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EXISTENCE RESULTS
FOR IMPULSIVE NEUTRAL FUNCTIONAL

DIFFERENTIAL INCLUSIONS

Bapurao C. Dhage — Sotiris K. Ntouyas

Abstract. In this paper we prove existence results for first and second

order impulsive neutral functional differential inclusions under the mixed

Lipschitz and Carathéodory conditions.

1. Introduction

The theory of impulsive differential equations is emerging as an important
area of investigation since it is much richer that the corresponding theory of
differential equations; see the monograph of Lakshmikantham et al [2]. In this
paper, we study the existence of solutions for initial value problems for first
and second order impulsive neutral functional differential inclusions. More pre-
cisely in Section 3 we consider first order impulsive neutral functional differential
inclusions of the form

d

dt
[x(t)− f(t, xt)] ∈ G(t, xt), a.e. t ∈ I := [0, T ],(1.1)

t 6= tk, k = 1, . . . ,m,

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, . . . ,m,(1.2)

x0 = φ,(1.3)
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where f : I × D → Rn and G: I × D → Pf (Rn), D = {ψ: [−r, 0] → Rn | ψ
is continuous everywhere except for a finite number of points s at which the
left limit ψ(s−) and the right limit ψ(s+) exist and ψ(s−) = ψ(s)}, φ ∈ D,
(0 < r <∞), 0 = t0 < t1 < . . . < tm < tm+1 = T , Ik: Rn → Rn (k = 1, . . . ,m),
x(t+k ) and x(t−k ) are respectively the right and the left limit of x at t = tk, and
Pf (Rn) denotes the class of all nonempty subsets of Rn.

For any continuous function x defined on the interval [−r, T ] \ {t1, . . . , tm}
and any t ∈ I, we denote by xt the element of D defined by

xt(θ) = x(t+ θ), θ ∈ [−r, 0].

For ψ ∈ D the norm of ψ is defined by

‖ψ‖D = sup{|ψ(θ)|, θ ∈ [−r, 0]}.

Later, in Section 4, we study the existence of solutions of second order im-
pulsive neutral functional differential inclusions of the form

d

dt
[x′(t)− f(t, xt)] ∈ G(t, xt), t ∈ I := [0, T ],(1.4)

t 6= tk, k = 1, . . . ,m,

x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, . . . ,m,(1.5)

x′(t+k )− x′(t−k ) = Ik(x′(t−k )), k = 1, . . . ,m,(1.6)

y(t) = φ(t), t ∈ [−r, 0], x′(0) = η,(1.7)

where f , G, Ik, φ are as in problem (1.1)–(1.3), Ik: Rn → Rn, and η ∈ Rn.
The main tools used in the study are the fixed point theorems of Dhage [1].

In the following section we give some auxiliary results needed in the subsequent
part of the paper.

2. Auxiliary results

Throughout this paper X will be a Banach space and let P(X) denote the
class of all subsets of X. Let Pf (X), Pbd,cl(X) and Pcp,cv(X) denote respectively
the classes of all nonempty, bounded-closed and compact-convex subsets of X.
For x ∈ X and Y, Z ∈ Pbd,cl(X) we denote by D(x, Y ) = inf{‖x − y‖ | y ∈ Y }
and ρ(Y, Z) = supa∈Y D(a, Z).

Define a function H:Pbd,cl(X)× Pbd,cl(X) → R+ by

H(A,B) = max{ρ(A,B), ρ(B,A)}.

The function H is called a Hausdorff metric on X. Note that ‖Y ‖ = H(Y, {0}).
A correspondence T :X → Pf (X) is called a multi-valued mapping on X.

A point x0 ∈ X is called a fixed point of the multi-valued operator T :X → Pf (X)
if x0 ∈ T (x0). The fixed points set of T will be denoted by Fix(T ).
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Definition 2.1. Let T :X → Pbd,cl(X) be a multi-valued operator. Then
T is called a multi-valued contraction if there exists a constant k ∈ (0, 1) such
that for each x, y ∈ X we have

H(T (x), T (y)) ≤ k‖x− y‖.

The constant k is called a contraction constant of T .

A multi-valued mapping T :X → Pf (X) is called lower semi-continuous
(shortly l.s.c.) (resp. upper semi-continuous (shortly u.s.c.)) if B is any open
subset of X then {x ∈ X | Gx ∩ B 6= ∅} (resp. {x ∈ X | Gx ⊂ B}) is an open
subset of X. The multi-valued operator T is called compact if T (X) is a compact
subset of X. Again T is called totally bounded if for any bounded subset S of X,
T (S) is a totally bounded subset of X. A multi-valued operator T :X → Pf (X)
is called completely continuous if it is upper semi-continuous and totally bounded
on X, for each bounded A ∈ Pf (X). Every compact multi-valued operator is
totally bounded but the converse may not be true. However the two notions are
equivalent on a bounded subset of X.

We apply the following form of the fixed point theorem of Dhage [1] in the
sequel.

Theorem 2.2. Let X be a Banach space, A:X → Pcl,cv,bd(X) and B:X →
Pcp,cv(X) two multi-valued operators satisfying:

(a) A is contraction with a contraction constant k, and
(b) B is completely continuous.

Then either

(i) the operator inclusion λx ∈ Ax+Bx has a solution for λ = 1, or
(ii) the set E = {u ∈ X | λu ∈ Au+Bu, λ > 1} is unbounded.

3. First order impulsive neutral functional differential inclusions

Let us start by defining what we mean by a solution of problem (1.1)–(1.3).
In order to define the solutions of the above problems, we shall consider the
spaces

PC([−r, T ],Rn) = {x: [−r, T ] → Rn:x(t) is continuous almost everywhere

except for some tk at which x(t−k ) and x(t+k ),

k = 1, . . . ,m exist and x(t−k ) = x(tk)}

and

PC1([0, T ],Rn) = {x: [0, T ] → Rn:x(t) is continuously differentiable everywhere

except for some tk at which x′(t−k ) and x′(t+k ),

k = 1, . . . ,m exist and x′(t−k ) = x′(tk)}.
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Let Z = PC([−r, T ],Rn) ∩ PC1([0, T ],Rn). Obviously, for any t ∈ [0, T ] and
x ∈ Z, we have xt ∈ D and PC([−r, T ],Rn) and Z are Banach spaces with the
norms

‖x‖ = sup{|x(t)| : t ∈ [−r, T ]} and ‖x‖Z = ‖x‖+ ‖x′‖,

where ‖x′‖ = sup{|x′(t)| : t ∈ [0, T ]}.
In the following we set for convenience Ω = PC([−r, T ],Rn). Also we denote

by AC(J,Rn) the space of all absolutely continuous functions x: J → Rn.

Definition 3.1. A function x ∈ Ω ∩ AC((tk, tk+1),Rn), k = 1, . . . ,m is
said to be a solution of (1.1)–(1.3) if x(t) − f(t, xt) is absolutely continuous on
J \ {t1, . . . , tm} and (1.1)–(1.3) are satisfied.

We need the following definitions in the sequel.

Definition 3.2. A multi-valued map map G: J → Pcp,cv(Rn) is said to be
measurable if the function t→ d(y,G(t)) = inf{‖y−x‖ : x ∈ G(t)} is measurable
for every y ∈ Rn.

Definition 3.3. A multi-valued map G: I × D → Pcl(Rn) is said to be
L1-Carathéodory if

(a) t 7→ G(t, x) is measurable for each x ∈ D,
(b) x 7→ G(t, x) is upper semi-continuous for almost all t ∈ I, and
(c) for each real number ρ > 0, there exists a function hρ ∈ L1(I,R+) such

that

‖G(t, u)‖ := sup{|v| : v ∈ G(t, u)} ≤ hρ(t), a.e. t ∈ I

for all u ∈ D with ‖u‖D ≤ ρ.

Then we have the following lemmas due to Lasota and Opial [3].

Lemma 3.4. If dim(X) < ∞ and F : J × X → Pf (X) is L1-Carathéodory,
then S1

G(x) 6= ∅ for each x ∈ X.

Lemma 3.5. Let X be a Banach space, G an L1-Carathéodory multi-valued
map with S1

G 6= ∅ where

S1
G(x) := {v ∈ L1(I,Rn) : v(t) ∈ G(t, xt) a.e. t ∈ I},

and K:L1(J,X) → C(J,X) be a linear continuous mapping. Then the operator

K ◦ S1
G:C(J,X) → Pcp,cv(C(J,X))

is a closed graph operator in C(J,X)× C(J,X).
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We consider the following set of assumptions in the sequel.

(H1) There exists a function k ∈ B(I,R+) such that, for all x, y ∈ D and
‖k‖ < 1,

|f(t, x)− f(t, y)| ≤ k(t)‖x− y‖D a.e. t ∈ I.

(H2) The multi G(t, x) has compact and convex values for each (t, x) ∈ I×D.
(H3) G is L1-Carathéodory.
(H4) There exists a function q ∈ L1(I,R) with q(t) > 0 for a.e. t ∈ I and a

nondecreasing function ψ: R+ → (0,∞) such that

‖G(t, x)‖ := sup{|v| : v ∈ G(t, x)} ≤ q(t)ψ(‖x‖D) a.e. t ∈ I,

for all x ∈ D.
(H5) The impulsive functions |Ik| are continuous and there exist constants ck

such that |Ik(x)| ≤ ck, k = 1, . . . ,m for each x ∈ Rn.

Theorem 3.6. Assume that (H1)–(H5) hold. Suppose that

(3.1)
∫ ∞

c1

ds

ψ(s)
> c2‖γ‖L1

where

c1 =
F +

∑m
k=1 ck

1− ‖k‖
, c2 =

1
1− ‖k‖

and
F = ‖φ‖D + |φ(0)− f(0, φ)|+ sup

t∈I
|f(t, 0)|.

Then the initial value problem (1.1)–(1.3) has at least one solution on [−r, T ].

Proof. Transform the problem (1.1)–(1.3) into a fixed point problem. Con-
sider the operator N : Ω → P(Ω) defined by:

Nx(t) =

h ∈ Ω : h(t) =


φ(t), t ∈ I0,
φ(0)− f(0, φ(0)) + f(t, xt)

+
∫ t

0

v(s) ds+
∑

0<tk<t

Ik(x(t−k )), t ∈ I,


where v ∈ S1

G(x).
Define two operators A: Ω → Ω by

(3.2) Ax(t) =

{
0 if t ∈ I,
{−f(0, φ) + f(t, xt)} if t ∈ I0,

and the multi-valued operator B: Ω → Pf (Ω) by

(3.3) Bx(t) =

h ∈ Ω : h(t) =


φ(t) if t ∈ I0,
φ(0) +

∫ t

0
v(s) ds

+
∑

0<tk<t
Ik(x(t−k )) if t ∈ I.


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Then N = A + B. We shall show that the operators A and B satisfy all the
conditions of Theorem 2.2 on J .

Step 1. Since Ax is singleton for each x ∈ Ω, A has closed, convex values
on Ω. Also A has bounded values for bounded sets in X. To show this, let S be
a bounded subset of Ω. Then, for any x ∈ S one has

‖Ax‖ ≤ ‖Ax−A0‖+ ‖A0‖ ≤ ‖k‖‖x‖+ ‖A0‖ ≤ ‖k‖ρ+ ‖A0‖.

Hence A is bounded on bounded subsets of Ω.

Step 2. Next we prove that Bx is a convex subset of Ω for each x ∈ Ω. Let
u1, u2 ∈ Bx. Then there exists v1 and v2 in S1

G(x) such that

uj(t) = φ(0) +
∑

0<tk<t

Ik(x(t−k )) +
∫ t

0

vj(s) ds, j = 1, 2.

Since G(t, x) has convex values, one has for 0 ≤ µ ≤ 1,

[µv1 + (1− µ)v2](t) ∈ S1
G(x)(t) for all t ∈ J.

As a result we have

[µu1 + (1− µ)u2](t) = φ(0) +
∑

0<tk<t

Ik(x(t−k )) +
∫ t

0

[µv1(s) + (1− µ)v2(s)] ds.

Therefore [µu1 + (1− µ)u2] ∈ Bx and consequently Bx has convex values in Ω.
Thus we have B: Ω → Pcv(Ω).

Step 3. We show that A is a contraction on Ω. Let x, y ∈ X. By hypothe-
sis (H1)

|Ax(t)−Ay(t)| ≤ |f(t, xt)− f(t, yt)| ≤ k(t)‖xt − yt‖D ≤ ‖k‖‖x− y‖.

Taking supremum over t, we have ‖Ax−Ay‖ ≤ ‖k‖‖x− y‖. This shows that A
is a multi-valued contraction, since ‖k‖ < 1.

Step 4. Now we show that the multi-valued operator B is completely con-
tinuous on Ω. First we show that B maps bounded sets into bounded sets in Ω.
To see this, let S be a bounded set in Ω. Then there exists a real number ρ > 0
such that ‖x‖ ≤ ρ, for all x ∈ S.

Now for each u ∈ Bx, there exists a v ∈ S1
G(x) such that

u(t) = φ(0) +
∑

0<tk<t

Ik(u(t−k )) +
∫ t

0

v(s) ds.
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Then for each t ∈ I,

|u(t)| ≤ |φ(0)|+
m∑

k=1

ck +
∫ t

0

|v(s)| ds

≤‖φ‖D +
m∑

k=1

ck +
∫ t

0

hρ(s) ds ≤ ‖φ‖D +
m∑

k=1

ck + ‖hρ‖L1 .

This further implies that

‖u‖ ≤ ‖φ‖D +
m∑

k=1

ck + ‖hρ‖L1

for all u ∈ Bx ⊂
⋃
B(S). Hence

⋃
B(S) is bounded.

Next we show that B maps bounded sets into equi-continuous sets. Let S
be, as above, a bounded set and u ∈ Bx for some x ∈ S. Then there exists
v ∈ S1

G(x) such that

u(t) = φ(0) +
m∑

k=1

Ik(u(t−k )) +
∫ t

0

v(s) ds.

Then for any τ1, τ2 ∈ I with τ1 ≤ τ2 we have

|u(τ1)− u(τ2)| ≤
∣∣∣∣ ∫ τ1

0

v(s) ds−
∫ τ2

0

v(s) ds
∣∣∣∣ +

∑
0<tk<τ2−τ1

|Ik(x(t−k ))|

≤
∫ τ2

τ1

|v(s)| ds+
∑

0<tk<τ2−τ1

|Ik(x(t−k ))|

≤
∫ τ2

τ1

hρ(s) ds+
∑

0<tk<τ2−τ1

|Ik(x(t−k ))|

≤ |p(τ1)− p(τ2)|+
∑

0<tk<τ2−τ1

|Ik(x(t−k ))|

where p(t) =
∫ t

0
hρ(s) ds.

If τ1, τ2 ∈ I0 then |u(τ1) − u(τ2)| = |φ(τ1) − φ(τ2)|. For the case where
τ1 ≤ 0 ≤ τ2 we have that

|u(τ1)− u(τ2)| ≤
∣∣∣∣φ(τ1)− φ(0)−

∑
0<tk<τ2

Ik(x(t−k ))−
∫ τ2

0

v(s) ds
∣∣∣∣

≤ |φ(τ1)− φ(0)|+
∑

0<tk<τ2

|Ik(x(t−k ))|+
∫ τ2

0

|v(s)| ds

≤ |φ(τ1)− φ(0)|+
∑

0<tk<τ2

|Ik(x(t−k ))|+
∫ τ2

0

hr(s) ds

≤ |φ(τ1)− φ(0)|+
∑

0<tk<τ2

|Ik(x(t−k ))|+ |p(τ2)− p(0)|.
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Hence, in all cases, we have

|u(τ1)− u(τ2)| → 0 as τ1 → τ2.

As a result
⋃
B(S) is an equicontinuous set in Ω. Now an application of Arzelá-

Ascoli theorem yields that the multi B is totally bounded on Ω.

Step 5. Next we prove that B has a closed graph. Let {xn} ⊂ Ω be a sequence
such that xn → x∗ and let {yn} be a sequence defined by yn ∈ Bxn for each
n ∈ N such that yn → y∗. We will show that y∗ ∈ Bx∗. Since yn ∈ Bxn, there
exists a vn ∈ S1

G(xn) such that

yn(t) = φ(0) +
∑

0<tk<t

Ik(yn(t−k )) +
∫ t

0

vn(s) ds.

Consider the linear and continuous operator K:L1(J,Rn) → C(J,Rn) defined by

Kv(t) =
∫ t

0

vn(s) ds.

Now∥∥∥∥yn(t)− φ(0)−
∑

0<tk<t

Ik(yn(t−k ))−
(
y∗(t)− φ(0)−

∑
0<tk<t

Ik(y∗(t−k ))
)∥∥∥∥ → 0,

as n→∞. From Lemma 3.5 it follows that (K ◦ S1
G) is a closed graph operator

and from the definition of K one has

yn(t)− φ(0)−
∑

0<tk<t

Ik(yn(t−k )) ∈ (K ◦ S1
F (yn)).

As xn → x∗ and yn → y∗, there is a v ∈ S1
G(x∗) such that

y∗(t) = φ(0) +
∑

0<tk<t

Ik(y∗(t−k )) +
∫ t

0

v∗(s) ds.

Hence the multi B is an upper semi-continuous operator on Ω.

Step 6. Finally we show that the set

E = {u ∈ Ω : λu ∈ Au+Bu for some λ > 1}

is bounded.
Let u ∈ E be any element. Then there exists v ∈ S1

G(u) such that

u(t) = λ−1[φ(0)− f(0, φ)] + λ−1f(t, ut) + λ−1
∑

0<tk<t

Ik(u(t−k )) + λ−1

∫ t

0

v(s) ds.
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Then

|u(t)| ≤ ‖φ‖D + |φ(0)− f(0, φ)|+ |f(t, ut)|+
m∑

k=1

ck +
∫ t

0

|v(s)| ds

≤‖φ‖D + |φ(0)− f(0, φ)|+ |f(t, ut)− f(t, 0)|+ |f(t, 0)|

+
m∑

k=1

ck +
∫ t

0

q(s)ψ(‖us‖D) ds

≤‖φ‖D + |φ(0)− f(0, φ)|+ |f(t, 0)|+ k(t)‖ut‖D

+
m∑

k=1

ck +
∫ t

0

q(s)ψ(‖us‖D) ds

≤‖φ‖D + |φ(0)− f(0, φ)|+ sup
t∈I

|f(t, 0)|+ ‖k‖‖ut‖D

+
m∑

k=1

ck +
∫ t

0

q(s)ψ(‖us‖D) ds

≤F + ‖k‖‖ut‖D +
m∑

k=1

ck +
∫ t

0

q(s)ψ(‖us‖D) ds,

where F = ‖φ‖D + |φ(0)− f(0, φ)|+ supt∈I |f(t, 0)|.
Put w(t) = max{|u(s)| : −r ≤ s ≤ t}, t ∈ I. Then ‖ut‖D ≤ w(t) for all t ∈ I

and there is a point t∗ ∈ [−r, t] such that w(t) = u(t∗). Hence we have

w(t) = |u(t∗)| ≤F + ‖k‖‖ut‖D +
m∑

k=1

ck +
∫ t

0

q(s)ψ(‖us‖D) ds

≤F + ‖k‖w(t) +
m∑

k=1

ck +
∫ t

0

q(s)ψ(w(s)) ds,

or

(1− ‖k‖)w(t) ≤ F +
m∑

k=1

ck +
∫ t

0

q(s)ψ(w(s)) ds

and

w(t) ≤ c1 + c2

∫ t

0

q(s)ψ(w(s)) ds, t ∈ I,

where

c1 =
F +

m∑
k=1

ck

1− ‖k‖
and c2 =

1
1− ‖k‖

.

Let

m(t) = c1 + c2

∫ t

0

q(s)ψ(w(s)) ds, t ∈ I.

Then we have w(t) ≤ m(t) for all t ∈ I. Differentiating w.r.t. to t, we obtain

m′(t) = c2q(t)ψ(w(t)), a.e. t ∈ I, m(0) = c1.
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This further implies that

m′(t) ≤ c2q(t)ψ(m(t)), a.e. t ∈ I, m(0) = c1,

that is,
m′(t)
ψ(m(t))

≤ c2q(t) a.e. t ∈ J, m(0) = c1.

Integrating from 0 to t we get∫ t

0

m′(s)
ψ(m(t))

ds ≤
∫ t

0

c2q(s) ds.

By the change of variable,∫ m(t)

c1

ds

ψ(s)
≤ c2‖q‖L1 <

∫ ∞

c1

ds

ψ(s)
.

Hence there exists a constant M such that

w(t) ≤ m(t) ≤M for all t ∈ I.

Now from the definition of w it follows that

‖u‖ = sup
t∈[−r,a]

|u(t)| = w(a) ≤ m(a) ≤M,

for all u ∈ E . This shows that the set E is bounded in Ω. As a result the
conclusion (ii) of Theorem 2.2 does not hold. Hence the conclusion (i) holds and
consequently the initial value problem (1.1)–(1.3) has a solution x on J . This
completes the proof. �

4. Second order impulsive neutral functional differential inclusions

Definition 4.1. A function x ∈ Z ∩ AC1((tk, tk+1),Rn), k = 1, . . . ,m, is
said to be a solution of (1.4)–(1.7) if x′(t)− f(t, xt) is absolutely continuous on
J \ {t1, . . . , tm} and (1.4)–(1.7) are satisfied.

Theorem 4.2. Assume that (H2), (H3) and (H5) hold. Moreover, we sup-
pose that:

(B1) There exists a function k ∈ L1(I,R+) such that

|f(t, x)− f(t, y)| ≤ k(t)‖x− y‖D a.e. t ∈ I,

for all x, y ∈ D and ‖k‖L1 < 1.
(B2) There exists a function p ∈ L1(I,R) with p(t) > 0 for a.e. t ∈ I and a

nondecreasing function ψ: R+ → (0,∞) such that

‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)
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for almost all t ∈ J and all u ∈ D, with∫ T

0

M(s) ds <
∫ ∞

c

ds

1 + s+ ψ(s)
,

where

c = ‖φ‖D + T |η − f(0, φ)|+
m∑

k=1

[ck + (T − tk)dk],

and
M(t) = max{k(t), Tp(t), sup

t∈[0,T ]

|f(t, 0)|}.

(B3) The impulsive functions |Ik| are continuous and there exist constants
dk such that |Ik(x)| ≤ dk, k = 1, . . . ,m for each x ∈ Rn.

Then the initial value problem (1.4)–(1.7) has at least one solution on [−r, T ].

Proof. Transform the problem (1.4)–(1.7) into a fixed point problem. Con-
sider the operator N : Ω → P(Ω) defined by:

Nx(t) =


h ∈ Ω : h(t) =



φ(t), t ∈ I0,

φ(0) + [η − f(0, φ(0))]t+
∫ t

0

f(s, xs) ds

+
∫ t

0

(t− s)v(s) ds

+
∑

0<tk<t

[Ik(x(t−k )) + (t− tk)Ik(x(t−k ))], t ∈ I,


where v ∈ S1

G(x). Define two operators A: Ω → Ω by

(4.1) Ax(t) =


0 if t ∈ I0,{

[η − f(0, φ]t+
∫ t

0

f(s, xs) ds
}

if t ∈ I,

and the multi-valued operator B: Ω → Pf (Ω) by

(4.2) Bx(t)

=

h ∈ Ω : h(t) =


φ(t) if t ∈ I0,

φ(0) +
∫ t

0

(t− s)v(s) ds

+
∑

0<tk<t
[Ik(x(t−k )) + (t− tk)Ik(x(t−k ))], if t ∈ I.


Then N = A + B. We can prove, as in Theorem 3.6, that the operators A and
B satisfy all the conditions of Theorem 2.2 on J . We omit the details, and we
prove only that the set

E(N) := {x ∈ Ω : λx ∈ Ax+Bx, for some λ > 1}

is bounded.
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Let x ∈ E(N). Then there exists v ∈ S1
G(x) such that

x(t) =λ−1φ(0) + λ−1[η − f(0, φ(0))]t

+ λ−1

∫ t

0

f(s, xs)ds+ λ−1

∫ t

0

(t− s)v(s) ds

+ λ−1
∑

0<tk<t

[Ik(x(t−k )) + (t− tk)Ik(x′(t−k ))].

This implies that, for each t ∈ [0, T ], we have

(4.3) |x(t)| ≤ ‖φ‖D + T |η − f(0, φ)|+
∫ t

0

k(s)‖xt‖D ds+
∫ t

0

f(s, 0) ds

+
∫ t

0

(T − s)p(s)ψ(‖xs‖D) ds+
m∑

k=1

[ck + (T − tk)dk].

We consider the function µ defined by

µ(t) := sup{|x(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = |x(t∗)|. If t∗ ∈ J , by the inequality (4.3) we
have for t ∈ [0, T ]

(4.4) µ(t) ≤‖φ‖D + T |η − f(0, φ)|+
∫ t

0

k(s)µ(s) ds+
∫ t

0

f(s, 0) ds

+ T

∫ t

0

p(s)ψ(µ(s)) ds+
m∑

k=1

[ck + (T − tk)dk].

If t∗ ∈ [−r, 0] then µ(t) = ‖φ‖D and the inequality (4.4) holds. Let us take the
right-hand side of inequality (4.4) as v(t). Then we have

µ(t) ≤ v(t), t ∈ [0, T ],

v(0) := c = ‖φ‖D + T |η − f(0, φ)|+
m∑

k=1

[ck + (T − s)dk],

and

v′(t) = k(t)µ(t) + f(t, 0) + Tp(t)ψ(µ(t)), t ∈ [0, T ].

Using the nondecreasing character of ψ we get

v′(t) ≤M(t)[1 + v(t) + ψ(v(t))], t ∈ [0, T ].

This inequality implies for each t ∈ [0, T ] that∫ v(t)

v(0)

dτ

1 + τ + ψ(τ)
≤

∫ T

0

M(s) ds <
∫ ∞

v(0)

dτ

1 + τ + ψ(τ)
.
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This inequality implies that there exists a constant b such that v(t) ≤ b, t ∈ [0, T ],
and hence µ(t) ≤ b, t ∈ [0, T ]. Since for every t ∈ [0, T ], ‖yt‖D ≤ µ(t), we have

‖x‖ ≤ max{‖φ‖D, b},

where b depends only on T and on the functions p and ψ. This shows that E(N)
is bounded. �
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