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GLOBAL STRUCTURE OF POSITIVE SOLUTIONS
FOR SUPERLINEAR SECOND ORDER
m-POINT BOUNDARY VALUE PROBLEMS

RUYUN MA — YULIAN AN

ABSTRACT. In this paper, we consider the nonlinear eigenvalue problems

u” + ARt f(u) =0, 0<t<I1,
m—2

u(0) =0, wu(l)= Z a;u(n;),

=1

wherem > 3,1n; € (0,1)and o; > Ofori=1,... ,m—2, with Zf;;Q a;n; <
1; h € C([0,1],[0,00)) and h(t) > 0 for t € [0, 1] and h(to) > 0for to € [0, 1];
f € C(]0,00),[0,00)) and f(s) > 0 for s > 0, and fo = oo, where fo =
lim,_ o+ f(s)/s. We investigate the global structure of positive solutions
by using the nonlinear Krein-Rutman Theorem.

1. Introduction

The existence and multiplicity of positive solutions of nonlinear multi-point
boundary value problems have been extensively studied, see Webb [8], Kwong
and Wong [4], Ma [5] and references therein. Recently, the global structure of
positive solutions of nonlinear multi-point boundary value problems has also been
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extensively investigated by several authors, see for example, Rynne [7], Ma and
O’Regan [6]. However, these papers only dealt with the case that fy € (0,00),
and relatively little is known about the global structure of solutions in the case
that fy = co. Especially, very few global results were found in the available
literature when fo = co = fo. The likely reason is that the global bifurcation
techniques can not be used directly in the case.

In this paper, we consider the nonlinear second order m-point boundary value
problem of the form

(1.1) u’ + A(t)f(u) =0, te(0,1),

(1.2) u(0) =0, wu(l)= z_: au(ng),

where m > 3, 7, € (0,1) and o; > 0 for i =1,... ,m —2 with 23:120%771' <1;A
is a positive parameter; h € C(]0, 1], [0, 00)) and h(ty) > 0 for some ¢y € [0, 1] and
f € C([0,00),]0,00)). We obtain a complete description of the global structure
of positive solutions of (1.1)—(1.2) under the assumptions:

(A1) h:[0,1] — [0,00) is continuous and h(ty) > 0 for some ¢ € [0, 1];

(A2) f e C(]0,), [0,00)) and f(s) > 0 for s > 0;

(A3) fo = oo, where fo = lim,_g+ f(5)/s;

(Ad) foo €[0,00], where foo = lim, o f(8)/s.

We will develop a bifurcation approach to treat the case fo = oco. Crucial to
this approach is to construct a sequence of functions { f ["]} which is asymptotic
linear at 0 and satisfies

= (M — oo

By means of the corresponding auxiliary equations, we obtain a sequence of
unbounded components {C’f]} via nonlinear Krein—-Rutman bifurcation theo-
rem [4], and this enable us to find an unbounded components C satisfying

(0,0) € C C limsup C’_[ZL].

The rest of the paper is arranged as follows: In Section 2, we prove some
properties of superior limit of certain infinity collection of connected sets. Sec-
tion 3 is devoted to the existence of the principal eigenvalue of linear eigenvalue
problem

(1.3) W'+ A(Hu =0, te(0,1),

(1.4) u(0) =0, wu(l)= i a;u(n;).
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The approach of this section is based upon the well-known Krein—Rutman the-
orem and the order topology of a subspace of C[0,1]. Finally, in Section 4, we
state and prove our main results.

2. Superior limit and component

DEFINITION 2.1 ([9]). Let X be a Banach space and {C,, | n=1,2,...} be
a family of subsets of X. Then the the superior limit D of {C,} is defined by

D :=limsupC, = {zr € X | 3{n;} C N and z,, € Cy,, such that z,, — z}.

n—00

DEFINITION 2.2 ([9]). A component of aset M is meant a maximal connected
subset of M.

LEMMA 2.3 ([9]). Suppose that Y is a compact metric space, A and B are
non-intersecting closed subsets of Y, and no component of Y intersects both A
and B. Then there exist two disjoint compact subsets X4 and Xp, such that
Y=X,UXp, AC X4, BC X5.

LEMMA 2.4. Let X be a Banach space, and let {C,,} be a family of connected
subsets of X. Assume that

(a) there exist z, € Cp, n=1,2,..., and z* € X, such that z,, — z*;

(b) limy, o0 7y = 00, where 1, = sup{||z|| | z € Cy };

(¢c) for every R > 0, (Uf:):1 C’n) N Bg is a relatively compact set of X,
where

Br ={z € X | ||z]| < R}.
Then there exists an unbounded component C in D and z* € C.

PRrROOF. By the definition of D, z* € D. Suppose on the contrary that the
component C in D, which contains z*, is bounded. Note that D is closed in X.
It follows that C is closed subset of D, and subsequently C is closed subset of X.
Tt is easy to see that C is a compact set of X by (c¢). Take § > 0, and let U; be
é-neighbourhood of C in X.

We discuss in two cases.

Case 1. 9U; N'D # (.

In this case, we have from (c) that U; N D is a compact metric space. Ob-
viously, C' and 9U; N D are two disjoint closed subsets of X. Because of the
maximal connectedness of C, there does not exist a component C* of DNU such
that C*NC # 0, C* N (0U; N D) # 0. By Lemma 2.3, there exist two disjoint
compact sets X4 and Xp of DN Uy, such that DNU; = X4 U Xp, C C Xy,
0U; ND C Xp. Evidently, d(X 4, Xp) > 0.
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Let 61 = (1/3)d(X 4, Xp), and let Uy be the (d;/3)-neighbourhood of X 4.
Set U = U1 N UQ, then

(2.1) CcU, aUunD=0.

Case 2. OU; ND = ).

In this case, we take U = U;. It is obvious that (2.1) holds.

Since z, — z*, we may assume that {z,,} C U. By (b) and the connectedness
of C,, there exists ng > 0, such that for all n > ng, C, N OU # (. Take
yn € Cp, NOU, then {y, | n > ng} is a relative compact subset of X, so there
exists y* € OU and a subsequence {yn, } of {yn | n > ng} such that y,, — y*.
Obviously, y* € D. Therefore, y* € U N D. However, this contradicts (2.1). O

3. Eigenvalue with a positive eigenfunction

Let Y be the Banach space C[0, 1] with the norm ||ullo = max{|u(t)| | ¢ €
[0,1]}. Let K = {u € Y | u(t) > 0fort € [0,1]}. Then K is normal. Let E
denote the Banach space defined by

E = {u e C0,1] | w(0) =0, u(1) = Z_: aiu(m)}

equipped with the norm ||u|| = max{||ul|o, ||v'||o}
Denote e(t) =t, ¢t € [0,1], and let

Y. = U pl—e,e] and |z|e =inf{p | p >0, x € p[—e,e]} forz € Y..
p>0

Set
(3.1) K.=Y.NK ={xe€ K|z < pe for some p > 0}.

Then we have from [9, Proposition 19.9] that
(a) K. is a normal cone of Y, with nonempty interior;
(b) (Ye,|-|e) is a Banach space and continuously imbedding in (Y,]| - ||o)-

Notice also that an z € Y, is in int K., the interior of K, in Y, if and only if
x > pe for some p > 0.
Let us consider an operator T: K — Y defined by

(3.2) Tu(t) = /O H(t, )h(s)u(s)ds, te[0,1],
where

m—2
Zi:l aiG(%S)
1- 27212 Q1)

H(t,s) =G(t,s) + t,
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and
(1-t)s f0<s<t<1,
(3.3) G(t,s) =
t(1—s) if0<t<s<l.
Set
h 7-11_2 ;1) 1-— i
g Wlo | 2uimy ComCLo i)y
1= aam
Then

/H(t78>h<8>d8=§t<l—t>|h|o+[ i o Gl s )ds]t
0

1_21 1 aln’b
1 m_QOél i i h
*Zz i,

This together with (3.2) imply that

—Bllzlloe(t) < (Tz)(t) < Bllzlloe(t), z €Y,

and accordingly T'(Y) C Y. Combining the facts (E,||-]|) — (Yz,|-|.) is closed
and T: (Y, || - ||o) — E is compact, we conclude that T: (Y, || - ||o) — (Ye, |- |e) is
compact. Since Y, sits continuously in Y, we also have T: (Ye, |- |e) — (Ye, |- e)
is compact.

We claim that T: (Ke,| - |e) — (Ke, | - \e) is strongly positive.

In fact, for z € K., denote y(t fo Jz(s)ds, t € [0,1]. Then
y(t) >0, y"(t) = —h()z(t) <0in (O7 1), and

(3.0 YO =0, )= Y awlu).

These imply that we cannot have y(tg) = ¢'(t9) = 0 for any ¢ € (0,1), and
therefore y(¢) > 0 in (0,1) and y'(0) > 0. By the second relation in (3.4) and
the fact y(t) > 0 in (0, 1), we have that y(1) > 0. Thus, there exists p > 0 such
that y(t) > pt on [0, 1].

Now [2, Theorem 19.3] is applicable to T in Y, with K.. We get

LEMMA 3.1. Let (Al) hold, and let r(T) be the spectral radius of T. Then
r(T) > 0, and r(T) is a simple eigenvalue with an eigenfunction ¢ € int K. and
there is mo other eigenvalue with a positive eigenfunction.

COROLLARY 3.2. Let (Al) hold, and let r(T) be the spectral radius of T.
Then Ay :=1/r(T) is a simple eigenvalue with an eigenfunction ¢ € int K, and
there is the unique eigenvalue with an eigenfunction ¢ € int K. and there is no
other eigenvalue with a positive eigenfunction.
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REMARK 3.3. In [6] and [7], spectral theory was developed for linear second
order multi-point eigenvalue problems (1.3)—(1.4) with the stronger assumption
h(t) =1 in [0,1].

Let o be a constant with 0 < o < min{tg,1 — t¢}. Denote the cone P in YV
by

P{UGY

> i >
u(t) > 0on (0,1), and , i u(t) > 0||u||0},

and for r > 0, let Q, = {u € K | ||ullo < }.
Define an operator T\: P — Y by

Thu(t) /Hts Vf(u(s))ds, te€]0,1].

It is easy to show the following

LEMMA 3.4. Assume that (A1)—(A2) hold. Then T\: P — P is completely

continuous.

LEMMA 3.5. Let (A1)—(A2) hold. If u € OQ,., v > 0, then

m—2 ) 1
| Toullo < MM, 1+ M | Gls 9)h(s)ds.
_Z =1 O‘ﬂh

where ]\//.TT =1+ maxogsgr{f(s)}'

PROOF. Since f(u(t)) < M, for t € [0, 1], it follows that
1
[Tyl < [ Glows)ho)fu(s)) ds

+— Zaz/Gss )f (u(s)) ds

1_21 1 0‘%771 i 1

§)\]\/ZT(1 Qi )/ G(s,s)h
_Z =1 aznz

LEMMA 3.6. Let (A1)—(A2) hold. Assume that {(uk,yx)} C (0,00) x K is
a sequence of positive solutions of (1.1)—(1.2). Assume that |ui| < Co for some

O

constant Co > 0, and limy_, ||yx|| = 00. Then limy_,o ||yk|lo = oo.

PRrROOF. From the relation

0 = e / H(t, 5)h(s) (v (s)) ds
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and the fact that the graph of y is concave down on [0, 1], we conclude that
[y llo = max{y}(0), —y;,(1)}
<comas{ [ = s as( - [ sns) s as)

m 2 [) G, s)h(s) f (i (s)) ds
1- 27512 Q1)

which implies that {||y}||o} is bounded whenever {||yx|lo} is bounded. O

—I—COZ

4. The main results

Let X be the closure of the set of positive solutions for (1.1)—(1.2) in E. The
main results of the paper are the following

THEOREM 4.1. Let (A1)-(A3) hold.
(a) If foo =0, then there exists a sub-continuum ¢ of ¥ with (0,0) € ¢ and

Projr ¢ = [0, 00).
(b) If foo € (0,00), then there exists a sub-continuum ¢ of ¥ with
(0,0) € ¢, Projr¢ C [0, 1/ f0)-
(¢) If foo =0, then there exists a component ¢ of ¥ with (0,0) € ¢, Projg ¢
is a bounded closed interval, and ¢ approaches (0,00) as ||u|| — oo.

THEOREM 4.2. Let (A1)—(A3) hold.

(a) If fso = 0, then (1.1)—(1.2) has at least one positive solution for \ €
(0,00).

(b) If foo € (0,00), then (1.1)-(1.2) has at least one positive solution for
A€ (0,M/fx)-

(¢) If foo = 0, then there exists A\ > 0 such that (1.1)—(1.2) has at least
two positive solutions for X € (0, \,).

To prove above theorems, we define fI"(s):[0,00) — [0, 00) by

£(s) if s > (1/n,00),
[l gy —
f™(s) {nf(l/n)s if s € [0,1/n)].

Then " € C(]0,00),[0,0)) with
fl(s) >0 forall s e (0,00) and (fI")g=nf(1/n)> 0.

By (A3), it follows that lim,, . (f™)g = oc.
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To apply the nonlinear Krein-Rutman Theorem [4], we extend f to an odd
function ¢g: R — R by

g9(s) =

f(s) if s >0,
—f(=s) ifs<0.

Similarly we may extend fI"! to an odd function gl": R — R for each n € N.
Now let us consider the auxiliary family of the equations

u" + (g™ (u) =0, te(0,1),
w(0) =0, wu(l)= gaiu(ni).
Let ¢ € C(R) be such that i
9" (u) = (9" )ou + (" (u) = nf (1/n)u+ ("(w).

Note that ]
lim ) _ g,
|s|—0 S
Let us consider
(4.1) Lu — Mh(t) (g™ ou = Mh(t)¢M (u)

as a bifurcation problem from the trivial solution u = 0.
Equation (4.1) can be converted to the equivalent equation

/ H(t, s)[Ah(s) (g ou(s) + Ah(s)C™ (u(s))] ds
(A

LR ) (9" oul)](0) + AL RS (u())]) ().

Further we note that ||~ [h(-)¢™ (u(-)]|] = o(||u||) for u near 0 in E.

By Lemma 3.1 and the fact (gi™)y > 0, the results of nonlinear Krein—
Rutman Theorem (see Dancer [1] and Zeidler [10, Corollary 15.12]) for (4.1) can
be stated as follows: there exists a continuum Cf] of positive solutions of (4.1)
joining (A1/(g!™)g,0) to infinity in K. Moreover, CJ[:L] \ {(A1/(g!")0,0)} C int K
and (\1/(g!™)g,0) is the only positive bifurcation point of (4.1) lying on trivial
solutions line u = 0.

Proof of Theorem 4.1. Let us verify that {CRL]} satisfies all of the condi-
tions of Lemma 2.4. Since

lim L— lim L—O

Condition (a) in Lemma 2.4 is satisfied with z* = (0,0). Obviously

= sup{|A| + [lyllo | (A y) € CM} = o0
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and accordingly, (b) holds. (c) can be deduced directly from the Arzela—Ascoli
Theorem and the definition of g("l. Therefore, the superior limit of {Cf] }, ie. D,
contains an unbounded connected component C with (0,0) € C.

(a) foo = 0. In this case, we show that Projg C = [0, 00).

Assume on the contrary that sup{\ | (A\,y) € C} < oo, then there exists a
sequence {(ug,yx)} C C such that

lim [[yy|| = oo, [uk| < Co,
k—o0

for some positive constant C depending not on k. From Lemma 3.4, we have
that limg_ o [|yk||o = 0o. This together with the fact

min  yi(t) > ol|lykllo, for all 0 < o < min{tg,1 — o}
o<t<l—o
implies that

(4.2) klim yi(t) = oo, uniformly for t € [0,1 — o].
v — 00

Since (uk,yx) € C, we have that

(4.3) Y () + ueh()g(yi(t)) =0, t€(0,1),
m—2

(4.4) ye(0) =0, (1) = > ciyu(m).
i=1

Set v (t) = yx(t)/||ykllo- Then ||vi||o = 1.
Now, choosing a subsequence and relabelling if necessary, it follows that there

exists (u«,vs) € [0,Cy] x E with
(4.5) [lvallo = 1,

such that
klim (L, V) = (s, v5)y, MR X E
Moreover, using (4.2)—(4.4) and the assumption fo, = 0, it follows that

valk/(t) + /u*h(t) 0= 07 te (Oa 1)7
m—2
ve(0) =0, v.(1) =Y aiva(m),
i=1
and subsequently, v, (t) = 0 for ¢ € [0,1]. This contradicts (4.5). Therefore
sup{A | (A, y) € C} = 0.

(b) foo € (0,00). In this case, we show that Projr C C [0, A1/ foo)-
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Let us rewrite (1.1)—(1.2) to the form

U’ 4+ A(t)goot + AR(E)E(u(t)) =0, t € (0,1),

where £(s) = g(s) — goos. Obviously lim|s o &(s)/s = 0. Now by the same
method used to prove [6, Theorem 5.1], we may prove that C joins (0,0) with
(A1/foo,00).

(¢) foo = 0. In this case, we show that C joins (0,0) with (0, c0).

Let {(ux, yx)} C C be such that |px| + ||yx|| — oo as k — co. Then

yi (t) + peh(t)g(yr(t)) =0, te€(0,1),

w0 =0, ()= Y i),

If {||yk||} is bounded, say, ||yx|| < M, for some M; depending not on k, then
we may assume that

(4.6) klim W = 0.

Note that

" 2o o <osm] o

By condition (Al), there exist some 0 < a < < 1 such that h(t) > 0 for
t € [a, B]. So, there exists a constant Ms > 0, such that

9k ()
(4.7) h(t) (D) > My >0, te€]la,pf].
Combining (4.6) and (4.7) with the relation
(49) @)+ 2D 4y~ e o)

Yk (t)

From [3, Theorem 6.1], we deduce that y; must change its sign on [«, 8] if k is
large enough. This is a contradiction. Hence {||yx||} is unbounded.
Now, taking {(ux,yx)} C C be such that

(4.9) llyk|| = o0 as k — oo.

We show that limy_, o px = 0.
Suppose on the contrary that, choosing a subsequence and relabelling if nec-
essary, pr > by for some constant by > 0. Then we have from (4.9) ||yx|lo — oo,
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as k — oo. This together with (4.2) and condition (A1) imply that there exist
constants aq, 31 with 0 < a1 < 81 < 1 — 0, such that

t
h(t) >0, lim ukw =00, forallt€ [ay,B]

k—o0 yk(t)
for every fixed constant 0 < o < min{tg,1 — to}. Thus, we have from (4.8) and
[3, Theorem 6.1] that y, must change its sign on [aq, 3] if k is large enough.

This is a contradiction. Therefore limg_, oo px = O. O

PROOF OF THEOREM 4.2. (a) and (b) are immediate consequences of The-
orem 4.1(a) and (b), respectively.
To prove (c), we rewrite (1.1)—(1.2) to

1
u = )\/ H(t,s)h(s)f(u(s))ds =: Thu(t).
0

By Lemma 3.3, for every r > 0 and u € 09,,

—~ Em_z o 1
Taallo < ATE (14 =222 ) [ onts) ds
1->"ami /) Jo
where M\T =1+ maxo<s<{f(s)}.
Let A\, > 0 be such that

—~ S oy 1
A\ M, (1 + ;}2> / G(s,s)h(s)ds =r.
1=>70 i/ Jo

Then for A € (0,A,) and u € 9Q,., ||Thullo < ||ullo- This means that
(4.10) ENn{(\u) € (0,00) x K|0<A< A, u€ K :||ullo=r}=0.

By Lemma 3.4 and Theorem 4.1, it follows that C is also an unbounded com-
ponent joining (0,0) and (0,00) in [0,00) x Y. Thus, (4.10) implies that for
A€ (0,A), (1.1)—(1.2) has at least two positive solutions. O
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