr) 0

h1J
′
|n|(

√
λr) −h2J

′
|n|(

√
λr) −h3J

′
|n|(

√
λr) h1Y

′
|n|(

√
λr)

.

Observe that det M(n, λ, r,R) is an analytic function of λ > 0. It follows that,
for every n ∈ Z, the zeroes of det M(n, λ, r,R) in R+ form a sequence λnm,
m = 1, 2, . . . of eigenvalues of AC and hence of A. Thus we obtain that the set

{λnm | n ∈ Z, m = 1, 2, . . . } ∪ {0}

is contained in the sequence of the eigenvalues of AC and hence of A. The
corresponding eigenfunctions can be computed by solving the system (4.7) with
λ = λnm. If (c1, c2, c3, c4) is a nontrivial real solution of (4.7), then

((c1J|n|(
√

λnmρ)+ c4Y|n|(
√

λnmρ))einθ, c2J|n|(
√

λnmρ)einθ, c3J|n|(
√

λnmρ)einθ)
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is an eigenfunction for the eigenvalue λnm, expressed in polar coordinates. Thus,
for n ∈ Z and m = 1, 2, . . . fixed, we obtain a finite set of orthonormal eigen-
functions

{[u]`nm | ` = 1, . . . , p(n, m)}

for the eigenvalue λnm. Notice that p(n, m) ≤ 4. However, the multiplicity
of λnm can be larger than p(n, m), since we can have λn m = λnm for some
(n, m) 6= (n, m).

Finally, we claim that all eigenvalues and eigenfunctions of AC can be ob-
tained in this way. To this end, for n ∈ Z let us first define the space

(LC
⊕)n := {[u] ∈ LC

⊕ | (uj ◦ Φ)(ρ, θ) = vj(ρ)einθ,

vj : Ij → C, (ρ, θ) ∈ Ij × ]0, 2π[ , j = 1, 2, 3}.

Observe that a triple of functions (u1, u2, u3), uj :ωj → C, j = 1, 2, 3, satisfying
(uj ◦ Φ)(ρ, θ) = vj(ρ)einθ for some vj : Ij → C, (ρ, θ) ∈ Ij×]0, 2π[, j = 1, 2, 3,
belongs to (LC

⊕)n if and only if∫
Ij

ρ|vj(ρ)|2 dρ < ∞ for j = 1, 2, 3.

In fact, ρ = JΦ(ρ, θ) for (ρ, θ) ∈ ]0,∞[× ]0, 2π[. It is also easy to check that

(LC
⊕)n ⊥ (LC

⊕)n for n 6= n.

Moreover, ⊕
n∈Z

(LC
⊕)n = LC

⊕

since {einθ | n ∈ Z} is a complete orthonormal system in L2(]0, 2π[ , C).
Write

[u]00 :=
( 3∑

j=1

hj |ωj |
)−1/2

(1, 1, 1).

If we show that, for a fixed n ∈ Z, n 6= 0, the set

{[u]`nm | ` = 1, . . . , p(n, m), m = 1, 2, . . . }

is a complete orthonormal system in (LC
⊕)n and that the set

{[u]`0m | ` = 1, . . . , p(0,m), m = 1, 2, . . . } ∪ {[u]00}

is a complete orthonormal system in (LC
⊕)0, we are done.

Let us define the Hilbert space

L⊕ := {[v] = (v1, v2, v3) | ρ1/2vj(ρ) ∈ L2(Ij , R), j = 1, 2, 3}
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equipped with the scalar product

{[v], [ν]}⊕ :=
3∑

j=1

∫
Ij

hjρvj(ρ)νj(ρ) dρ, [v], [ν] ∈ L⊕.

Set LC
⊕ = L⊕ + i L⊕, i.e.

LC
⊕ := {[v] = (v1, v2, v3) | ρ1/2vj(ρ) ∈ L2(Ij , C), j = 1, 2, 3}.

Moreover, let us define the isometry : LC
⊕ → (LC

⊕)n by

(v1, v2, v3) 7→ (2π)−1/2(w1 ◦ Φ−1, w3 ◦ Φ−1, w3 ◦ Φ−1),

where wj(ρ, φ) := vj(ρ)einθ, (ρ, θ) ∈ Ij × ]0, 2π[, j = 1, 2, 3. It is enough to prove
that the sets

Bn := {−1[u]`nm | ` = 1, . . . , p(n, m), m = 1, 2, . . . }, n ∈ Z \ {0},
B0 := {−1[u]`0m | ` = 1, . . . , p(0,m), m = 1, 2, 3, . . . } ∪ {−1[u]00}

are complete orthonormal systems in LC
⊕. Actually, since

−1[u]`nm = (v`
nm,1, v

`
nm,2, v

`
nm,3) ∈ L⊕

for ` = 1, . . . , p(n, m), m = 1, 2, 3, . . . and for all n ∈ Z,

it is enough to prove that Bn and B0 are complete orthonormal systems in L⊕.
Set λ`

nm := λnm for ` = 1, . . . , p(n, m), m = 1, 2, . . . , n ∈ Z. For n 6= 0, the
set

En := {(λ`
nm, −1[u]`nm) | ` = 1, . . . , p(n, m), m = 1, 2, . . . }

is by construction the set of eigenvalue-eigenvector pairs of the system

(4.8)



−
(

v′′j +
1
ρ
v′j −

n2

ρ2
vj

)
= λvj , ρ ∈ Ij , j = 1, 2, 3,

v2 and v3 regular at 0,

v1(r) = v2(r) = v3(r),

v′1(R) = 0,

h1v
′
1(r) = h2v

′
2(r) + h3v

′
3(r).

For n = 0, the set

E0 := {(λ`
0m, −1[u]`0m) | ` = 1, . . . , p(0,m), m = 1, 2, 3, . . . } ∪ {(0, −1[u]00)}
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is by construction the set of eigenvalue-eigenvector pairs of the system

(4.9)



−
(

v′′j +
1
ρ
v′j

)
= λvj , ρ ∈ Ij , j = 1, 2, 3,

v2 and v3 regular at 0,

v1(r) = v2(r) = v3(r),

v′1(R) = 0,

h1v
′
1(r) = h2v

′
2(r) + h3v

′
3(r).

Let us define the spaces

H0
⊕ := {[v] ∈ L⊕ | vj ∈ H1

loc(Ij),

ρ1/2v′j(ρ) ∈ L2(Ij), j = 1, 2, 3, v1(r) = v2(r) = v3(r)}

and, for n ∈ Z \ {0},

Hn
⊕ := {[v] ∈ H0

⊕ | ρ−1/2vj(ρ) ∈ L2(Ij), j = 1, 2, 3},

equipped with the scalar products

{{[v], [ν]}}0⊕ :=
3∑

j=1

∫
Ij

hjρv′j(ρ)ν′j(ρ) dρ +
3∑

j=1

∫
Ij

hjρvj(ρ)νj(ρ) dρ,

where [v], [ν] ∈ H0
⊕, and

{{[v], [ν]}}n
⊕ :=

3∑
j=1

∫
Ij

hjρv′j(ρ)ν′j(ρ) dρ

+
3∑

j=1

∫
Ij

hj
n2

ρ
vj(ρ)νj(ρ) dρ +

3∑
j=1

∫
Ij

hjρvj(ρ)νj(ρ) dρ,

where [v], [ν] ∈ Hn
⊕, respectively. Then one can show that H0

⊕ and Hn
⊕, n ∈

Z \ {0}, are densely and compactly imbedded in L⊕.
Let us define the bilinear forms

a{[v], [ν]}0⊕ :=
3∑

j=1

∫
Ij

hjρv′j(ρ)ν′j(ρ) dρ,

for [v], [ν] ∈ H0
⊕ and

a{[v], [ν]}n
⊕ :=

3∑
j=1

∫
Ij

hjρv′j(ρ)ν′j(ρ) dρ +
3∑

j=1

∫
Ij

hj
n2

ρ
vj(ρ)νj(ρ) dρ

for [v], [ν] ∈ Hn
⊕ on H0

⊕ and Hn
⊕, respectively. Then we have that the set E0 is

the complete set of “proper value – proper vector” pairs of

(4.10)

{
[v] ∈ H0

⊕,

a{[v], [ν]}0⊕ = λ{[v], [ν]}⊕ for all [ν] ∈ H0
⊕.
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Analogously, for all n ∈ Z\{0}, the set En is the complete set of “proper value –
proper vector” pairs of

(4.11)

{
[v] ∈ Hn

⊕,

a{[v], [ν]}n
⊕ = λ{[v], [ν]}⊕ for all [ν] ∈ Hn

⊕.

Actually, (4.10) (resp. (4.11)) can be considered as the “weak formulation” of
(4.9) (resp. (4.8)).

By the abstract theory of proper values for couples of bilinear forms (see
e.g. [17] or [20]), we finally obtain that B0 and Bn, n ∈ Z \ {0}, are complete
orthonormal systems in L⊕.

5. Appendix

In this appendix we give the

Proof of Proposition 3.1. Assume first that (a) holds and remind that
uk ∈ H1

0 (ωk) for k = 1, 2, 3. Choose [v] = (v1, 0, 0), with v1 ∈ H1
0 (ω1) arbitrary.

Then by definition [v] ∈ H0
⊕. With this choice, we obtain∫

ω1

h1∇u1(x) · ∇v1(x) dx =
∫

ω1

h1w1(x)v1(x) dx for all v1 ∈ H1
0 (ω1).

Since ∂ω1 is of class C2, the classical regularity results for the Dirichlet problem
apply to the present situation and we get without any further effort that u1 ∈
H2(ω1). In the same way, we obtain that uk ∈ H2(ωk) for k = 1, 2, 3.

If (a) holds, the situation is much more complicated: we cannot apply directly
the classical regularity results for elliptic equations, because of the coupling at
the “interface” ∂ω2. We shall use a partition of unity on ω in order to isolate
the regions where no coupling occurs: within these regions we can again apply
the classical results. On the other hand, the partition of unity allows us to
“localize” the analysis on the interface. The main difficulty consists in the fact
that we have to handle with the three functions u1, u2 and u3 simultaneously.
Fortunately, the compatibility condition (2.1), in local coordinates, is invariant
under “horizontal” translations. Then we shall exploit the well known method
of translations due to L. Nirenberg and obtain at once H2 regularity of uk,
k = 1, 2, 3.

We start by carefully choosing an open covering of ω. Since ∂ω2 is of class
C2, we can cover it by a finite number of open sets U1, . . . , Um, in such a way
that, for i = 1, . . . ,m, there exists a C2 diffeomorphism Φi: ]−1, 1[× ]−1, 1[ → Ui

with the property that

(1) ∂ω2 ∩ Ui = Φi(]−1, 1[× {0}),
(2) ω2 ∩ Ui = Φi(]−1, 1[× ]−1, 0[),
(3) ω1 ∩ Ui = Φi(]−1, 1[× ]0, 1[).
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Notice that Ui ∩ ∂ω = ∅. Moreover, we take U0 b ω2 in such a way that
U0, . . . , Um form an open covering of ω2. Notice that U0 ∩ ω1 = ∅. Finally, we
take Um+1 b R2 in such a way that Um+1 ∩ ω2 = ∅ and U1, . . . , Um+1 form an
open covering of ω1. Then U0, . . . , Um+1 is an open covering of ω.

For i = 0, . . . ,m + 1, let θi ∈ C∞0 (R2), with supp θi ⊂ Ui, be a partition of
unity on ω, i.e.

∑m+1
i=0 θi ≡ 1 on ω. Let us observe that

∑m
i=0 θi ≡ 1 on ω2 = ω3

and
∑m+1

i=1 θi ≡ 1 on ω1. Then we have

u1 =
m+1∑
i=1

θiu1, u2 =
m∑

i=0

θiu2, and u3 =
m∑

i=0

θiu3.

So it is sufficient to show that

ui,1 :=θiu1 ∈ H2(ω1) for i = 1, . . . ,m + 1,

ui,2 :=θiu2 ∈ H2(ω2) for i = 0, . . . ,m,

ui,3 :=θiu3 ∈ H2(ω3) for i = 0, . . . ,m.

Let us observe that suppum+1,1 ⊂ Um+1∩ω1, suppu0,2 and suppu0,3 ⊂ U0, and
suppui,j ⊂ Ui ∩ ωj for i = 1, . . . , m and j = 1, 2, 3.

We prove first that u0,2 ∈ H2(ω2) and u0,3 ∈ H2(ω3), the simplest case. Let
v2 ∈ H1

0 (ω2). We have∫
ω2

∇u0,2(x) · ∇v2(x) dx

=
∫

ω2

u2(x)∇θ0(x) · ∇v2(x) dx +
∫

ω2

θ0(x)∇u2(x) · ∇v2(x) dx

=
∫

ω2

u2(x)∇θ0(x) · ∇v2(x) dx +
∫

ω2

∇u2(x) · ∇(θ0v2)(x) dx

−
∫

ω2

v2(x)∇u2(x) · ∇θ0(x) dx.

Since (0, θ0v2, 0) ∈ HC
⊕ , we have∫

ω2

∇u2(x) · ∇(θ0v2)(x) dx =
∫

ω2

w2(x)θ0(x)v2(x) dx.

Moreover, since u2 ∈ H1(ω2) and v2 ∈ H1
0 (ω2),∫

ω2

u2(x)∇θ0(x) · ∇v2(x) dx = −
∫

ω2

div(u2∇θ0)(x)v2(x) dx.

Let us write w̃2 := −div(u2∇θ0) + w2θ0 −∇u2 · ∇θ0. Then w̃2 ∈ L2(ω2) and∫
ω2

∇u0,2(x) · ∇v2(x) dx =
∫

ω2

w̃2(x)v2(x) dx.

Since v2 ∈ H1
0 (ω2) is arbitrary, we obtain that u0,2 ∈ H1

0 (ω2) is a weak solution
of −∆u = w̃2 on ω2, u = 0 on ∂ω2. Then by the standard regularity results for
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the Dirichlet problem we obtain that u0,2 ∈ H2(ω2). In the same way we can
prove that u0,3 ∈ H2(ω2).

Next, we consider um+1,1. As we have already mentioned,

suppum+1,1 ⊂ Um+1 ∩ ω1 = (Um+1 ∩ ω1) ∪ ∂ω.

This implies that τum+1,1 = 0 on ∂ω2. Let v1 ∈ H1(ω1), τv1 = 0 on ∂ω2. Then
we have∫

ω1

∇um+1,1(x) · ∇v1(x) dx

=
∫

ω1

u1(x)∇θm+1(x) · ∇v1(x) dx +
∫

ω1

θm+1(x)∇u1(x) · ∇v1(x) dx

=
∫

ω1

u1(x)∇θm+1(x) · ∇v1(x) dx +
∫

ω1

∇u1(x) · ∇(θm+1v1)(x) dx

−
∫

ω1

v1(x)∇u1(x) · ∇θm+1(x) dx.

Since (θm+1v1, 0, 0) ∈ HC
⊕ , we have∫

ω1

∇u1(x) · ∇(θm+1v1)(x) dx =
∫

ω1

w1(x)θm+1(x)v1(x) dx.

Let us write w̃1 := w1θm+1 − ∇u1 · ∇θm+1 and W̃1 := u1∇θm+1. Then w̃1 ∈
L2(ω1) and W̃1 ∈ H1(ω1, R2) and we have∫

ω1

∇um+1,1(x) · ∇v1(x) dx =
∫

ω1

w̃1(x)v1(x) dx +
∫

ω1

W̃1(x) · ∇v1(x) dx

for all v1 ∈ H1(ω1) with τv1 = 0 on ∂ω2. Then we can apply the classical regu-
larity results for elliptic equations with mixed boundary conditions (see e.g. [18]).
Observe that ∂ω1 = ∂ω∪∂ω2 and that the Dirichlet condition is imposed on the
whole ∂ω2, whereas no a-priori condition is imposed on ∂ω. Since ∂ω2 and ∂ω

are smooth and both closed and open in ∂ω1, all the hypotheses of Theorem 2.24
in [18] are satisfied. So we obtain that um+1,1 ∈ H2(ω1).

Finally, we shall prove that ui,j ∈ H2(Ui∩ωj) for j = 1, 2, 3 and i = 1, . . . ,m.
Let us fix i = 1, . . . ,m, and let us take (v1, v2, v3) ∈ HC

⊕ with supp vj ⊂ Ui ∩ ωj

for j = 1, 2, 3. Then we have

3∑
j=1

∫
Ui∩ωj

hj∇ui,j(x) · ∇vj(x) dx

=
3∑

j=1

∫
Ui∩ωj

hjuj(x)∇θi(x) · ∇vj(x) dx +
3∑

j=1

∫
Ui∩ωj

hjθi(x)∇uj(x) · ∇vj(x) dx
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=
3∑

j=1

∫
Ui∩ωj

hjuj(x)∇θi(x) · ∇vj(x) dx +
3∑

j=1

∫
Ui∩ωj

hj∇uj(x) · ∇(θivj)(x) dx

−
3∑

j=1

∫
Ui∩ωj

hjvj(x)∇uj(x) · ∇θi(x) dx.

Now observe that (θiv1, θiv2, θiv3) ∈ HC
⊕ , so

3∑
j=1

∫
Ui∩ωj

hj∇uj(x) · ∇(θivj)(x) dx =
3∑

j=1

∫
ωj

hj∇uj(x) · ∇(θivj)(x) dx

=
3∑

j=1

∫
ωj

hjwj(x)θi(x)vj(x) dx =
3∑

j=1

∫
Ui∩ωj

hjwj(x)θi(x)vj(x) dx.

Let us write w̃j := wjθi − ∇uj · ∇θi and W̃j := uj∇θi for j = 1, 2, 3. Then
w̃j ∈ L2(ωj) and W̃j ∈ H1(ωj , R2) for j = 1, 2, 3, and we have

(5.1)
3∑

j=1

∫
Ui∩ωj

hj∇ui,j(x) · ∇vj(x) dx

=
3∑

j=1

∫
Ui∩ωj

hjw̃j(x)vj(x) dx +
3∑

j=1

∫
Ui∩ωj

hjW̃j(x) · ∇vj(x) dx

for all [v] ∈ HC
⊕ with supp vj ⊂ Ui ∩ ωj for j = 1, 2, 3.

Set Qi := ]−1, 1[ × ]−1, 1[, Qi,j := Φ−1
i (Ui ∩ ωj) for j = 1, 2, 3, i.e. Qi,1 =

]−1, 1[× ]0, 1[, Qi,2 = Qi,3 = ]−1, 1[× ]−1, 0[, and ui,j(ξ) := ui,j(Φ(ξ)), vj(ξ) :=
vj(Φi(ξ)) for ξ ∈ Qi,j , j = 1, 2, 3. Then ui,j and vj ∈ H1(Qi,j). Moreover,
suppui,j and supp vj are contained in Qi,j ∪ (]−1, 1[ × {0}). Besides, τui,1 =
τui,2 = τui,3 and τv1 = τv2 = τv3 H1-almost everywhere on ]−1, 1[×{0}. Then,
changing coordinates in (5.1), we have

3∑
j=1

∫
Qi,j

hjJΦi(ξ)DΦ−1
i (Φi(ξ))DΦ−1

i (Φi(ξ))T∇ui,j(ξ) · ∇vj(ξ) dξ

=
3∑

j=1

∫
Qi,j

hjJΦi(ξ)wj(ξ)vj(ξ) dξ

+
3∑

j=1

∫
Qi,j

hjJΦi(ξ)DΦ−1
i (Φi(ξ))W j(ξ) · ∇vj(ξ) dξ,

where JΦi(ξ) is the Jacobian determinant of DΦi(ξ), wj(ξ) := w̃j(Φi(ξ)) ∈
L2(Qi,j) and W j(ξ) := W̃j(Φi(ξ)) ∈ H1(Qi,j , R2) for j = 1, 2, 3. Write

JΦiDΦ−1
i (Φi)DΦ−1

i (Φi)T =: (gµν
i )µν ∈ C1(Qi,M(2× 2)),

JΦiwj =: αj ∈ L2(Qi,j) and JΦiDΦ−1
i W j =: βj ∈ H1(Qi,j , R2).
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Observe also that the matrix (gµν
i )µν is symmetric and uniformly strongly elliptic

on Qi, i.e. there exists a positive constant K such that

2∑
µ,ν=1

gµν
i (ξ)hµhν ≥ K|h|2 for all ξ ∈ Qi and all h ∈ R2.

Then we have

(5.2)
3∑

j=1

∫
Qi,j

hj

2∑
µ,ν=1

gµν
i (ξ)∂µui,j(ξ)∂νvj(ξ) dξ

=
3∑

j=1

∫
Qi,j

hjαj(ξ)vj(ξ) dξ +
3∑

j=1

∫
Qi,j

hjβj(ξ) · ∇vj(ξ) dξ

for all (v1, v2, v3) ∈ HC
⊕ (Qi), where HC

⊕ (Qi) is the set of all triples (v1, v2, v3) ∈
H1(Qi,1)×H1(Qi,2)×H1(Qi,3) with supp vj ⊂ Qi,j ∪ ( ]−1, 1[×{0}) and τv1 =
τv2 = τv3 H1-almost everywhere on ]−1, 1[× {0}.

Now we are in a position to use the method of translations of Nirenberg.
First, let us recall that for u ∈ L1

loc(Rn) and h ∈ Rn one defines

τhu(z) := u(z + h) and δhu(z) :=
τhu(z)− u(z)

h
, for z ∈ Rn.

We shall use “horizontal” translations: let h := (χ, 0) ∈ R2 with

|h| < (1/2)dist(suppui,j , {−1, 1} × R) for j = 1, 2, 3.

Then it is very easy to see that (τhui,1, τhui,2, τhui,3), (δhui,1, δhui,2, δhui,3) and
(δ−hδhui,1, δ−hδhui,2, δ−hδhui,3) ∈ HC

⊕ (Qi). So we can use

(v1, v2, v3) := (δ−hδhui,1, δ−hδhui,2, δ−hδhui,3)

as a test function in (5.2). A simple change of variable yields

3∑
j=1

∫
Qi,j

hj

2∑
µ,ν=1

δh(gµν
i ∂µui,j)(ξ)∂ν(δhui,j)(ξ) dξ

= −
3∑

j=1

∫
Qi,j

hjαj(ξ)δ−hδhui,j(ξ) dξ +
3∑

j=1

∫
Qi,j

hj(δhβj)(ξ) · ∇(δhui,j)(ξ) dξ.

Since

δh(gµν
i ∂µui,j) = τh(gµν

i )∂µ(δhui,j) + δh(gµν
i )∂µui,j ,
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we obtain
3∑

j=1

∫
Qi,j

hj

2∑
µ,ν=1

(τhgµν
i )(ξ)∂µ(δhui,j)(ξ)∂ν(δhui,j)(ξ) dξ

= −
3∑

j=1

∫
Qi,j

hj

2∑
µ,ν=1

(δhgµν
i )(ξ)∂µui,j(ξ)∂ν(δhui,j)(ξ) dξ

−
3∑

j=1

∫
Qi,j

hjαj(ξ)δ−hδhui,j(ξ) dξ +
3∑

j=1

∫
Qi,j

hj(δhβj)(ξ) · ∇(δhui,j)(ξ) dξ.

Now let us recall that

|δ−hδhui,j |L2(Qi,j) ≤ |∇(δhuij)|L2(Qi,j ,R2),

|δhβj |L2(Qi,j ,R2) ≤ |Dβ|L2(Qi,j ,M(2×2)).

So we get

K
3∑

j=1

∫
Qi,j

|∇(δhui,j)|2 dξ

≤
3∑

j=1

|(gµν
i )|C1(Qi)

|∇ui,j |L2(Qi,j ,R2)|∇(δhui,j)|L2(Qi,j ,R2)

+
3∑

j=1

|αj |L2(Qi,j)|∇(δhui,j)|L2(Qi,j ,R2)

+
3∑

j=1

|Dβ|L2(Qi,j ,M(2×2))|∇(δhui,j)|L2(Qi,j ,R2),

for some positive constant K. This in turn implies that there exists a constant
C > 0 such that

3∑
j=1

|∇(δhui,j)|2L2(Qi,j ,R2) ≤ C

3∑
j=1

|∇(δhui,j)|L2(Qi,j ,R2)

and hence( 3∑
j=1

|∇(δhui,j)|L2(Qi,j ,R2)

)2

≤ 3C

3∑
j=1

|∇(δhui,j)|L2(Qi,j ,R2).

So, for all sufficiently small h = (χ, 0), we have obtained that

(5.3) |δh(∇ui,j)|L2(Qi,j ,R2) ≤ 3C for j = 1, 2, 3.

It is well known that estimates (5.3) hold if and only if

∂1∂νui,j ∈ L2(Qi,j) for ν = 1, 2 and j = 1, 2, 3
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So, in order to complete the proof, we only need to show that ∂2
2ui,j ∈ L2(Qi,j)

for j = 1, 2, 3. This can be easily done by mean of straightforward manipulations
of the distributional identities

−
2∑

µ,ν=1

∂ν(gµν
i ∂µui,j) = αj −

2∑
ν=1

∂νβν
j , j = 1, 2, 3,

like in the classical proof of regularity for elliptic equations. �
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