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A GENERIC PROPERTY
FOR THE EIGENFUNCTIONS OF THE LAPLACIAN

Antônio Luiz Pereira — Marcone Corrêa Pereira

Abstract. In this work we show that, generically in the set of C2 bounded

regions of Rn, n ≥ 2, the inequality
R
Ω φ3 6= 0 holds for any eigenfunction

of the Laplacian with either Dirichlet or Neumann boundary conditions.

1. Introduction

Perturbation of the boundary for boundary value problems in PDEs have
been investigated by several authors, from many points of view, since the pi-
oneering works of Rayleigh ([8]) and Hadamard ([3]). There is, for example,
a extensive literature under the label “shape analysis” or “shape optimization”,
on which the main issue is to determine conditions for a region to be optimal
with respect to some cost functional (see, for example [2], [11] and [10]).

In particular, generic properties for solutions of boundary value problems
have been considered by Micheletti ([7]), Uhlenbeck ([12]), Saut and Teman ([9])
and others. Many problems of this kind have also been considered by Henry
in [4] where a kind of Differential Calculus with the domain as the independent
variable was developed. This approach allows the utilization of standard analytic
tools such as Implicit Function Theorems and Lyapunov–Schmidt method. In his
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work, Henry also formulated and proved a generalized form of the Transversality
Theorem, which will be the main tool used in our arguments.

We consider here the following question: is it true, generically in the set of
C2 regions in Rn n ≥ 2, that∫

Ω

φ3 6= 0 for any eigenfunction of the Laplacian

(with either Neumann or Dirichlet boundary condition?)

The result is easily seen to be false for n = 1. In fact, in this case,
∫

I
φ3 = 0 for

any nonconstant eigenfunction in the interval I. We will show, however, that
the situation is quite different if n ≥ 2; the property is indeed generic in a sense
to be made precise below.

As pointed out to the first author by Prof. K. Rybakowski, the question above
appears in connection with the study of stability for nonconstant equilibria of
the reaction-diffusion system{

∂tu = (D0 + µD1)∆u+ g(u) = 0 in Ω,
∂u

∂N
= 0 on ∂Ω,

where g: Rp → Rp ∈ C2, g(0) = 0, Dg(0) = 0.
The plan of this paper is as follows. In Section 2, we state some background

results needed in the sequel. We prove the result for Dirichlet boundary condi-
tions in Section 3, and for Neumann boundary conditions in Section 4.

The authors wish to dedicate this work to the memory of Professor Dan
Henry, whose untimely death is a great loss to the mathematical community.
Dan’s ideas helped to shape the mathematical thinking of a great number of
researchers working in the field of qualitative theory of partial differential equa-
tions. The first author also wishes to acknowledge his immense debt to Dan as
a teacher and to express continuing admiration both for his exceptional mathe-
matical skills and for his courage in the face of misfortune.

2. Preliminaries

The results in this section were taken from the monograph of Henry [4], where
full proofs can be found. The formulas in Section 2.2 can also be found in [10].

2.1. Some notation and geometrical preliminaries. Given a function
f defined in a neighbourhood of x ∈ Rn, its m-derivative at x can be considered
as a homogeneous polynomial of degree m

h→ Dmf(x)hm

in Rn, with norm
|Dmf(x)| = max

|h|≤1
|Dmf(x)hm|,
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or as a m-linear symmetric form, or as the collection of partial derivatives

Dmf(x) =
{(

∂

∂x

)α ∣∣∣∣ |α| = m

}
with (equivalent) norm

‖Dmf(x)‖ = max
|α|=m

∥∥∥∥(
∂

∂x

)α

f(x)
∥∥∥∥.

If Ω is an open subset of Rn and E is a normed vector space, Cm(Ω, E) is the
space of m-times continuously and bounded differentiable functions on Ω whose
derivatives extend continuously to the closure Ω, with the usual norm

‖f‖Cm(Ω,E) = max
0≤j≤m

sup
x∈Ω

|Dmf(x)|.

If E = R, we write simply Cm(Ω).
Cm
inif(Ω, E) is the closed subspace of Cm(Ω, E) of functions whose m-th deriv-

ative is uniformly continuous. If Ω is bounded, this is Cm(Ω, E).
We say that an open set Ω ⊂ Rn is Cm-regular if there exists φ ∈ Cm(Rn,R),

which is at least in C1
inif(Rn,R), such that

Ω = {x ∈ Rn | φ(x) > 0}

and φ(x) = 0 implies |∇φ| ≥ 1.
Let m be a non negative integer and p ≥ 1 a real number. We define the

Sobolev spaces Wm,p(Ω) and Wm,p
0 (Ω), as the completion of Cm(Ω) and Cm

0 (Ω),
respectively, under the norm

‖u‖ =
( ∫

Ω

∑
|α|≤m

|Dαu|p dx
)1/p

where Cm
0 (Ω) is the subspace of functions on Cm(Ω) with compact support (when

p = 2 we usually write Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω)).
We sometimes need to use differential operators (gradient, divergence and

Laplacian) in a hypersurface S ⊂ Rn. The following definitions are all equivalent
to the corresponding formulas in Riemannian geometry, in the metric induced
in S by the surrounding ambient space. These formulas are intrinsic to S but our
interest is precisely in their relation to a neighbourhood of S (see Theorem 2.1).

Let S be a C1 hypersurface in Rn and let φ:S → R be C1 (so it can be
extended to be C1 on a neighbourhood of S), then ∇Sφ is the tangent vector
field in S such that, for each C1 curve t→ x(t) ⊂ S, we have

d

dt
φ(x(t)) = ∇Sφ(x(t)) · ẋ(t).
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Let S be a C2 hypersurface in Rn and −→a :S → Rn a C1 vector field tangent
to S. Then divS

−→a :S → Rn is the continuous function such that, for every C1,
φ:S → R with compact support in S,∫

S

(divS
−→a )φ = −

∫
S

−→a · ∇Sφ.

Finally, if u:S → R is C2, then ∆Su = divS(∇Su) or, equivalently, for all C1,
φ:S → R with compact support∫

S

φ∆Su = −
∫

S

∇Sφ · ∇Su.

Theorem 2.1.

(1) If S is a C1 hypersurface and φ: Rn → R is C1 in a neighbourhood of S,
then, on S, ∇Sφ(x) is the component of ∇φ(x) tangent S at x, that is

∇Sφ(x) = ∇φ(x)− ∂φ

∂N
(x)N(x)

where N is an unit normal field on S.
(2) If S is a C2 hypersurface in Rn, −→a :S → Rn is C1 in a neighbourhood of

S, N : Rn → Rn is a C1 unit normal field in a neighbourhood of S and
H = divN is the mean curvature of S, then

divS
−→a = div−→a −H−→a ·N − ∂

∂N
(a ·N)

on S.
(3) If S is a C2 hypersurface, u: Rn → R is C2 in a neighbourhood of S and

N is a normal vector field for S, then

∆Su = ∆u−H
∂u

∂N
− ∂2u

∂N2
+∇Su ·

∂N

∂N
on S. We may choose N so that ∂N/∂N = 0 on S and then the final
term vanishes.

We often need the Cauchy’s uniqueness theorem for second order elliptic
equations. We state here a fairly general version whose proof can be found in [5,
Theorem 8.9.1].

Theorem 2.2. Suppose Q ⊂ Rn is an open connected set, B is a ball which
intersects ∂Q in a C2 hypersurface B ∩ ∂Q, aij = aji:Q → R is a C1 function
for 1 ≤ i, j ≤ n, with

∑n
i,j=1 aij(x)ξiξj ≥ c0|ξ|2 for all x ∈ Q and ξ ∈ Rn for

some constant c0 > 0. Assume u ∈ H2(Q) and, for some constant K,∣∣∣∣ n∑
i,j=1

aij(x)
∂2u

∂xixj

∣∣∣∣ ≤ K(|∇u(x)|+ |u(x)|)

for a.e. x ∈ Q and u = 0, ∂u/∂N = 0 on B ∩ ∂Q. Then u = 0 a.e. in Q.
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2.2. Differential calculus of boundary perturbation. Given an open
bounded, Cm region Ω0 ⊂ Rn, consider the following open subset of Cm(Ω,Rn)

Diffm(Ω) = {h ∈ Cm(Ω,Rn) | h is injective and 1/|deth′(x)| is bounded in Ω}

and the collection of all regions {h(Ω0) | h ∈ Diffm(Ω0)}.
We introduce a topology in this set by defining a (sub-basis of) the neigh-

bourhoods of a given Ω by

{h(Ω) | ‖h− iΩ‖Cm(Ω,Rn) < ε, ε > 0 suficiently small}.

When ‖h − iΩ‖Cm(Ω,Rn) is small, h is a Cm imbedding of Ω in Rn, a Cm diffeo-
morphism to its image h(Ω). Michelleti in [7] shows this topology is metrizable,
and the set of regions Cm-diffeomorphic to Ω may be considered a separable met-
ric space which we denote by Mm(Ω), or simply Mm. We say that a function
F defined in the space Mm with values in a Banach space is Cm or analytic
if h 7→ F (h(Ω)) is Cm or analytic as a map of Banach spaces (h near iΩ in
Cm(Ω,Rn)). In this sense, we may express problems of perturbation of the
boundary of a boundary value problem as problems of differential calculus in
Banach spaces.

More specifically, consider a formal non-linear differential operator u 7→ v

v(y) = f

(
y, u(y),

∂u

∂y1
(y), . . . ,

∂u

∂yn
(y),

∂2u

∂y2
1

(x),
∂2u

∂y1∂y2
(y), . . .

)
, y ∈ Rn.

To simplify the notation, we define a constant matrix coefficient differential op-
erator L

Lu(y) =
(
u(y),

∂u

∂y1
(y), . . . ,

∂u

∂yn
(y),

∂2u

∂y2
1

(y),
∂2u

∂y1∂y2
(y), . . .

)
, y ∈ Rn

with as many terms as needed, so our nonlinear operator becomes

u 7→ v( · ) = f( · , Lu( · )).

More precisely, suppose Lu( · ) has values in Rp and f(y, λ) is defined for (y, λ)
in some open set O ⊂ Rn × Rp. For subsets Ω ⊂ Rn define FΩ by

FΩ(u)(y) = f(y, Lu(y)), y ∈ Ω

for sufficiently smooth functions u in Ω such that (y, Lu(y)) ∈ O for any y ∈ Ω.
For example, if f is continuous, Ω is bounded and L involves derivatives of order
≤ m, the domain of FΩ is an open subset (perhaps empty) of Cm(Ω), and the
values of FΩ are in C0(Ω). (Other function spaces could be used with obvious
modifications).
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If h: Ω 7→ Rn is a Ck imbedding, we can also consider Fh(Ω): Cm(h(Ω)) 7→
C0(h(Ω)). But then the problem will be posed in different spaces. To bring it
back to the original spaces we consider the “pull-back” of h

h?: Ck(h(Ω)) 7→ Ck(Ω) (0 ≤ k ≤ m)

defined by h?(ϕ) = ϕ ◦ h (which is a diffeomorphism) and then h?Fh(Ω)h
?−1

is again a map from Cm(Ω) into C0(Ω). This is more convenient if we wish to
use tools like the Implicit Function or Transversality theorems. On the other
hand, a new variable h is introduced. We then need to study the differentiability
properties of the function (h, u) 7→ h?Fh(Ω)h

?−1u. This has been done in [4]
where it is shown that, if (y, λ) 7→ f(y, λ) is Ck or analytic then so is the map
above, considered as a map from Diffm(Ω) × Cm(Ω) to C0(Ω) (other function
spaces can be used instead of Cm). To compute the derivative we then need only
compute the Gateaux derivative that is, the t-derivative along a smooth curve
t 7→ (h(t, · ), u(t, · )) ∈ Diffm(Ω)× Cm(Ω).

Suppose we wish to compute

∂

∂t
FΩ(t)(v)(y) =

∂

∂t
f(y, Lv(y))

with y = h(t, x) fixed in Ω(t) = h(t,Ω). To keep y fixed we must take x = x(t),
y = h(t, x(t)) with

0 =
∂h

∂t
+
∂h

∂x
x′(t) ⇒ x′(t) = −

(
∂h

∂x

)−1
∂h

∂t
,

that is, x(t) is the solution of the differential equation dx/dt = −U(x, t) where
U(x, t) = (∂h/∂x)−1(∂h/∂t). The differential operator

Dt =
∂

∂t
− U(x, t)

∂

∂x
, U(x, t) =

(
∂h

∂x

)−1
∂h

∂t

is called the anti-convective derivative. The results (Theorems 2.3, 2.6) below
are the main tools we use to compute derivatives.

Theorem 2.3. Suppose f(t, y, λ) is C1 in an open set in R×Rn ×Rp, L is
a constant-coefficient differential operator of order ≤ m with Lv(y) ∈ Rp (where
defined). For open sets Q ⊂ Rn and Cm functions v on Q, let FQ(t)v be the
function

y → f(t, y, Lv(y)), y ∈ Q,
where defined. Suppose t → h(t, · ) is a curve of imbeddings of an open set
Ω ⊂ Rn, Ω(t) = h(t,Ω) and for |j| ≤ m, |k| ≤ m + 1, (t, x) → ∂t∂

j
xh(t, x),

∂k
xh(t, x), ∂

k
xu(t, x) are continuous on R×Ω near t = 0, and h(t, · )∗−1

u(t, · ) is
in the domain of FΩ(t). Then, at points of Ω

Dt(h∗FΩ(t)(t)h∗
−1)(u) = (h∗ḞΩ(t)(t)h∗

−1)(u) + (h∗F ′
Ω(t)(t)h

∗−1)(u) ·Dtu
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where Dt is the anti-convective derivative defined above,

ḞQ(t)v(y) =
∂f

∂t
(t, y, Lv(y))

and

F ′
Q(t)v · w(y) =

∂f

∂λ
(t, y, Lv(y)) · Lw(y), y ∈ Q

is the linearization of v → FQ(t)v.

Remark 2.4. Suppose we deal with a linear operator

A =
∑
|α|≤m

aα(y)
(
∂

∂y

)α

not explicitly dependent on t, and h(t, x) = x+ tV (x)+o(t) as t→ 0 and x ∈ Ω.
Then at t = 0

∂

∂t
(h∗Ah∗−1u)|t=0 = Dt(h∗Ah∗

−1u)|t=0 + h−1
x ht∇(h∗Ah∗−1u)|t=0

= A

(
∂u

∂t
− V · ∇u

)
+ V · ∇(Au) = A

∂u

∂t
+ [V · ∇, A]u

since (∂A/∂t) = 0. Note that the commutator [V · ∇, A]( · ) is still an operator
of order m.

We also need to be able to differentiate boundary conditions, and a quite
general form is

b(t, y, Lv(y),MNΩ(t)(y)) = 0 for y ∈ ∂Ω(t),

where L, M are constant-coefficient differential operators and NΩ(t)(y) is the
outward unit normal for y ∈ ∂Ω(t), extended smoothly as a unit vector field on
a neighbourhood of ∂Ω(t). We choose some extension of NΩ in the reference
region and then define NΩ(t) = Nh(t,Ω) by

(2.2) h∗Nh(t,Ω)(x) = Nh(t,Ω)(h(x)) =
(h−1

x )TNΩ(x)
‖(h−1

x )TNΩ(x)‖

for x near ∂Ω, where (h−1
x )T is the inverse-transpose of the Jacobian matrix hx

and ‖ · ‖ is the Euclidean norm. This is the extension understood in the above
boundary condition: b(t, y, Lv(y),MNΩ(t)(y)) is defined for y ∈ Ω near ∂Ω and
has limit zero (in some sense, depending on the functional space employed) as
y → ∂Ω.

Lemma 2.5. Let Ω be a C2-regular region, NΩ( · ) a C1 unit-vector field defined
on a neighbourhood of ∂Ω which is the outward normal on ∂Ω, and for a C2
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function h: Ω → Rn define Nh(Ω) on a neighbourhood of h(∂Ω) = ∂h(Ω) by (2.2)
above. Suppose h(t, · ) is an imbedding for each t, defined by

∂

∂t
h(t, x) = V (t, h(t, x)) for x ∈ Ω, h(0, x) = x,

(t, y) → V (t, y) is C2 and Ω(t) = h(t,Ω), NΩ(t) = Nh(t,Ω). Then for x near ∂Ω,
y = h(t, x) near ∂Ω(t), we may compute the derivative (∂/∂t)y=constant and, if
y ∈ ∂Ω,

∂

∂t
NΩ(t)(y) = Dt(h∗Nh(t,Ω))(x) = −

(
∇∂Ω(t)σ + σ

∂NΩ(t)

∂NΩ(t)
(y)

)
where σ = V ·NΩ(t) is the normal velocity and ∇∂Ω(t)σ is the component of the
gradient tangent to ∂Ω.

Theorem 2.6. Let b(t, y, Lv(y),MNΩ(t)(y)) be a C1 function on an open set
of R× Rn × Rp × Rq and let L, M be constant-coefficient differential operators
with order ≤ m of appropriate dimensions so b(t, y, Lv(y),MNΩ(t)(y)) makes
sense. Assume that Ω is a Cm+1 region, NΩ(x) is a Cm unit-vector field near ∂Ω
which is the outward normal on ∂Ω, and define Nh(t,Ω) by (2.2) when h: Ω → Rn

is a Cm+1 smooth imbedding. Also define Bh(Ω)(t) by

Bh(Ω)v(y) = b(t, y, Lv(y),MNh(Ω)(y))

for y ∈ h(Ω) near ∂h(Ω). If t→ h(t, · ) is a curve of Cm+1 imbeddings of Ω and
for |j| ≤ m, |k| ≤ m+1, (t, x) → (∂t∂

j
xh, ∂

k
x , ∂t∂

j
xu, ∂

k
xu)(t, x) are continuous on

R× Ω near t = 0, then at points of Ω near ∂Ω

Dt(h∗Bh(Ω)h
∗−1)(u) = (h∗Ḃh(Ω)h

∗−1)(u) + (h∗B′h(Ω)h
∗−1)(u) ·Dtu

+
(
h∗
∂Bh(Ω)

∂N
h∗−1

)
(u) ·Dt(h∗NΩ(t))

where h = h(t, · ), Ḃh(Ω) and B′h(Ω) are defined as in Theorem 2.3,

∂Bh(Ω)

∂N
(v) · n(y) =

∂b

∂µ
(t, y, Lv(y),MNh(Ω)(y)) ·Mn(y)

and Dt(h∗NΩ(t))|∂Ω is computed in Lemma 2.5.

2.3. The Transversality Theorem. A basic tool for our results will be
the Transversality Theorem in the form below, due to D. Henry (see [4]). We
first recall some definitions.

A map T ∈ L(X,Y ) where X and Y are Banach spaces is a semi-Fredholm
map if the range of T is closed and at least one (or both, for Fredholm) of
dim ker (T ), codim Im (T ) is finite; the index of T is then

index (T ) = ind (T ) = dim ker (T )− codim Im (T ).
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We say that a subset F of a topological space X is rare if its closure has
empty interior and meager if it is contained in a countable union of rare subsets
of X. We say that F is residual if its complement in X is meager. We also say
that X is a Baire space if any residual subset of X is dense.

Let f be a Ck map between Banach spaces. We say that x is a regular
point of f if the derivative f ′(x) is surjective and its kernel is finite-dimensional.
Otherwise, x is called a critical point of f . A point is critical if it is the image
of some critical point of f .

Let now X be a Baire space and I = [0, 1]. For any closed or σ-closed
F ⊂ X and any nonnegative integer m we say that the codimension of F is
greater or equal to m (codimF ≥ m) if the subset {φ ∈ C(Im, X) | φ(Im) ∩
F is non-empty } is meager in C(Im, X). We say codimF = k if k is the largest
integer satisfying codimF ≥ m.

Theorem 2.7. Suppose given positive numbers k and m, Banach manifolds
X, Y , Z of class Ck, an open set A ⊂ X × Y , a Ck map f :A 7→ Z and a point
ξ ∈ Z. Assume for each (x,y) ∈ f−1(ξ) that:

(1) (∂f/∂x)(x, y):TxX 7→ TξZ is semi-Fredholm with index < k.
(2) Either

(α) Df(x, y) = (∂f/∂x, ∂f/∂y):TxX × TyY 7→ TξZ is surjective
or

(β) dim {Im (Df(x, y))/Im (∂f(x, y)/∂x)} ≥ m+dim ker (∂f(x, y)/∂x).

Further assume:

(3) (x, y) 7→ y: f−1(ξ) 7→ Y is σ-proper, f−1(ξ) =
⋃∞

j=1Mj is a countable
union of sets Mj such that (x, y) 7→ y:Mj 7→ Y , is a proper map for
each j. (Given (xν , yν) ∈Mj such that yν converges in Y , there exists
a subsequence (or subnet) with limit in Mj).

We note that (3) holds if f−1(ξ) is Lindelöf (every open cover has a countable
subcover) or, more specifically, if f−1(ξ) is a separable metric space, or if X,Y
are separable metric spaces.

Let Ay = {x | (x, y) ∈ A} and

Ycrit = {y | ξ is a critical value of f( · , y):Ay 7→ Z}.

Then Ycrit is a meager set in Y and, if (x, y) 7→ y such that f−1(ξ) 7→ Y is
proper, Ycrit is also closed. If ind ∂f/∂x ≤ −m < 0 on f−1(ξ), then (2)(α)
implies (2)(β) and

Ycrit = {y | ξ ∈ f(Ay, y)}

has codimension ≥ m in Y . (Note Ycrit is meager if and only if codimYcrit ≥ 1).
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Remark 2.8. The usual hypothesis is that ξ is a regular value of f , so (2)(α)
holds. If (2)(β) holds at some point then ind (∂f/∂x) ≤ −m at this point, since

codim Im
(
∂f

∂x

)
≥ dim

{
Im (Df)

Im (∂f/∂x)

}
.

If ind (∂f/∂x) ≤ −m and (2)(α) holds, then (2)(β) also holds. Thus (2)(β) is
more general for the case of negative index.

3. A generic property for the eigenfunctions
of the Dirichlet Problem

We will show that, generically in the set of open, connected, bounded C2

regions Ω ⊂ Rn with n ≥ 2, the normalized eigenfunctions u of

(3.1) ∆u+ λu = 0 in Ω, u = 0 on ∂Ω, u 6= 0

satisfy
∫
Ω
u3 6= 0. We need first some preliminary results

Lemma 3.1. Given h0 ∈ Diff2(Ω) there exists a neighbourhood V0 of h0 in
Diff2(Ω) such that, for all h ∈ V0 and u ∈ H2 ∩H1

0 (Ω)

‖(h∗∆h∗−1 − h∗0∆h
∗
0
−1)u‖L2(Ω) ≤ ε(h)‖u‖H2∩H1

0 (Ω)

with ε(h) → 0 as h→ h0 in C2(Ω,Rn).

Proof. It is sufficient to consider the case h0 = iΩ. We have

h∗
∂

∂yi
h∗−1u(x) =

∂

∂yi
(u ◦ h−1)(h(x))

=
n∑

j=1

∂u

∂xj
(x)(h−1

x )ji(x) =
n∑

j=1

bij(x)
∂u

∂xj
(x)

where bij(x) = (h−1
x )ji(x), that is, bij(x) is the i, j-th entry in the transposed

inverse of the Jacobian matrix of hx = (∂hi/∂xj)n
i,j=1. Therefore

h∗
∂2

∂y2
i

h∗−1u(x) =
n∑

k=1

bik(x)
∂

∂xk
(x)

( n∑
j=1

bij
∂u

∂xj

)
(x)

=
n∑

k=1

bik(x)
n∑

j=i

[(
∂

∂xk
bij

)
(x)

∂u

∂xj
(x) + bij(x)

∂2u

∂xk∂xj
(x)

]

=
n∑

j,k=1

bik(x)bij(x)
(

∂2u

∂xk∂xj

)
(x)

+
n∑

j,k=1

bik(x)
(

∂

∂xk
bij(x)

)
(x)

∂u

∂xj
(x)

=
(
∂2

∂x2
i

(u)
)

(x) + Li(u)(x)
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where

Li(u)(x) = (b2ii(x)− 1)
(
∂2

∂x2
i

(u)
)

(x)

+
n∑

j,k=1

(1− δi,j,k)bi,k(x)bi,j(x)
(

∂2u

∂xk∂xj

)
(x)

+
n∑

j,k=1

bi,k(x)
(

∂

∂xk
bij)(x)

)
(x)

∂u

∂xj
(x).

Thus (h∗∆h∗−1(u)) = ∆u+ Lu with Lu =
∑n

i=1 Liu.
Since bj,k → δj,k in C2(Ω,Rn) when h → iΩ in C2(Ω,Rn) the coefficients of

L go to 0 uniformly in x as h→ iΩ in C2(Ω,Rn). It follows that

‖Lu‖L2(Ω) ≤ ε(h)‖u‖H2∩H1
0 (Ω)

where ε(h) goes to zero as h→ iΩ in C2(Ω,Rn). �

Let Ω ⊂ Rn be a Ck (k ≥ 2), open, bounded, connected region and consider
the set

DM = {h ∈ Diffk(Ω) |M is not an eigenvalue of (3.1) in h(Ω)

and all the eigenvalues λ ∈ (0,M) in h(Ω) are simple}.

Lemma 3.2. DM is an open and dense subset of Diffk(Ω).

Proof. Define

D = {h ∈ Diffk(Ω) | all the eigenvalues of (3.1) in h(Ω) are simple}

and

D̃M = {h ∈ Diffk(Ω) | all the eigenvalues λ ∈ (0,M) in h(Ω) are simple}.

We first show that DM is open. Let h0 ∈ DM and let λ1, . . . , λk be the
(simple) eigenvalues of ∆ in h0(Ω) smaller M . Let also γ be the circle of radius
M with center in the origin.

From the previous lemma and Theorems 2.14, 3.16 of [6] it follows that there
exists a neighbourhood V0 of h0 such that the dimension of the eigenspace as-
sociated to the eigenvalues smaller than M of h∗∆h∗−1 is constant and there
are no eigenvalues in γ for h ∈ V0. From the implicit function theorem (see [4]
for details) the simple eigenvalues of h0

∗∆h0
∗−1 depend continuously of h in a

neighbourhood of h0 in Ck. Therefore, for each 1 ≤ i ≤ k there exists a neigh-
bourhood Vi ⊂ Diffk(Ω) of h0 and continuous functions Λi:Vi → (0,M) such
that Λi(h) is a simple eigenvalue of h∗∆h∗−1 for any h ∈ Vi with Λi(h0) = λi and
the sets Λi(Vi) are pairwise disjoint. Define then V =

⋂k
i=0 Vi, neighbourhood of

h0 in Diffk(Ω). Observe that for all h ∈ V , h∗∆h∗−1 has k eigenvalues smaller
than M , which are all simple. Therefore, DM is open.
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To prove density we observe that D is dense in Diffk(Ω) (see [4] or [7]) and
therefore D̃M is also dense. To conclude the proof we just need to show that,
if M is an eigenvalue of (3.1) in Ω, there exists h near iΩ such that this does
not hold anymore in h(Ω). To this end, it is enough to take h(x) = (1 + ε)x. A
simple computation shows that each eigenvalue λ of ∆ in Ω changes to λ/(1 + ε)2

in h(Ω). �

Before proceeding, we try to outline the main steps of our argument. Let
Ω ⊂ Rn be an open, connected, bounded C2-regular region and consider the
mapping

F :H2 ∩H1
0 (Ω)− {0} × (0,M)×DM → L2(Ω)× R× R,

(u, λ, h) →
(
h∗(∆ + λ)h∗−1u,

∫
Ω

u2deth′,
∫

Ω

u3deth′
)
.

We would like to show that, for each M ∈ N, the set

BM = {h ∈ DM | (0, 1, 0) ∈ F (H2 ∩H1
0 (Ω)− {0} × (0,M), h)}

is meager in DM . Since the operator ∂F (u, λ, h)/∂(u, λ) from H2 ∩H1
0 (Ω)× R

into L2(Ω) × R × R is Fredholm with ind (∂F (u, λ, h)/∂(u, λ)) ≤ −1 for all
(u, λ, h) ∈ F−1(0, 1, 0) (see Theorem 3.7 below), this would follow from the
Transversality Theorem 2.7 if we could prove that (0, 1, 0) is a regular value
of F . We try to do that and fail. However, we do show that a critical point must
have very special properties, which enables us to show that they can only occur
in a “exceptional” set of regions. Repeating the argument in the complement of
this set we can, finally, prove our result.

Lemma 3.3. Let Ω ⊂ Rn be an open connected, bounded, C5-regular region.
If (u, λ, h) ∈ H2 ∩ H1

0 (Ω) − {0} × (0,M) × DM is a critical point of F , with
F (u, λ, h) = (0, 1, 0) then there exists ψ ∈ H2

0 (h(Ω)) satisfying (∆ + λ)ψ = −u2.

Proof. By “transferring the origin”, we can suppose h = iΩ. We prove be-
low (see proof of Theorem 3.7) that the “partial derivative” ∂F/∂(u, λ) is Fredl-
holm and thus, its range has finite codimension. It follows that ImDF (u, λ, iΩ)
also has finite codimension and, therefore, is closed. Suppose (u, λ, iΩ) ∈ H2 ∩
H1

0 (Ω)− {0} × (0,M)×DM is a critical point of F with F (u, λ, iΩ) = (0, 1, 0).
We prove below (see proof of Theorem 3.7), that then, there exists (ψ, α, θ) ∈
L2(Ω)× R× R orthogonal to ImDF (u, λ, iΩ), that is,

0 =
∫

Ω

{ψ[(∆ + λ)(u̇− ḣ · ∇u) + λ̇u](3.2)

+ α[2uu̇+ u2div(ḣ)] + θ[3u2u̇+ u3div(ḣ)]}

for all (u̇, λ̇, ḣ) ∈ H2 ∩H1
0 (Ω)− {0} × R× C5(Ω,Rn).
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Taking u̇ = ḣ = 0 in (3.2), we obtain
∫
Ω
ψu = 0. Taking ḣ = λ̇ = 0, we have

(3.3)
∫

Ω

{ψ(∆ + λ)u̇+ 2αuu̇+ 3θu2u̇} = 0 for all u̇ ∈ H2 ∩H1
0 (Ω).

If u̇ = u in (3.3) it follows that α = 0 and so, by regularity of solutions of elliptic
problems we conclude that ψ ∈ H2 ∩ H1

0 (Ω) ∩ C2
α(Ω) for all 0 < α < 1 and

(∆ + λ)ψ = −3θu2. Taking now, u̇ = λ̇ = 0 in (3.2)

(3.4)
∫

Ω

ψ(∆ + λ)(ḣ · ∇u) =
∫

Ω

θu3div(ḣ) for all ḣ ∈ C5(Ω,Rn).

Let N a unit vector field normal to ∂Ω. Since∫
Ω

ψ(∆ + λ)(ḣ · ∇u) =
∫

Ω

(ḣ · ∇u)(∆ + λ)ψ −
∫

∂Ω

∂u

∂N

∂ψ

∂N
ḣ ·N

= −
∫

Ω

3θu2(ḣ · ∇u)−
∫

∂Ω

∂u

∂N

∂ψ

∂N
ḣ ·N,

we obtain, substituting in (3.4)

(3.5)
∫

Ω

θu3div(ḣ) = −
∫

Ω

3θu2(ḣ · ∇u)−
∫

∂Ω

∂u

∂N

∂ψ

∂N
ḣ ·N

for all ḣ ∈ C5(Ω,Rn). Observe now that div(u3ḣ) = 3u2∇u · ḣ+u3div(ḣ) and so

(3.6)
∫

Ω

θu3div(ḣ) = −
∫

Ω

3θu2(ḣ · ∇u).

Therefore, substituting (3.6) in (3.5), we have

(3.7)
∫

∂Ω

∂u

∂N

∂ψ

∂N
ḣ ·N = 0 for all ḣ ∈ C5(Ω,Rn)

from which, (∂u/∂N)(∂ψ/∂N) = 0 on ∂Ω. Since u is not identically zero it fol-
lows from Theorem 2.2 that ∂ψ/∂N = 0 on ∂Ω and (multiplying ψ by a constant
if needed) our result follows. �

Remark 3.4. Observe that,by regularity in the elliptic problem, ψ ∈ H4 ∩
H2

0 (Ω) ∩ C4,α(Ω) since u2 ∈ H2 ∩H1
0 (Ω) ∩ C2,α(Ω) for all 0 < α < 1.

Lemma 3.5. Let Ω ⊂ Rn be an open connected, bounded C5-regular region.
If ψ ∈ H2

0 (Ω) satisfies (∆ + λ)ψ = u2 for some u ∈ H2 ∩H1
0 (Ω) ∩ C2

α(Ω), then

(1) ∂ψ/∂xi = 0 in ∂Ω for all 1 ≤ i ≤ n,
(2) ∂2ψ/(∂xi∂xj) = 0 in ∂Ω for all 1 ≤ i, j ≤ n,
(3) ∂3ψ/(∂xi∂xj∂xk) = 0 in ∂Ω for all 1 ≤ i, j, k ≤ n.

Proof. From ψ = 0 and ∂ψ/∂N = 0 in ∂Ω it follows that ∇ψ = (∂ψ/∂N) ·
N = 0 in ∂Ω and thus ∂ψ/∂xi = 0 on ∂Ω for all 1 ≤ i ≤ n.

From (2.1) we obtain

0 = u2 = (∆ + λ)ψ =
∂2ψ

∂N2 +H
∂ψ

∂N
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in ∂Ω where H = div(N) which implies ∂2ψ/∂N2 = 0 in ∂Ω.
Now, since ∂ψ/∂N = 0 and ∂2ψ/∂N2 = 0 in ∂Ω we have

∇
(
∂ψ

∂N

)
=

∂

∂N

∂ψ

∂N
·N = 0

and then ∇(∂ψ/∂N) = 0 in ∂Ω. Therefore, for all 0 ≤ i ≤ n we have

∂

∂xi

∂ψ

∂N
= 0

in ∂Ω from which it follows that

∂

∂xi

n∑
k=1

Nk
∂ψ

∂xk
= 0

in ∂Ω, that is,
n∑

k=1

Nk
∂2ψ

∂xk∂xi
=

∂

∂N

∂ψ

∂xi
= 0

in ∂Ω, for all 0 ≤ i ≤ n. Therefore we have

∂ψ

∂xi
=

∂

∂N

∂ψ

∂xi
= 0

on ∂Ω which implies ∇(∂ψ/∂xi) = 0 in ∂Ω, that is, ∂2ψ/(∂xi∂xj) = 0 in ∂Ω for
all 1 ≤ i, j ≤ n.

To obtain the last equality, observe that

∂

∂xi
(u2) =

∂

∂xi
(∆ + λ)ψ = (∆ + λ)

∂ψ

∂xi

in Ω, and so

0 = 2u
∂u

∂xi
= (∆ + λ)

∂ψ

∂xi

= ∆∂Ω
∂ψ

∂xi
+H

∂

∂N

∂ψ

∂xi
+

∂2

∂N2

∂ψ

∂xi
+ λ

∂ψ

∂xi
=

∂2

∂N2

∂ψ

∂xi

on ∂Ω, since ∂ψ/∂xi = ∂2ψ/(∂xi∂xj) = 0 on ∂Ω, 1 ≤ i, j ≤ n. Now, since

∂

∂N

∂ψ

∂xi
=

∂2

∂N2

∂ψ

∂xi
= 0

on ∂Ω we have
∇ ∂

∂N

∂ψ

∂xi
= 0

on ∂Ω, and so,

0 =
∂

∂xk

(
∂

∂N

∂ψ

∂xi

)
=

n∑
j=1

(
∂Nj

∂xk

∂2ψ

∂xi∂xj
+Nj

∂3ψ

∂xi∂xj∂xk

)
=

∂

∂N

∂2ψ

∂xi∂xk

on ∂Ω. Therefore
∂2ψ

∂xi∂xj
=

∂

∂N

∂2ψ

∂xi∂xj
= 0
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on ∂Ω which implies ∇(∂2ψ/∂xi∂xj) = 0 on ∂Ω, that is, ∂3ψ/(∂xi∂xj∂xk) = 0
on ∂Ω for all 1 ≤ i, j, k ≤ n. �

Lemma 3.6. Let Ω ⊂ Rn be an open, connected, bounded, C5-regular region.
Consider the mapping

G:H2 ∩H1
0 (Ω)× [0,M ]×H4 ∩H2

0 (Ω)×DM → L2(Ω)× L2(Ω)×H−1/2(∂Ω)

defined by

G(u, λ, ψ, h)

=
(
h∗(∆ + λ)h∗−1u, h∗(∆ + λ)h∗−1ψ + u2, h∗

∂3

∂N3h
∗−1ψ|∂h(Ω)

)
.

Then, the set

CM = {h ∈ DM | (0, 0, 0) ∈ G(H2 ∩H1
0 (Ω)× [0,M ]×H4 ∩H2

0 (Ω), h)}

is meager and closed in DM .

Proof. We will apply the Transversality Theorem. We note that, as men-
tioned previously, the mapping G is analytic in h. It is clearly also analytic in
the other variables.

Let (u, λ, ψ, h) ∈ G−1(0, 0, 0). As before, we may assume that h = iΩ. The
partial derivative (∂G/∂(u, λ, ψ))(u, λ, ψ, iΩ) defined from H2 ∩ H1

0 (Ω) × R ×
H4 ∩H2

0 (Ω) into L2(Ω)× L2(Ω)×H−1/2(∂Ω) is given by

∂G

∂(u, λ, ψ)
(u, λ, ψ, iΩ)( · )

=
(

∂G1

∂(u, λ, ψ)
(u, λ, ψ, iΩ),

∂G2

∂(u, λ, ψ)
(u, λ, ψ, iΩ),

∂G3

∂(u, λ, ψ)
(u, λ, ψ, iΩ)

)
( · )

where
∂G1

∂(u, λ, ψ)
(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) = (∆ + λ)u̇+ λ̇u,

∂G2

∂(u, λ, ψ)
(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) = (∆ + λ)ψ̇ + λ̇ψ + 2uu̇,

∂G3

∂(u, λ, ψ)
(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) =

∂3

∂N3 ψ̇.

Now DG(u, λ, ψ, iΩ) defined from H2∩H1
0 (Ω)×R×H4∩H2

0 (Ω)×C5(Ω,Rn)
into L2(Ω)× L2(Ω)×H−1/2(∂Ω) is given by

DG(u, λ, ψ, iΩ)( · ) = (DG1(u, λ, ψ, iΩ), DG3(u, λ, ψ, iΩ), DG3(u, λ, ψ, iΩ))( · )

where

DG1(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) = (∆ + λ)(u̇− ḣ · ∇u) + λ̇u,

DG2(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) = (∆ + λ)(ψ̇ − ḣ · ∇ψ) + λ̇ψ + 2uu̇,
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DG3(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) =
∂3

∂N3 (ψ̇ − ḣ · ∇ψ) + (ḣ ·N)
∂4ψ

∂N4 .

We observe here that, since ψ ∈ H4 then ∂4ψ/∂N4 is in L2 so its restriction to
the boundary is actually in H−1/2(∂Ω).

The first two components are easy to compute. To compute the third com-
ponent we first observe that

∂3

∂N3ψ =∇[∇(∇ψ ·N) ·N ] ·N

=
n∑

k=1

Nk
∂

∂xk

[ n∑
j=1

Nj
∂

∂xj

( n∑
i=1

Ni
∂ψ

∂xi

)]

=
n∑

i,j,k=1

[
Nk

∂Nj

∂xk

∂Ni

∂xj

∂ψ

∂xi
+NkNj

∂2Ni

∂xj∂xk

∂ψ

∂xi

+NkNj
∂Ni

∂xj

∂2ψ

∂xi∂xk
+NkNj

∂Ni

∂xk

∂2ψ

∂xi∂xj
+NkNjNi

∂3ψ

∂xi∂xj∂xk

]
.

Using Theorem 2.6, we obtain

h∗
∂3

∂N3h
∗−1ψ = h∗Bh(Ω)h

∗−1ψ = b(Lv(y),MNh(Ω)(y))

where v = h∗−1ψ, y = h(x),

MNh(Ω) =
(

((Nh(Ω))i, 1 ≤ i ≤ n),
(
∂(Nh(Ω))i

∂yj
, 1 ≤ i, j ≤ n,

)
,(

∂2(Nh(Ω))i

∂yj∂yk
, 1 ≤ i, j, k ≤ n

))
,

Lv =
((

∂v

∂yi
, 1 ≤ i ≤ n

)
,

(
∂2v

∂yi∂yj
, 1 ≤ i, j ≤ n

)
,(

∂3v

∂yi∂yj∂yk
, 1 ≤ i, j, k ≤ n

))
,

and b: Rn+n2+n3 × Rn+n2+n3 → R is given by

b(λ, µ) =
n∑

i,j,k=1

{µkµijµjkλi + µkµjµijkλi + µkµjµijλki

+ µkµjµikλij + µkµiµjkλij + µkµiµjλijk}

if

λ = ((λi, 1 ≤ i ≤ n), (λi,j , 1 ≤ i, j ≤ n), (λi,j,k, 1 ≤ i, j, k ≤ n)),

µ = ((µi, 1 ≤ i ≤ n), (µi,j , 1 ≤ i, j ≤ n), (µi,j,k, 1 ≤ i, j, k ≤ n)),
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∂

∂t
(h∗Bh(Ω)h

∗−1)(ψ)|t=0

=Dt(h∗Bh(Ω)h
∗−1)(ψ)|t=0 + h−1

x ht∇[(h∗Bh(Ω)h
∗−1)(ψ)]|t=0

=(h∗Ḃh(Ω)h
∗−1)(ψ)|t=0 + (h∗B′h(Ω)h

∗−1)(ψ) ·Dtψ|t=0

+
(
h∗
∂Bh(Ω)

∂N
h∗−1

)
(ψ) ·Dt(h∗Nh(Ω))|t=0

+ h−1
x ht∇[(h∗Bh(Ω)h

∗−1)(ψ)]|t=0.

Observe that

Ḃh(Ω) ≡ 0,

B′h(Ω)(v(y)) · w(y) =
∂3

∂N3w(y)

∂Bh(Ω)

∂N
(v) · n(y) =

∂b

∂µ
(Lv(y),MNh(Ω)) · n(y).

Now

∂b

∂µ
(Lv,MNh(Ω))|t=0

=
n∑

i,j,k=1

{
∂Ni

∂xj

∂Ni

∂xk

∂ψ

∂xi
nk +Nk

∂Nj

∂xk

∂ψ

∂xi

∂ni

∂xj
+Nk

∂Ni

∂xj

∂ψ

∂xi

∂ni

∂xj

+Nj
∂2Ni

∂xj∂xk

∂ψ

∂xi
nk +Nk

∂2Ni

∂xj∂xk

∂ψ

∂xi
nj +NkNj

∂ψ

∂xi

∂2ni

∂xj∂xk

+Nj
∂Ni

∂xj

∂2ψ

∂xi∂xk
nk +Nk

∂Ni

∂xj

∂2ψ

∂xi∂xk
nj +NkNj

∂2ψ

∂xi∂xk

∂ni

∂xj

+Nk
∂Ni

∂xk

∂2ψ

∂xi∂xj
nj +Nj

∂Ni

∂xk

∂2ψ

∂xi∂xj
nk +NkNj

∂2ψ

∂xi∂xj

∂ni

∂xk

+Ni
∂Nj

∂xk

∂2ψ

∂xi∂xj
nk +Nk

∂Nj

∂xk

∂2ψ

∂xi∂xj
ni +NkNi

∂2ψ

∂xi∂xj

∂ni

∂xk

+NiNj
∂3ψ

∂xi∂xj∂xk
nk +NkNj

∂3ψ

∂xi∂xj∂xk
ni +NiNk

∂3ψ

∂xi∂xj∂xk
nj

}
= 0.

In fact, by Lemma 3.5, ∂ψ/∂xi = 0 for all 1 ≤ i ≤ n, ∂2ψ/(∂xi∂xj) = 0 for all
1 ≤ i, j ≤ n and ∂3ψ/(∂xi∂xj∂xk) = 0 for all 1 ≤ i, j, k ≤ n on ∂Ω.

Now, we can easily see that the hypothesis (1) of the Transversality Theorem
is satisfied, in fact ker ((∂G/∂(u, λ, ψ))(u, λ, ψ, iΩ)) is one dimensional and gen-
erated by (u, 0, 2ψ) since λ is a simple eigenvalue of ∆ and (∆ + λ) is injective
in H4 ∩H2

0 (Ω) by Theorem 2.2. Therefore, ind (∂G(u, λ, ψ, iΩ)/∂(u, λ, ψ)) ≤ 1.
We now prove that (2β) also holds, that is, we show that

dim
{

Im (DG(u, λ, ψ, iΩ))
Im (∂G(u, λ, ψ, iΩ)/∂(u, λ, ψ))

}
= ∞.
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Suppose this is not true and so, there exist θ1, . . . , θm ∈ L2(Ω) × H−1/2(Ω) ×
L2(∂Ω) such that, for all ḣ ∈ C5(Ω,Rn) there exist u̇, ψ̇, λ̇ and c1, . . . , cm with

(3.8) DG(u, λ, ψ, iΩ)(u̇, λ̇, ψ̇, ḣ) =
n∑

j=1

cjθj ,

that is(
(∆ + λ)(u̇− ḣ · ∇u) + λ̇u, (∆ + λ)(ψ̇ − ḣ · ∇ψ) + λ̇ψ + 2uu̇,

∂3

∂N3 (ψ̇ − ḣ · ∇ψ) + (ḣ ·N)
∂4ψ

∂N4

)
=

n∑
j=1

cjθj

with (u̇, λ̇, ψ̇, ḣ) ∈ H2 ∩ H1
0 (Ω) × R × H4 ∩ H2

0 (Ω) × C5(Ω,Rn), where θj =
(θ1j , θ

2
j , θ

3
j ).

Define the operators

A∆+λ:L2(Ω) → H2 ∩H1
0 (Ω), S∆+λ:H2(Ω) → H4 ∩H2

0 (Ω)

by

v = A∆+λf where (∆ + λ)v − f ∈ ker (∆ + λ), v⊥ker (∆ + λ)

ϕ = S∆+λg where (∆ + λ)ϕ− g ∈ ker (∆ + λ) in H4 ∩H2
0 (Ω),

ϕ⊥ker (∆ + λ).

From the first component in (3.8), we obtain

u̇− ḣ · ∇u = ξu+
m∑

j=1

cjA∆+λθ
1
j

and similarly for ψ̇ − ḣ · ∇ψ. Substituting in the third component of (3.8), we
conclude that

(ḣ ·N)
∂4ψ

∂N4

belongs to a finite dimensional subspace of H−1/2(∂Ω) for each ḣ ∈ C5(Ω,Rn).
But this can only occur (in dimension ≥ 2) if ∂4ψ/∂N4 ≡ 0 in ∂Ω.

Now, since (∆ + λ)ψ = u2 in Ω we have

∂2

∂N2 (∆ + λ)ψ =
∂2

∂N2u
2

on ∂Ω, and so

∂2

∂N2 ∆ψ =
∂2

∂N2u
2 − λ

∂2ψ

∂N2 = 2
(
∂2u

∂N2

)2

on ∂Ω.
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Observe that

∂2

∂N2 ∆ψ =∆
∂2ψ

∂N2 −
n∑

i,j,k=1

[
∂2Nj

∂xk
2

(
∂Ni

∂xj

∂ψ

∂xi
+Ni

∂2ψ

∂xi∂xj

)

+ 2
∂Ni

∂xk

(
∂2Ni

∂xk∂xj

∂ψ

∂xi
+
∂Ni

∂xj

∂2ψ

∂xi∂xk
+
∂Ni

∂xk

∂2ψ

∂xi∂xj

+Ni
∂3ψ

∂xi∂xj∂xk

)
+Nj

(
∂3Ni

∂xk
2∂xj

∂ψ

∂xi
+ 2

∂2Ni

∂xk∂xj

∂2ψ

∂xi∂xk
+
∂2Ni

∂xk
2

∂2ψ

∂xi∂xj

+ 2
∂Ni

∂xk

∂3ψ

∂xi∂xj∂xk

)]
= ∆

∂2ψ

∂N2

on ∂Ω, by Lemma 3.5 and, therefore

2
(
∂u

∂N

)2

=
∂2

∂N2 ∆ψ = ∆
∂2ψ

∂N2 = ∆∂Ω
∂2ψ

∂N2 +H
∂3ψ

∂N3 +
∂4ψ

∂N4 =
∂4ψ

∂N4 = 0

on ∂Ω, that is , ∂u/∂N = 0 on ∂Ω. By uniqueness in the Cauchy Problem
(Theorem 2.2) u ≡ 0, which is a contradiction.

Since the spaces are separable, the hypothesis (3) is automatically satisfied.
The result is, therefore, proved. �

Theorem 3.7. For a generic set of open, connected, bounded C2-regular
regions Ω ⊂ Rn, (n ≥ 2) the eigenfunctions u of (3.1) satisfy

∫
Ω
u3 6= 0.

Proof. We prove first that the property holds for any eigenfunction asso-
ciated to eigenvalues smaller than a fixed natural number M , in a open dense
set of Diff3(Ω). The result then follows easily, taking intersection. The openness
property is easy to obtain using the continuity of the (simple) eigenfunctions. To
prove density, we may first approximate (in the C2 topology) by a more regular
region and then use stronger norms.

Consider the map

F :H2 ∩H1
0 (Ω)− {0} × (0,M)×DM − CM → L2(Ω)× R× R,

(u, λ, h) →
(
h∗(∆ + λ)h∗−1u,

∫
Ω

u2det h′,

∫
Ω

u3det h′
)
.

Observe that, by Lemmas 3.2 and 3.6, DM − CM is an open dense subset of
Diff5(Ω). We wish to apply the Transversality Theorem to conclude that the set

BM = {h ∈ DM − CM | (0, 1, 0) ∈ F (H2 ∩H1
0 (Ω)− {0} × (0,M), h)}

is a meager set in DM −CM and, therefore, its complement is dense in Diff5(Ω).
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We claim first that the operator ∂F (u, λ, h)/∂(u, λ) from H2 ∩ H1
0 (Ω) ×

R → L2(Ω) × R × R is Fredholm with ind (∂F (u, λ, h)/∂(u, λ)) ≤ −1, for all
(u, λ, h) ∈ F−1(0, 1, 0).

Let (u, λ, h) ∈ F−1(0, 1, 0). Again, we assume without loss of generality that
h = iΩ. Computing the derivatives (using (2.3)), we have

DF (u, λ, iΩ):H2 ∩H1
0 (Ω)− {0} × R× C5(Ω,Rn) → L2(Ω)× R× R,

(u̇, λ̇, ḣ) → (DF1(u, λ, iΩ), DF2(u, λ, iΩ), DF3(u, λ, iΩ))(u̇, λ̇, ḣ),

where
DF1(u, λ, iΩ)(u̇, λ̇, ḣ) = (∆ + λ)u̇+ λ̇u+ [ḣ · ∇, (∆ + λ)]u

= (∆ + λ)(u̇− ḣ · ∇u) + λ̇u,

DF2(u, λ, iΩ)(u̇, λ̇, ḣ) =
∫

Ω

{2uu̇+ u2div(ḣ)},

DF3(u, λ, iΩ)(u̇, λ̇, ḣ) =
∫

Ω

{3u2u̇+ u3div(ḣ)},

and

∂F

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇)

=
(

∂F1

∂(u, λ)
(u, λ, iΩ),

∂F2

∂(u, λ)
(u, λ, iΩ),

∂F3

∂(u, λ)
(u, λ, iΩ)

)
(u̇, λ̇)

= ((∆ + λ)u̇+ λ̇u,

∫
Ω

2uu̇,
∫

Ω

3u2u̇).

Clearly ∂F (u, λ, iΩ)/∂(u, λ) is Fredholm, since ∂F1(u, λ, iΩ)/∂(u, λ) is Fredholm
and F2, F3 have finite dimensional range. Observe now that the mapping

(3.9)
(

∂F1

∂(u, λ)
(u, λ, iΩ),

∂F2

∂(u, λ)
(u, λ, iΩ)

)
:H2 ∩H1

0 (Ω)× R → L2(Ω)× R

is surjective. In fact, given (f, x) ∈ L2(Ω) × R, let (v, ξ) ∈ H2 ∩H1
0 (Ω) × R be

defined by

v = v0 +
xu

2
and ξ =

∫
Ω

uf

where v0 ∈ H2 ∩H1
0 (Ω) satisfy (∆ + λ)v0 = f − ξu and v0⊥u. Note that such a

v0 exists, since (f − ξu)⊥u. Thus

∂F1

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇) = (∆ + λ)v + ξu = f − ξu+

x

2
(∆ + λ)u+ ξu = f,

∂F2

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇) =

∫
Ω

2u
(
v0 +

x

2
u

)
= x

∫
Ω

u2 = x.
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Observe also that (∂F1(u, λ, iΩ)/∂(u, λ), (∂F2(u, λ, iΩ)/∂(u, λ))) is injective, since(
∂F1

∂(u, λ)
(u, λ, iΩ),

∂F2

∂(u, λ)
(u, λ, iΩ)

)
(v, ξ) = (0, 0)

⇔ (∆ + λ)v + ξu = 0 and
∫

Ω

2uv = 0.

Now (∆ + λ)v + ξu = 0 ⇒ u(∆ + λ)v + ξu2 = 0 from which −
∫
Ω
u(∆ + λ)v = ξ

if and only if ξ = 0. Therefore, (∆ + λ)v = 0 with
∫
Ω

2uv = 0, that is, u⊥v and
(∆+λ)v = 0. Since λ is a simple eigenvalue associated to u, it follows that v ≡ 0.
Now, since (3.9) is a continuous surjective operator with domain H2 ∩ H1

0 (Ω)
it follows, from the Closed Graph Theorem, that its inverse is continuous in
L2(Ω) and thus, (3.9) is an isomorphism so ∂F (u, λ, iΩ)/∂(u, λ) is not surjective.
Furthermore, since its kernel is trivial, we have ind (∂F (u, λ, iΩ)/∂(u, λ)) ≤ −1.
Therefore, for all (u, λ, h) ∈ F−1(0, 1, 0), ind (∂F (u, λ, h)/∂(u, λ)) ≤ −1, as we
wish to show.

Now, by Lemma 3.3 and the definition of CM , (see also Remark 3.4) it follows
that (0, 1, 0) is a regular value of F . Therefore, by the Transversality Theorem,
we conclude that BM is meager as claimed. The result is, therefore, proved. �

4. A generic property for the eigenfunctions
of the Neumann Problem

We now consider the same property of the previous section in the case of
Neumann boundary conditions. We show that, generically in the set of open,
connected, bounded C3 regions Ω ⊂ Rn with n ≥ 2, the normalized eigenfunc-
tions u of

∆u+ λu = 0 in Ω,
∂u

∂N
= 0 on ∂Ω,(4.1)

u 6= 0,

satisfy
∫
Ω
u3 6= 0.

Remark 4.1. We could prove the result for C2 regions as in the previous
section. However, we have chosen to work here in the setting of C3 regions, which
slightly simplify the arguments.

We first observe that the result is trivial if u is a constant eigenfunction and,
therefore, we do not need to consider the eigenvalue 0.

Let us define as before the set

DM = {h ∈ Diff3(Ω) |M is not an eigenvalue of (4.1) in h(Ω)

and all the eigenvalues λ ∈ (0,M) in h(Ω) are simple}.
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This is again an open and dense subset of Diff3(Ω). The proof is very similar to
the Dirichlet case. However, in the present case we need to consider the following
subset of DM

EM = {h ∈ DM | ∇u 6≡ 0 on ∂Ω,

for any eigenfunction associated to an eigenvalue in (0,M)}.

Lemma 4.2. EM is an open dense subset of Diff3(Ω).

Proof. Openness is easy to obtain, by continuity of the eigenfunctions. To
prove density, we apply the Transversality Theorem to the map

G:H2
N (Ω) \ {0} × (0,M)×DM → L2(Ω)× (L2(∂Ω))n

defined by

G(u, λ, h) =
(
h∗(∆ + λ)h∗−1u, h∗

∂

∂xi
h∗−1u|∂h(Ω), 1 ≤ i ≤ n

)
where

H2
N (Ω) =

{
u ∈ H2(Ω)

∣∣∣∣ ∂u

∂N
= 0 on ∂Ω

}
.

Let (u, λ, h) be such that G(u, λ, h) = (0, . . . , 0). As before, we may assume
h = iΩ. Now, the kernel of ∂G(u, λ, h)/∂(u, λ) is finite-dimensional. Therefore,
to use the Transversality Theorem, we need to prove that

(4.2) dim
{

Im (DG(u, λ, h))
Im (∂G(u, λ, h)/∂(u, λ))

}
= ∞.

The partial derivative (∂G/∂(u, λ))(u, λ, iΩ):H2
N (Ω)× R → L2(Ω)× (L2(∂Ω))n

is given by

∂G

∂(u, λ)
(u, λ, iΩ)( · ) =

(
∂G1

∂(u, λ)
(u, λ, iΩ),

∂Gi+1

∂(u, λ)
(u, λ, iΩ), 1 ≤ i ≤ n

)
( · )

where
∂G1

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇, ḣ) = (∆ + λ)u̇+ λ̇u,

∂Gi+1

∂(u, λ)
(u, λ, iΩ)(u̇, λ̇, ḣ) =

∂u̇

∂xi

∣∣∣∣
∂Ω

, 1 ≤ i ≤ n.

On the other hand, DG(u, λ, iΩ) defined from H2
N (Ω) × R × C3(Ω,Rn) into

L2(Ω)× (L2(∂Ω))n is given by

DG(u, λ, iΩ)( · ) = (DG1(u, λ, iΩ), DGi+1(u, λ, iΩ), 1 ≤ i ≤ n)( · )

where

DG1(u, λ, iΩ)(u̇, λ̇, ḣ) = (∆ + λ)(u̇− ḣ · ∇u) + λ̇u,

DGi+1(u, λ, iΩ)(u̇, λ̇, ḣ) =
{

∂

∂xi
(u̇− ḣ · ∇u) + ḣ · ∇

(
∂u

∂xi

)}∣∣∣∣
∂Ω

,
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for 1 ≤ i ≤ n. Suppose (4.2) is false, that is, there exist θ1, . . . , θm ∈ L2(Ω) ×
(L2(∂Ω))n such that, for any ḣ ∈ C3(Ω,Rn) there exist u̇, λ̇ and c1, . . . , cm with

(4.3) DG(u, λ, iΩ)(u̇, λ̇, ḣ) =
n∑

j=1

cjθj ,

where θj = (θ1j , . . . , θ
n+1
j ). Define the operator

(4.4) L∆+λ:L2(Ω) → H2
N (Ω)

by

v = L∆+λf where (∆ + λ)v − f ∈ ker (∆ + λ) in H2
N (Ω), v⊥ker (∆ + λ).

We obtain, from the first equation in (3.8),

u̇− ḣ · ∇u = ξu+
m∑

j=1

cjL∆+λθ
1
j .

Substituting in the (i+ 1)-th component of (4.3), we conclude that

ḣ · ∇
(
∂u

∂xi

)∣∣∣∣
∂Ω

belongs to a finite dimensional subspace of L2(∂Ω) when ḣ varies in C3(Ω,Rn).
But this can only happen (in dim Ω ≥ 2) if ∇(∂u/∂xi) ≡ 0 in ∂Ω, for 1 ≤
i ≤ n, that is, ∂2u/∂xi∂xj ≡ 0 in ∂Ω for 1 ≤ i, j ≤ n. Therefore, for each
1 ≤ i ≤ n, ∂u/∂xi satisfies (4.1) in Ω and ∂u/∂xi = 0 on ∂Ω. By uniqueness
in the Cauchy problem, we have ∂u/∂xi = 0 in Ω and so u is constant in Ω
contradicting the hypothesis. Since our spaces are separable, the hypothesis (3)
of the Transversality Theorem is verified, and the result claimed follows. �

Theorem 4.3. For a generic set of open, connected, bounded C3-regular
regions Ω ⊂ Rn, (n ≥ 2) the eigenfunctions u of (4.1) satisfy

∫
Ω
u3 6= 0.

Proof. We prove first that the property holds for any eigenfunction asso-
ciated to eigenvalues smaller than a fixed natural number M , in a open dense
set of Diff3(Ω). The result then follows easily, taking intersection. The openness
property is, as in lemma (4.2), easy to obtain. To prove density, we again use
the Transversality Theorem.

Consider the mapping

F :H2
N (Ω)× (0,M)× EM → L2(Ω)× R× R,

(u, λ, h) →
(
h∗(∆ + λ)h∗−1u,

∫
Ω

u2deth′,
∫

Ω

u3deth′
)
.

We wish to prove that the set {h ∈ EM | (0, 1, 0) ∈ F (H2
N (Ω) − {0} ×

(0,M), h)} is a meager set in EM and, therefore, in Diff3(Ω).
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We claim first that ∂F (u, λ, h)/∂(u, λ) is Fredholm, with ind (∂F (u, λ, h)/
∂(u, λ)) ≤ −1 for all (u, λ, h) ∈ F−1(0, 1, 0). The proof is almost the same
as the one in Theorem 3.7. We need to prove that hypotheses (2)(α) of the
Transversality Theorem is satisfied. Suppose it is not, and (u, λ, iΩ) ∈ H2

N (Ω)×
(0,M) × EM is a critical point, with F (u, λ, iΩ) = (0, 1, 0). Then, there exists
(ψ, α, β) ∈ L2(Ω)× R× R orthogonal to ImDF (u, λ, iΩ), that is,

(4.5) 0 =
∫

Ω

{ψ[(∆+λ)(u̇−ḣ·∇u)+λ̇u]+α[2uu̇+u2div(ḣ)]+β[3u2u̇+u3div(ḣ)]}

for all (u̇, λ̇, ḣ) ∈ H2
N (Ω)× R× C3(Ω,Rn).

If u̇ = ḣ = 0 in (4.5) then
∫
Ω
ψu = 0. If ḣ = λ̇ = 0, then

(4.6)
∫

Ω

{ψ(∆ + λ)u̇+ 2αuu̇+ 3βu2u̇} = 0 for all u̇ ∈ H2
N .

If we take u̇ = u in (4.6), then α = 0 and by regularity of solutions in the Cauchy
problem we conclude that ψ ∈ H2

N (Ω) ∩ C2
α(Ω) for all 0 < α < 1 and satisfies

(∆ + λ)ψ = −3βu2 in Ω.

If now we take u̇ = λ̇ = 0 in (4.5) then, since α = 0

(4.7) 0 = −
∫

Ω

ψ(∆ + λ)(ḣ · ∇u) +
∫

Ω

βu3div(ḣ)

for all ḣ ∈ C3(Ω,Rn). Now, we have∫
Ω

ψ(∆ + λ)(ḣ · ∇u)

=
∫

Ω

(ḣ · ∇u)(∆ + λ)ψ +
∫

∂Ω

ψ
∂

∂N
(ḣ · ∇u)− (ḣ · ∇u) ∂ψ

∂N

= −
∫

Ω

3βu2(ḣ · ∇u) +
∫

∂Ω

ψ
∂

∂N
(ḣ · ∇u)

=
∫

Ω

β{u3div(ḣ)− div(u3ḣ)}+
∫

∂Ω

ψ
∂

∂N
(ḣ · ∇u)

=
∫

Ω

βu3div(ḣ) +
∫

∂Ω

{ψ ∂

∂N
(ḣ · ∇u)− βu3(ḣ ·N)}.

Substituting in (4.7), we obtain

(4.8)
∫

∂Ω

{βu3(ḣ ·N)− ψ
∂

∂N
(ḣ · ∇u)} = 0

for all ḣ ∈ C3(Ω,Rn).
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If τ is any vector field in C3(Ω,Rn) with τ ⊥ N = 0 ∈ ∂Ω, and ḣ = gτ , for
some g ∈ C3(Ω,R), g ≡ 0 in ∂Ω then

0 =
∫

∂Ω

{
βu3(ḣ ·N)− ψ

∂

∂N
(ḣ · ∇u)

}
= −

∫
∂Ω

ψ
∂

∂N
(ḣ · ∇u)

= −
∫

∂Ω

ψ

{
∂g

∂N

∂u

∂τ
+ g

∂

∂N
(τ · ∇u) = −

∫
∂Ω

ψ
∂g

∂N

∂u

∂τ
.

Since ∂g/∂N can be arbitrily chosen in ∂Ω and ∇u 6≡ 0 we must have

(4.9) ψ ≡ 0

in a neighbourhood of ∂Ω.
On the other hand, if ḣ = gN , we have

0 =
∫

∂Ω

{
βu3(ḣ ·N)− ψ

∂

∂N
(ḣ · ∇u)

}
=

∫
∂Ω

βu3g − ψ
∂g

∂N

∂u

∂N
− ψg

∂2u

∂N2
=

∫
∂Ω

(
βu3 − ψ

∂2u

∂N2

)
g

for any g ∈ C3(Ω,R). Therefore, we must have

(4.10) βu3 − ψ
∂2u

∂N2
= 0 on ∂Ω.

But then, it follows from (4.9) and (4.10) that u ≡ 0 in a neighbourhood of ∂Ω
and, by uniqueness in the Cauchy problem u ≡ 0, a contradiction. The result is,
therefore, proved. �

5. Appendix. A Proof of the Transversality Theorem

For the sake of completeness we give here a proof of Theorem 2.7. Apart
from a change of order and some other minor modification the proof is the same
as in [4].

Lemma 5.1. Suppose f(x0, y0) = ξ, (∂f/∂x)(x0, y0) is left-Fredholm and f
is continuously differentiable on a neighbourhood W0 of (x0, y0). Then there is a
neighbourhood W of (x0, y0) such that W ⊂W0 and (x, y) → y: f−1(ξ)∩W → Y

is proper.

Proof. The result is local, so we may assume X,Y, Z are Banach spaces.
Now L := (∂f/∂x)(x0, y0) is left-Fredholm so X1 = kerL is finite dimensional
and splits X = X1 ⊕ X2, and the restriction of L is an isomorphism from X2

onto ImL, with a continuous inverse since ImL is closed. There exists C0 > 0
so |Lx2| ≥ C0|x2| for all x2 ∈ X2. Also, if K = 1 + ‖∂f(x0, y0)/∂y‖, there is
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a bounded neighbourhood W of (x0, y0), so small that W ⊂W0 and

|f(x, y)− f(u, v)− L(x− u)|

= |f(x, y)− f(u, v)− L(x− u)± ∂f

∂y
(x0, y0)(y − v)|

≤ C0

2
|x− u|+K|y − v|

,

(x, y), (u, v) ∈W . Now suppose {(xn, yn)}n≥1 is a sequence in f−1(ξ)∩W such
that {yn} converges. Then xn

1 , the component of xn in X1, is bounded in a
finite-dimensional space and has a convergent subsequence, in fact, we suppose
that {xn

1} converges.

C0|xn
2 − xm

2 | ≤ |L(xn
2 − xm

2 )|
≤ |L(xn − xm)| = |f(xn, yn)− f(xm, ym)− L(xn − xm)|

≤ C0

2
|xn − xm|+K|yn − ym|

≤ C0

2
(|xn

1 − xm
1 |+ |xn

2 − xm
2 |) +K|yn − ym|

so

|xn
2 − xm

2 | ≤ |xn
1 − xm

1 |+
2K
C0
|yn − ym|

that converges for 0 as n,m → ∞. Thus {xn} converges, which proves the
lemma. �

Remark 5.2. Next we show f−1(ξ) Lindelöf implies (3). Indeed, by Lem-
ma 5.1, each point of f−1(ξ) has an open neighbourhood W ⊂W ⊂ A such that
(x, y) → y: f−1(ξ) ∪W is proper. By hypothesis, there is a countable subcover
{f−1(ξ) ∪W}∞j=1 so (3) holds with Mj = {f−1(ξ)}.

Lemma 5.3. Let k, m = 1, X, Y , Z, A, f , ξ be given as in the Transversality
Theorem, (x0, y0) ∈ f−1(ξ), and assume hypothesis (1) and (2), (α) or (β), hold
at (x0, y0). Then there exists open neighbourhoods U of x0, V of y0, and an open
dense subset V 0 ⊂ V , such that U × V ⊂ A and ξ is a regular value of f( · , y)|U
whenever y ∈ V 0.

Proof. Since the result is local, near (x0, y0) ∈ X × Y and ξ ∈ Z, we
may assume X, Y , Z are Banach spaces, x0 = 0, y0 = 0, ξ = 0, f is Ck on
a neighbourhood of (0, 0) ∈ X × Y , f(x, y) = Lx + My + o(|x| + |y|), L is
semi-Fredholm with index less then k, and either

(α) Im (L,M) = {Lx+My | for all x, y} = Z or
(β) dim {Im (L,M)/ImL} > dim kerL.

Since (α) ⇒ (β) for negative index, it is enough to prove the result in case (α)
when indL ≥ 0 and in case (β) when indL < 0.
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Case (α). indL ≥ 0, Im (L,M) = Z. L is Fredholm so X = X1 ⊕ X2,
Z = Z1⊕Z2, X1 = kerL, Z2 = ImL, L2 := L|X2 :X2 → Z2 is a isomorphism, and
indL = dimX1−dimZ1. The complement Z1 to ImL is not unique and we may
choose Z1 ⊂ ImM . Then there is a subspace Y1 ⊂ Y so M1 := M |Y1 :Y1 → Z1

is an isomorphism; defining Y2 = M−1Z2, it follows that Y = Y1 ⊕ Y2. Writing
f in terms of its components in these spaces,

f(x1, x2, y1, y2) = (M1y1 + g(x, y), L2x2 + h(x, y))

where g, h are Ck and g, gx, gy, h, hx all vanish at (0, 0), but perhaps hy 6= 0. By
the implicit function theorem, we may solve f(x, y) = (0, 0) for y1 = φ(x1, y2)
and x2 = ψ(x1, y2) with φ, ψ of class Ck near (0, 0) since

Dfx2,y1(0, 0):X2 ⊕ Y1 → Z1 ⊕ Z2,

(ẋ2, ẏ1) → (M1ẏ1, L2ẋ2 + hy1(0, 0)ẏ1)

is an isomorphism. In matrix form, (∂f/∂x)(x, y) is(
gx1 gx2

hx1 L2 + hx2

)
=

(
1 p

0 1

) (
∆ 0
0 L2 + hx2

) (
1 0
q 1

)
where p:Z2 → Z1, q:X1 → X2 and ∆:X1 → Z1 are defined by p = gx2(L2 +
hx2)

−1, q = gx2(L2 + hx2)
−1 and ∆ = gx1 − gx2(L2 + hx2)

−1hx1 . Then ∂f/∂x is
surjective if and only is ∆ is surjective. Now, by the definition of φ and ψ, we
have near (0, 0)

M1φ(x1, y2) + g(x1, ψ(x1, y2), φ(x1, y2), y2) = 0,

L2φ(x1, y2) + h(x1, ψ(x1, y2), φ(x1, y2), y2) = 0,

which implies

M1φx1 + gx1 + gx2ψx1 + gy1φx1 = 0,

L2φx1 + hx1 + hx2ψx1 + hy1φx1 = 0.

Now, by (5.2), ψx1 = −(L2 + hx2)
−1[hx1 + hy1φx1 ]. Substitution in (5.1) gives

{M1 + gy1 − gx2(L2 + hx2)
−1hy1}φx1 + ∆ = 0

and the coefficient of φx1 in equation above is an isomorphism when we are close
to (0, 0).

Thus in a neighbourhood max{|y1|, |y2|} < δ of y = 0 in Y , 0 is regular value
of f( · , y)|max{|x1|,|x2|}<ε, with y = y1 + y2, if and only if y1 is a regular value of
φ( · , y2)||x2|<ε. Since φ( · , y2):X1 → Y1 is Ck near 0 and k > dimX1 − dimY1,
Sard‘s theorem says, for every small y2, there is a dense set of y1 such that 0 is
a regular value of f( · , y1 + y2) on {|x1| < ε, |x2| < ε}. This proves that V0 is
dense.
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Now, suppose that V0 ⊂ Y is not open. Then there is (xn, yn) ∈ X × Y ,
yn → y0 ∈ V0 ⊂ Y , with f(xn, yn) = 0 and (xn, yn) is a critical point of f .
By Lemma 5.1, we can suppose that (xn, yn) → (x0, y0) with x0 ∈ X and
f(x0, y0) = 0. Since (xn, yn) is a critical point for all n ∈ N, we have (x0, y0) is
a critical point, a contradiction. Thus V0 is open.

Case (β). indL < 0, k = 1, dim {Im (L,M)/ImL} > dim kerL. Let
n = dim kerL. There exist {f1, . . . , fn+1} in Im (L,M) independent relative
to ImL, i.e.

∑n+1
i=1 cifi ∈ ImL implies all ci = 0. Then fi = Lxi + Myi where

{y1, . . . , yn+1} are linearly independent in Y , a basis for subspace Y1 ⊂ Y such
that MY1 ∩ ImL = {0} and M is injective on Y1. Let Z1 = MY1 and choose
Z2 ⊃ ImL so that Z = Z1 ⊕ Z2. Let Y2 = M−1Z2; then Y = Y1 ⊕ Y2. Also let
X1 = kerL, X = X1 ⊕X2, so n = dimX1 < dimZ1 = dimY1.

Now f has the form

f(x1, x2, y1, y2) = (M1y1 + g(x, y), L2x2 + h(x, y))

where M1 = M |Y1 :Y1 → Z1 is an isomorphism, and L2 = L|X2 :X2 → Z2 is
injective with closed image. Further, g, h are C1 and at (0, 0), g, gx, gy, h, hx

all vanish. By the implicit function theorem, we may solve M1y1 + g(x, y) = 0
for y1 = ψ(x, y2) a C1 function with ψ = 0 and ψx = 0 at the origin.

Choose small δ > 0. Fix y2 ∈ Y2, |y2| < δ, and let

Sy2 = {x ∈ X | |x1| ≤ δ, |x2| ≤ δ, f(x1, x2, ψ(x, y2), y2) = 0}.

Also let P1:X → X1 be the projection on X1 and πy2 = P1|Sy2
:Sy2 → X1.

If δ is small, πy2 is injective with Lipschitz inverse. Assuming this

ψ(Sy2 , y2) = ψ(π−1
y2
◦ πy2(Sy2), y2) ⊂ Y1

is the Lipschitz image of a set in X1, and dimX1 < dimY1. So ψ(Sy2 , y2) has
measure zero in Y1. Thus given any |y1| < δ, |y2| < δ, there exist ỹ1 arbitrarily
close to y1 but outside ψ(Sy2 , y2), hence f(x1, x2, ỹ1, y2) 6= 0 for all |x1| < δ,
|x2| < δ. Openess follows from Lemma 5.1 as above, so it only remains to show
πy2 has Lipschitz inverse.

Now |Lx2| ≥ c0|x2| for all x2 ∈ X2 and some constant c0 > 0. Since
ψx(0, 0) = 0, for sufficiently small δ > 0 and |x| ≤ δ, |x̃| ≤ δ, |y2| ≤ δ

|f(x, ψ(x, y2), y2)− f(x̃, ψ(x̃, y2), y2)− L(x− x̃)| ≤ c0
2
|x− x̃|.

If also x, x̃ ∈ Sy2 then

c0|x2 − x̃2| ≤ |L(x− x̃)| ≤ c0
2
|x− x̃| ≤ c0

2
(|x1 − x̃1|+ |x2 − x̃2|)

so |x2 − x̃2| ≤ |x1 − x̃1| = |πy2x− πy2 x̃2| implies |x− x̃| ≤ 2|πy2x− πy2 x̃|, which
completes the proof. �
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5.1. Proof of the Transversality Theorem. Assuming the Lemma 5.3
and that (x, y) → y: f−1(ξ) → Y is proper, we prove

Ycrit = {y ∈ Y | ξ is a critical value of f( · , y):Ay → Z}

is closed and without interior.
Let {yn}n≥1 be a sequence in this set which converges in Y ; for each n, there

exist xn ∈ X so (xn, yn) ∈ f−1(ξ) and xn is a critical point of f( · , yn). By
hypothesis, we may suppose (xn, yn) → (x, y), so (x, y) ∈ f−1(ξ). If ∂f(x, y)/∂x
were onto, then so would be (∂f/∂x)(xn, yn) for n large; hence x is critical point
of f( · , y) and closeness is proved. It remains to show that for each y ∈ Y , there
exists ỹ arbitrarily close to y such that ξ is a regular value of f( · , ỹ).

Let Ky = {x ∈ X | f(x, y) = ξ}, by the properness assumption, this is
a compact set. By Lemma 5.3, for each x ∈ Ky there are open sets Ux, Vx

neighbourhood of x and y respective and V 0
x , an open dense subset of Vx, such

that Ux × Vx ⊂ A and f( · , ỹ)|Ux has ξ as a regular value for all ỹ ∈ V 0
x . Choose

a finite subcover Ux1 , . . . , UxN
for Ky and let Ũ =

⋃N
i=1 Uxi

, Ṽ =
⋂N

i=1 Vxi
and

Ṽ 0 = Ṽ 0
xi

. Ṽ 0 is open and dense in Ṽ , Ṽ and Ũ are open, y ∈ Ṽ , Ky ⊂ Ũ , and
ξ is a regular value of f( · , ỹ) for all ỹ ∈ Ṽ 0 sufficiently close to y. Otherwise
there would exist yn → y, yn ∈ Ṽ 0, and critical points xn of f( · , yn) with
(xn, yn) ∈ f−1(ξ), such that limn→∞ xn = x exists, then (x, y) ∈ f−1(ξ), x ∈ Ky,
and xn ∈ Ũ , yn ∈ Ṽ 0 for n large, so xn is not a critical point of f( · , yn),
a contradiction.

If Lemma 5.3 and (3) hold, the same argument shows

{y ∈ Y | there is a critical point x of f( · , y) with (x, y) ∈Mj ⊂ f−1(ξ)}

is closed and nowhere dense for each j ∈ N. Hence the union of these,

{y ∈ Y | there is a critical point x of f( · , y) with (x, y) ∈ f−1(ξ)}

is meager. This completes the first step of the demonstration of the theorem.
Now, we show the case m > 1 of Transversality Theorem may be reduced to

the case m = 1, by change of variables. Suppose therefore m > 1, k = 1 and
(2)(β) holds and let X̃ = X ×Sm−1, Ỹ = C1(Sm−1, Y ), Ã = {(x, t, ỹ) ∈ X̃ × Ỹ |
(x, ỹ(t)) ∈ A} and f̃ : Ã → Z: (x, t, ỹ) → f(x, ỹ(t)). Then f̃ is C1 and the new
problem satisfies the same hypothesis as the original problem, except that m is
replaced by 1. If (3) holds for the original problem, it also holds for the new
problem. If f(x, y) = ξ and y = ỹ(t), so f̃(x, t, ỹ) = ξ, we choose a maximal
subset {ṫ1, . . . , ṫq} ⊂ Tt(Sm−1) so {(∂fỹ′/∂y) · ṫi}q

i=1 are independent relative
to Im (∂f/∂x). Then
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dim ker
∂f̃

∂(x, t)
= dim ker

∂f

∂x
+ dim ker

∂f

∂y
ỹ′ − dim

(
Im

∂f

∂x
∩ Im

∂f

∂y
ỹ′

)
= dim ker

∂f

∂x
+m− 1− q̃ + q̃ − q = dim ker

∂f

∂x
+m− 1− q

where q̃ is the rank of ∂fỹ′/∂y < ∞. Then we choose {ẏ1, . . . , ẏp} ⊂ TyY so
{∂fẏ/∂y} are independent relative to

Im
∂f̃

∂(x, t)
= Im

∂f

∂x
+ Im

∂f

∂y
ỹ′(t).

By (2)(β), we may assume p+ q ≥ m+ dim ker (∂f/∂x), that is

dim
{

ImDf̃

Im (∂f̃/∂(x, t))

}
≥ p ≥ m− q + dim ker

∂f

∂x
≥ 1 + dim ker

∂f̃

∂(x, t)
.

Thus, assuming the theorem is valid for m = 1, we see

{ỹ ∈ C1(Sm−1, Y ) | f(x, ỹ(t)) = ξ for some x, t with (x, ỹ(t)) ∈ A}

is a meager set in C1(Sm−1, Y ), which means C1-codimen{y ∈ Y | ξ ∈ f(Ay, y)}
> m − 1, the C1-codimension is ≥ m and so the codimension is ≥ m, which
completes the proof.
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