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GLOBAL STRUCTURE OF POSITIVE SOLUTIONS
FOR SUPERLINEAR SECOND ORDER

m-POINT BOUNDARY VALUE PROBLEMS

Ruyun Ma — Yulian An

Abstract. In this paper, we consider the nonlinear eigenvalue problems

u′′ + λh(t)f(u) = 0, 0 < t < 1,

u(0) = 0, u(1) =

m−2X

i=1

αiu(ηi),

where m ≥ 3, ηi ∈ (0, 1) and αi > 0 for i = 1, . . . , m−2, with
Pm−2

i=1 αiηi <
1; h ∈ C([0, 1], [0,∞)) and h(t) ≥ 0 for t ∈ [0, 1] and h(t0) > 0 for t0 ∈ [0, 1];

f ∈ C([0,∞), [0,∞)) and f(s) > 0 for s > 0, and f0 = ∞, where f0 =

lims→0+ f(s)/s. We investigate the global structure of positive solutions
by using the nonlinear Krein–Rutman Theorem.

1. Introduction

The existence and multiplicity of positive solutions of nonlinear multi-point
boundary value problems have been extensively studied, see Webb [8], Kwong
and Wong [4], Ma [5] and references therein. Recently, the global structure of
positive solutions of nonlinear multi-point boundary value problems has also been
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extensively investigated by several authors, see for example, Rynne [7], Ma and
O’Regan [6]. However, these papers only dealt with the case that f0 ∈ (0,∞),
and relatively little is known about the global structure of solutions in the case
that f0 = ∞. Especially, very few global results were found in the available
literature when f0 = ∞ = f∞. The likely reason is that the global bifurcation
techniques can not be used directly in the case.

In this paper, we consider the nonlinear second order m-point boundary value
problem of the form

u′′ + λh(t)f(u) = 0, t ∈ (0, 1),(1.1)

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),(1.2)

where m ≥ 3, ηi ∈ (0, 1) and αi > 0 for i = 1, . . . , m− 2 with
∑m−2

i=1 αiηi < 1; λ

is a positive parameter; h ∈ C([0, 1], [0,∞)) and h(t0) > 0 for some t0 ∈ [0, 1] and
f ∈ C([0,∞), [0,∞)). We obtain a complete description of the global structure
of positive solutions of (1.1)–(1.2) under the assumptions:

(A1) h: [0, 1] → [0,∞) is continuous and h(t0) > 0 for some t0 ∈ [0, 1];
(A2) f ∈ C([0,∞), [0,∞)) and f(s) > 0 for s > 0;
(A3) f0 = ∞, where f0 = lims→0+ f(s)/s;
(A4) f∞ ∈ [0,∞], where f∞ = lims→∞ f(s)/s.

We will develop a bifurcation approach to treat the case f0 = ∞. Crucial to
this approach is to construct a sequence of functions {f [n]} which is asymptotic
linear at 0 and satisfies

f [n] → f, (f [n])0 →∞.

By means of the corresponding auxiliary equations, we obtain a sequence of
unbounded components {C [n]

+ } via nonlinear Krein–Rutman bifurcation theo-
rem [4], and this enable us to find an unbounded components C satisfying

(0, 0) ∈ C ⊂ limsupC
[n]
+ .

The rest of the paper is arranged as follows: In Section 2, we prove some
properties of superior limit of certain infinity collection of connected sets. Sec-
tion 3 is devoted to the existence of the principal eigenvalue of linear eigenvalue
problem

u′′ + λh(t)u = 0, t ∈ (0, 1),(1.3)

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi).(1.4)
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The approach of this section is based upon the well-known Krein–Rutman the-
orem and the order topology of a subspace of C[0, 1]. Finally, in Section 4, we
state and prove our main results.

2. Superior limit and component

Definition 2.1 ([9]). Let X be a Banach space and {Cn | n = 1, 2, . . . } be
a family of subsets of X. Then the the superior limit D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X | ∃{ni} ⊂ N and xni
∈ Cni

, such that xni
→ x}.

Definition 2.2 ([9]). A component of a set M is meant a maximal connected
subset of M .

Lemma 2.3 ([9]). Suppose that Y is a compact metric space, A and B are
non-intersecting closed subsets of Y , and no component of Y intersects both A

and B. Then there exist two disjoint compact subsets XA and XB, such that
Y = XA ∪XB, A ⊂ XA, B ⊂ XB.

Lemma 2.4. Let X be a Banach space, and let {Cn} be a family of connected
subsets of X. Assume that

(a) there exist zn ∈ Cn, n = 1, 2, . . . , and z∗ ∈ X, such that zn → z∗;
(b) limn→∞ rn = ∞, where rn = sup{||x|| | x ∈ Cn};
(c) for every R > 0,

( ⋃∞
n=1 Cn

)
∩ BR is a relatively compact set of X,

where

BR = {x ∈ X | ||x|| ≤ R}.

Then there exists an unbounded component C in D and z∗ ∈ C.

Proof. By the definition of D, z∗ ∈ D. Suppose on the contrary that the
component C in D, which contains z∗, is bounded. Note that D is closed in X.
It follows that C is closed subset of D, and subsequently C is closed subset of X.
It is easy to see that C is a compact set of X by (c). Take δ > 0, and let U1 be
δ-neighbourhood of C in X.

We discuss in two cases.
Case 1. ∂U1 ∩ D 6= ∅.
In this case, we have from (c) that U1 ∩ D is a compact metric space. Ob-

viously, C and ∂U1 ∩ D are two disjoint closed subsets of X. Because of the
maximal connectedness of C, there does not exist a component C∗ of D∩U1 such
that C∗ ∩ C 6= ∅, C∗ ∩ (∂U1 ∩ D) 6= ∅. By Lemma 2.3, there exist two disjoint
compact sets XA and XB of D ∩ U1, such that D ∩ U1 = XA ∪ XB , C ⊂ XA,
∂U1 ∩ D ⊂ XB . Evidently, d(XA, XB) > 0.
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Let δ1 = (1/3)d(XA, XB), and let U2 be the (δ1/3)-neighbourhood of XA.
Set U = U1 ∩ U2, then

(2.1) C ⊂ U, ∂U ∩ D = ∅.

Case 2. ∂U1 ∩ D = ∅.
In this case, we take U = U1. It is obvious that (2.1) holds.
Since zn → z∗, we may assume that {zn} ⊂ U . By (b) and the connectedness

of Cn, there exists n0 > 0, such that for all n ≥ n0, Cn ∩ ∂U 6= ∅. Take
yn ∈ Cn ∩ ∂U , then {yn | n ≥ n0} is a relative compact subset of X, so there
exists y∗ ∈ ∂U and a subsequence {ynk

} of {yn | n ≥ n0} such that ynk
→ y∗.

Obviously, y∗ ∈ D. Therefore, y∗ ∈ ∂U ∩ D. However, this contradicts (2.1). �

3. Eigenvalue with a positive eigenfunction

Let Y be the Banach space C[0, 1] with the norm ||u||0 = max{|u(t)| | t ∈
[0, 1]}. Let K = {u ∈ Y | u(t) ≥ 0 for t ∈ [0, 1]}. Then K is normal. Let E

denote the Banach space defined by

E =
{

u ∈ C1[0, 1]
∣∣∣∣ u(0) = 0, u(1) =

m−2∑
i=1

αiu(ηi)
}

equipped with the norm ||u|| = max{||u||0, ||u′||0}.
Denote e(t) = t, t ∈ [0, 1], and let

Ye =
⋃
ρ>0

ρ [−e, e] and |x|e = inf{ρ | ρ > 0, x ∈ ρ[−e, e]} for x ∈ Ye.

Set

(3.1) Ke = Ye ∩K = {x ∈ K | x ≤ ρe for some ρ > 0}.

Then we have from [9, Proposition 19.9] that

(a) Ke is a normal cone of Ye with nonempty interior;
(b) (Ye, | · |e) is a Banach space and continuously imbedding in (Y, || · ||0).

Notice also that an x ∈ Ye is in int Ke, the interior of Ke in Ye if and only if
x ≥ ρe for some ρ > 0.

Let us consider an operator T :K → Y defined by

(3.2) Tu(t) =
∫ 1

0

H(t, s)h(s)u(s) ds, t ∈ [0, 1],

where

H(t, s) = G(t, s) +
∑m−2

i=1 αiG(ηi, s)

1−
∑m−2

i=1 αiηi

t,



Superlinear Second Order m-Point Boundary Value Problems 283

and

(3.3) G(t, s) =

{
(1− t)s if 0 ≤ s ≤ t ≤ 1,

t(1− s) if 0 ≤ t ≤ s ≤ 1.

Set

β :=
||h||0

2
+

∑m−2
i=1 αiηi(1− ηi)

1−
∑m−2

i=1 αiηi

||h||0.

Then ∫ 1

0

H(t, s)h(s) ds =
1
2
t(1− t)||h||0 +

[∑m−2
i=1 αi

∫ 1

0
G(ηi, s)h(s) ds

1−
∑m−2

i=1 αiηi

]
t

≤
[
1
2
||h||0 +

∑m−2
i=1 αiηi(1− ηi)||h||0

1−
∑m−2

i=1 αiηi

]
t = βt.

This together with (3.2) imply that

−β||x||0e(t) ≤ (Tx)(t) ≤ β||x||0e(t), x ∈ Y,

and accordingly T (Y ) ⊂ Ye. Combining the facts (E, || · ||) ↪→ (Ye, | · |e) is closed
and T : (Y, || · ||0) → E is compact, we conclude that T : (Y, || · ||0) → (Ye, | · |e) is
compact. Since Ye sits continuously in Y , we also have T : (Ye, | · |e) → (Ye, | · |e)
is compact.

We claim that T : (Ke, | · |e) → (Ke, | · |e) is strongly positive.
In fact, for x ∈ Ke, denote y(t) =

∫ 1

0
H(t, s)h(s)x(s) ds, t ∈ [0, 1]. Then

y(t) ≥ 0, y′′(t) = −h(t)x(t) ≤ 0 in (0, 1), and

(3.4) y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi).

These imply that we cannot have y(t0) = y′(t0) = 0 for any t0 ∈ (0, 1), and
therefore y(t) > 0 in (0, 1) and y′(0) > 0. By the second relation in (3.4) and
the fact y(t) > 0 in (0, 1), we have that y(1) > 0. Thus, there exists ρ > 0 such
that y(t) ≥ ρt on [0, 1].

Now [2, Theorem 19.3] is applicable to T in Ye with Ke. We get

Lemma 3.1. Let (A1) hold, and let r(T ) be the spectral radius of T . Then
r(T ) > 0, and r(T ) is a simple eigenvalue with an eigenfunction ϕ ∈ intKe and
there is no other eigenvalue with a positive eigenfunction.

Corollary 3.2. Let (A1) hold, and let r(T ) be the spectral radius of T .
Then λ1 := 1/r(T ) is a simple eigenvalue with an eigenfunction ϕ ∈ int Ke and
there is the unique eigenvalue with an eigenfunction ϕ ∈ intKe and there is no
other eigenvalue with a positive eigenfunction.
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Remark 3.3. In [6] and [7], spectral theory was developed for linear second
order multi-point eigenvalue problems (1.3)–(1.4) with the stronger assumption
h(t) ≡ 1 in [0,1].

Let σ be a constant with 0 < σ < min{t0, 1 − t0}. Denote the cone P in Y

by

P =
{

u ∈ Y

∣∣∣∣ u(t) ≥ 0 on (0, 1), and min
σ≤t≤1−σ

u(t) ≥ σ||u||0
}

,

and for r > 0, let Ωr = {u ∈ K | ||u||0 < r}.
Define an operator Tλ:P → Y by

Tλu(t) = λ

∫ 1

0

H(t, s)h(s)f(u(s)) ds, t ∈ [0, 1].

It is easy to show the following

Lemma 3.4. Assume that (A1)–(A2) hold. Then Tλ:P → P is completely
continuous.

Lemma 3.5. Let (A1)–(A2) hold. If u ∈ ∂Ωr, r > 0, then

||Tλu||0 ≤ λM̂r

(
1 +

∑m−2
i=1 αi

1−
∑m−2

i=1 αiηi

) ∫ 1

0

G(s, s)h(s) ds.

where M̂r = 1 + max0≤s≤r{f(s)}.

Proof. Since f(u(t)) ≤ M̂r for t ∈ [0, 1], it follows that

||Tλu||0 ≤λ

∫ 1

0

G(s, s)h(s)f(u(s)) ds

+
λ

1−
∑m−2

i=1 αiηi

m−2∑
i=1

αi

∫ 1

0

G(s, s)h(s)f(u(s)) ds

≤λM̂r

(
1 +

∑m−2
i=1 αi

1−
∑m−2

i=1 αiηi

) ∫ 1

0

G(s, s)h(s) ds.

�

Lemma 3.6. Let (A1)–(A2) hold. Assume that {(µk, yk)} ⊂ (0,∞) × K is
a sequence of positive solutions of (1.1)–(1.2). Assume that |µk| ≤ C0 for some
constant C0 > 0, and limk→∞ ||yk|| = ∞. Then limk→∞ ||yk||0 = ∞.

Proof. From the relation

yk(t) = µk

∫ 1

0

H(t, s)h(s)f(yk(s)) ds
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and the fact that the graph of yk is concave down on [0, 1], we conclude that

||y′k||0 = max{y′k(0),−y′k(1)}

≤C0 max
{ ∫ 1

0

(1− s)h(s)f(yk(s)) ds

(
−

∫ 1

0

sh(s)f(yk(s)) ds

)}
+ C0

∑m−2
i=1 αi

∫ 1

0
G(ηi, s)h(s)f(yk(s)) ds

1−
∑m−2

i=1 αiηi

which implies that {||y′k||0} is bounded whenever {||yk||0} is bounded. �

4. The main results

Let Σ be the closure of the set of positive solutions for (1.1)–(1.2) in E. The
main results of the paper are the following

Theorem 4.1. Let (A1)–(A3) hold.

(a) If f∞ = 0, then there exists a sub-continuum ζ of Σ with (0, 0) ∈ ζ and

ProjR ζ = [0,∞).

(b) If f∞ ∈ (0,∞), then there exists a sub-continuum ζ of Σ with

(0, 0) ∈ ζ, ProjR ζ ⊆ [0, λ1/f∞).

(c) If f∞ = 0, then there exists a component ζ of Σ with (0, 0) ∈ ζ, ProjR ζ

is a bounded closed interval, and ζ approaches (0,∞) as ||u|| → ∞.

Theorem 4.2. Let (A1)–(A3) hold.

(a) If f∞ = 0, then (1.1)–(1.2) has at least one positive solution for λ ∈
(0,∞).

(b) If f∞ ∈ (0,∞), then (1.1)–(1.2) has at least one positive solution for
λ ∈ (0, λ1/f∞).

(c) If f∞ = 0, then there exists λ∗ > 0 such that (1.1)–(1.2) has at least
two positive solutions for λ ∈ (0, λ∗).

To prove above theorems, we define f [n](s): [0,∞) → [0,∞) by

f [n](s) =

{
f(s) if s > (1/n,∞),

nf(1/n) s if s ∈ [0, 1/n].

Then f [n] ∈ C([0,∞), [0,∞)) with

f [n](s) > 0 for all s ∈ (0,∞) and (f [n])0 = nf(1/n) > 0.

By (A3), it follows that limn→∞(f [n])0 = ∞.
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To apply the nonlinear Krein–Rutman Theorem [4], we extend f to an odd
function g: R → R by

g(s) =

{
f(s) if s ≥ 0,

−f(−s) if s < 0.

Similarly we may extend f [n] to an odd function g[n]: R → R for each n ∈ N.
Now let us consider the auxiliary family of the equations

u′′ + λh(t)g[n](u) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi).

Let ζ ∈ C(R) be such that

g[n](u) = (g[n])0u + ζ [n](u) = nf(1/n)u + ζ [n](u).

Note that

lim
|s|→0

ζ [n](s)
s

= 0.

Let us consider

(4.1) Lu− λh(t)(g[n])0u = λh(t)ζ [n](u)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (4.1) can be converted to the equivalent equation

u(t) =
∫ 1

0

H(t, s)[λh(s)(g[n])0u(s) + λh(s)ζ [n](u(s))] ds

:= (λL−1[h( · )(g[n])0u( · )](t) + λL−1[h( · )ζ [n](u( · ))])(t).

Further we note that ||L−1[h( · )ζ [n](u( · )]|| = o(||u||) for u near 0 in E.
By Lemma 3.1 and the fact (g[n])0 > 0, the results of nonlinear Krein–

Rutman Theorem (see Dancer [1] and Zeidler [10, Corollary 15.12]) for (4.1) can
be stated as follows: there exists a continuum C

[n]
+ of positive solutions of (4.1)

joining (λ1/(g[n])0, 0) to infinity in K. Moreover, C
[n]
+ \ {(λ1/(g[n])0, 0)} ⊂ int K

and (λ1/(g[n])0, 0) is the only positive bifurcation point of (4.1) lying on trivial
solutions line u ≡ 0.

Proof of Theorem 4.1. Let us verify that {C [n]
+ } satisfies all of the condi-

tions of Lemma 2.4. Since

lim
n→∞

λ1

(g[n])0
= lim

n→∞

λ1

n f(1/n)
= 0,

Condition (a) in Lemma 2.4 is satisfied with z∗ = (0, 0). Obviously

rn = sup{|λ|+ ||y||0 | (λ, y) ∈ C
[n]
+ } = ∞,
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and accordingly, (b) holds. (c) can be deduced directly from the Arzela–Ascoli
Theorem and the definition of g[n]. Therefore, the superior limit of {C [n]

+ }, i.e. D,
contains an unbounded connected component C with (0, 0) ∈ C.

(a) f∞ = 0. In this case, we show that ProjR C = [0,∞).
Assume on the contrary that sup{λ | (λ, y) ∈ C} < ∞, then there exists a

sequence {(µk, yk)} ⊂ C such that

lim
k→∞

||yk|| = ∞, |µk| ≤ C0,

for some positive constant C0 depending not on k. From Lemma 3.4, we have
that limk→∞ ||yk||0 = ∞. This together with the fact

min
σ≤t≤1−σ

yk(t) ≥ σ||yk||0, for all 0 < σ < min{t0, 1− t0}

implies that

(4.2) lim
k→∞

yk(t) = ∞, uniformly for t ∈ [σ, 1− σ].

Since (µk, yk) ∈ C, we have that

y′′k (t) + µkh(t)g(yk(t)) = 0, t ∈ (0, 1),(4.3)

yk(0) = 0, yk(1) =
m−2∑
i=1

αiyk(ηi).(4.4)

Set vk(t) = yk(t)/||yk||0. Then ||vk||0 = 1.
Now, choosing a subsequence and relabelling if necessary, it follows that there

exists (µ∗, v∗) ∈ [0, C0]× E with

(4.5) ||v∗||0 = 1,

such that

lim
k→∞

(µk, vk) = (µ∗, v∗), in R× E

Moreover, using (4.2)–(4.4) and the assumption f∞ = 0, it follows that

v′′∗ (t) + µ∗h(t) · 0 = 0, t ∈ (0, 1),

v∗(0) = 0, v∗(1) =
m−2∑
i=1

αiv∗(ηi),

and subsequently, v∗(t) ≡ 0 for t ∈ [0, 1]. This contradicts (4.5). Therefore

sup{λ | (λ, y) ∈ C} = ∞.

(b) f∞ ∈ (0,∞). In this case, we show that ProjR C ⊆ [0, λ1/f∞).
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Let us rewrite (1.1)–(1.2) to the form

u′′ + λh(t)g∞u + λh(t)ξ(u(t)) = 0, t ∈ (0, 1),

u(0) = 0, u(1) =
m−2∑
i=1

αiu(ηi),

where ξ(s) = g(s) − g∞s. Obviously lim|s|→∞ ξ(s)/s = 0. Now by the same
method used to prove [6, Theorem 5.1], we may prove that C joins (0, 0) with
(λ1/f∞,∞).

(c) f∞ = ∞. In this case, we show that C joins (0, 0) with (0,∞).
Let {(µk, yk)} ⊂ C be such that |µk|+ ||yk|| → ∞ as k →∞. Then

y′′k (t) + µkh(t)g(yk(t)) = 0, t ∈ (0, 1),

yk(0) = 0, yk(1) =
m−2∑
i=1

αiyk(ηi).

If {||yk||} is bounded, say, ||yk|| ≤ M1, for some M1 depending not on k, then
we may assume that

(4.6) lim
k→∞

µk = ∞.

Note that
g(yk(t))
yk(t)

≥ inf
{

g(s)
s

∣∣∣∣ 0 < s ≤ M1

}
> 0.

By condition (A1), there exist some 0 < α < β < 1 such that h(t) > 0 for
t ∈ [α, β]. So, there exists a constant M2 > 0, such that

(4.7) h(t)
g(yk(t))
yk(t)

> M2 > 0, t ∈ [α, β].

Combining (4.6) and (4.7) with the relation

(4.8) y′′k (t) + µkh(t)
g(yk(t))
yk(t)

yk(t) = 0, t ∈ (0, 1),

From [3, Theorem 6.1], we deduce that yk must change its sign on [α, β] if k is
large enough. This is a contradiction. Hence {||yk||} is unbounded.

Now, taking {(µk, yk)} ⊂ C be such that

(4.9) ||yk|| → ∞ as k →∞.

We show that limk→∞ µk = 0.
Suppose on the contrary that, choosing a subsequence and relabelling if nec-

essary, µk ≥ b0 for some constant b0 > 0. Then we have from (4.9) ||yk||0 →∞,
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as k → ∞. This together with (4.2) and condition (A1) imply that there exist
constants α1, β1 with σ < α1 < β1 < 1− σ, such that

h(t) > 0, lim
k→∞

µk
g(yk(t))
yk(t)

= ∞, for all t ∈ [α1, β1]

for every fixed constant 0 < σ < min{t0, 1− t0}. Thus, we have from (4.8) and
[3, Theorem 6.1] that yk must change its sign on [α1, β1] if k is large enough.
This is a contradiction. Therefore limk→∞ µk = 0. �

Proof of Theorem 4.2. (a) and (b) are immediate consequences of The-
orem 4.1(a) and (b), respectively.

To prove (c), we rewrite (1.1)–(1.2) to

u = λ

∫ 1

0

H(t, s)h(s)f(u(s)) ds =: Tλu(t).

By Lemma 3.3, for every r > 0 and u ∈ ∂Ωr,

||Tλu||0 ≤ λM̂r

(
1 +

∑m−2
i=1 αi

1−
∑m−2

i=1 αiηi

) ∫ 1

0

G(s, s)h(s) ds,

where M̂r = 1 + max0≤s≤r{f(s)}.
Let λr > 0 be such that

λrM̂r

(
1 +

∑m−2
i=1 αi

1−
∑m−2

i=1 αiηi

) ∫ 1

0

G(s, s)h(s) ds = r.

Then for λ ∈ (0, λr) and u ∈ ∂Ωr, ||Tλu||0 < ||u||0. This means that

(4.10) Σ ∩ {(λ, u) ∈ (0,∞)×K | 0 < λ < λr, u ∈ K : ||u||0 = r} = ∅.

By Lemma 3.4 and Theorem 4.1, it follows that C is also an unbounded com-
ponent joining (0, 0) and (0,∞) in [0,∞) × Y . Thus, (4.10) implies that for
λ ∈ (0, λr), (1.1)–(1.2) has at least two positive solutions. �
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