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Dedicated to Albrecht Dold on the occasion of his 80th birthday

Abstract. Let M → B, N → B be fibrations and f1, f2: M → N be

a pair of fibre-preserving maps. Using normal bordism techniques we de-
fine an invariant which is an obstruction to deforming the pair f1, f2 over B

to a coincidence free pair of maps. In the special case where the two fibra-
tions are the same and one of the maps is the identity, a weak version of our

ω-invariant turns out to equal Dold’s fixed point index of fibre-preserving

maps. The concepts of Reidemeister classes and Nielsen coincidence classes
over B are developed. As an illustration we compute e.g. the minimal num-

ber of coincidence components for all homotopy classes of maps between
S1-bundles over S1 as well as their Nielsen and Reidemeister numbers.

1. Introduction and outline of results

Throughout this paper we consider the following situation:
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Here Bb,Mm and Nn are smooth connected manifolds of the indicated dimen-
sions, without boundary, Bb and Mm being compact. Moreover, pM and pN are
smooth fibre maps with fibres FM and FN , respectively. The (continuous) maps
f1, f2, f, . . . as well as homotopies between them are always assumed to be fibre-
preserving (so that e.g. pN ◦ f = pM ); we also call them maps and homotopies
over B and write f ∼B f ′ if f , f ′ are homotopic in this sense. From now on we
will drop the superscript which denotes the dimension of the manifold, unless
this simplification is going to cause some confusion.

Question 1.1. Can the coincidence locus

C(f1, f2) := {x ∈ M | f1(x) = f2(x)}

be made empty by suitable homotopies of f1 and f2 over B? (If f1 and f2 can
be deformed away from one another in this way we say that the pair (f1, f2) is
loose over B or, shortly, B-loose).

More generally, we would like to estimate the minimum number of pathcom-
ponents

(1.2) MCCB(f1, f2) := min{#π0(C(f ′1, f
′
2)) | fi ∼B f ′i , i = 1, 2}

of coincidence subspaces in M , achieved by suitable deformations of f1 and f2

over B.
For this purpose we study the geometry of the map

(1.3) (f1, f2):M −→ N ×B N := {(y1, y2) ∈ N ×N | pN (y1) = pN (y2)}⋃
∆ := {(y1, y2) ∈ N ×N | y1 = y2}.

After small deformations of f1 and f2 over B this map is smooth and trans-
verse to the diagonal ∆ so that the coincidence locus

(1.4) C = C(f1, f2) = (f1, f2)−1(∆) = {x ∈ M | f1(x) = f2(x)}

is an (m− n + b)-dimensional smooth submanifold of M .
Moreover, the tangent map of (f1, f2) induces an isomorphism of the normal

bundles

(1.5) g#
B : ν(C,M) ∼= ((f1, f2)|C)∗(ν(∆, N ×B N)) ∼= f∗1 (TF(pN ))|C
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here TF(pN ) denotes the tangent bundle along the fibres of pN .
A third important coincidence datum is the lifting

(1.6)

EB(f1, f2)

pr

��

:= {(x, θ) ∈ M × P (N) | pN ◦ θ ≡ pM (x),

C

egB

::uuuuuuuuuu
g=incl

// M

θ(0) = f1(x), θ(1) = f2(x)}

defined by g̃B(x) = (x, constant path at f1(x) = f2(x)). Here P (N) (and pr,
respectively) denote the space of all continuous paths θ: [0, 1] → N , with the
compact-open topology (and the obvious projection, respectively; compare [10,
diagram (5)]). The bordism class

ω#
B (f1, f2) = [(C ⊂ M, g̃B , g#

B)]

of the resulting triple of the coincidence data (1.4)–(1.6) (which keeps track of
the embedding of C in M and of its nonstabilized normal bundle) is independent
of our choice of small deformations. It is our strongest obstruction to making
the pair (f1, f2) loose over B. In certain settings (e.g. if N = B×Sn−b) it yields
a complete homotopy classification for maps over B. However, this (“strong”)
ω-invariant is often hard to compute.

The stabilized version

ω̃B(f1, f2) = [(C, g̃B , gB)] ∈ Ωm−n+b(EB(f1, f2); ϕ̃)

is much more manageable. It forgets about the map g := pr◦ g̃B (cf. (1.6)) being
an embedding, retains only the stable vector bundle isomorphism

(1.7) gB :TC ⊕ g∗(f∗1 (TF(pN )))⊕ Rk ∼= g∗(TM)⊕ Rk, k >> 0,

(compare (1.5)) and lies in the normal bordism group of singular (m − n + b)-
manifolds in EB(f1, f2), with coefficient bundle

(1.8) ϕ̃ := pr∗(f∗1 (TF(pN ))− TM) = pr∗(f∗1 (TN)− p∗M (TB)− TM)

(compare e.g. [7, (2.1)]). The path space EB(f1, f2) and the resulting normal
bordism group depend on the maps f1, f2, but homotopies induce group iso-
morphisms which preserve the ω̃B-invariants (compare [9, (3.3)]). Therefore
ω̃B(f1, f2) vanishes if f1 and f2 can be deformed to become coincidence free. In
a suitable “stable dimension range” the converse holds.

Theorem 1.2. Assume that m < 2(n− b)− 2. Then a pair (f1, f2) is loose
over B if and only if ω̃B(f1, f2) = 0.

In the proof (outlined in the Section 2 below) the path-space EB(f1, f2) plays
a significant role: the lifting g̃B (cf. (1.6)) allows us to construct the homotopies
which deform f1, f2 away from one another. Quite generally EB(f1, f2) is a very
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interesting space with a rich topology. Already its decomposition into pathcom-
ponents leads to the fibre theoretical analogue of the (algebraic) Reidemeister
equivalence relation (on π1(FN )) and to the corresponding notion of the Nielsen
numbers

NB(f1, f2) ≤ N#
B (f1, f2) ≤ MCCB(f1, f2).

These are nonnegative integers counting the path-components of EB(f1, f2)
which contribute non-trivially to ω̃B(f1, f2) and ω#

B (f1, f2), respectively (for de-
tails see Section 4 below). Clearly these Nielsen numbers form lower bounds for
the minimum number MCCB(f1, f2) (cf. (1.2)); in particular, they are simple
numerical looseness obstructions. Moreover, the Nielsen numbers are obviously
smaller or equal to the geometric Reidemeister number

(1.9) #RB(f1, f2) := #π0(EB(f1, f2))

(i.e. the number of path-components of the space EB(f1, f2), cf. (1.6); its rela-
tion to the classical (algebraic) Reidemeister number will be explained in Sec-
tion 3). Another simplification of our ω̃B-invariant forgets about the path-space
EB(f1, f2) and the lifting g̃B altogether and keeps track only of the inclusion
g:C ⊂ M (as a continuous map) and of the description of the stable normal
bundle of C given by (1.7). We obtain the normal bordism class

(1.10) ωB(f1, f2) = [(C, g, gB)] ∈ Ωm−n+b(M ;ϕ)

where

(1.11) ϕ := f∗1 (TF(pN ))− TM = f∗1 (TN)− p∗M (TB)− TM

(compare (1.8)). Homotopies of f2 yield bordant triples of coincidence data
(C, g, gB) and hence the same ωB-invariants.

Special Case 1.3 (trivial base space). If the base space B consists of a sin-
gle point we drop the subscript B from our notations and obtain the invariants
ω#, N#, ω̃, N and ω discussed in [8]–[10]. (For further literature concerning this
special case see e.g. [2]–[5], [11] and [12] as well as the references listed there).

Special Case 1.4 (trivial target fibration). If the target fibration is a prod-
uct, N = B×FN , we may write fi =: (pM , f ′i), i = 1, 2. Then the ω#

B -, ω̃B- and
ωB-invariants of (f1, f2) are related to the corresponding (unfibered) invariants
of (f ′1, f

′
2) via bijections (which preserve 0); in particular

N#
B (f1, f2) = N#(f ′1, f

′
2) and NB(f1, f2) = N(f ′1, f

′
2).

Special Case 1.5 (fixed points). If the two fibrations coincide and f1 is the
identity map id, then C(id, f) is the fixed point locus of f , the coefficient bundles
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ϕ̃ and ϕ are the pullbacks of the virtual vector bundle −TB under projections,
and our ω-invariant can be weakened further to yield the bordism class

pM∗(ωB(id, f)) =
[(

C
pM |−−→ B, gB :TC

∼=−−−−→
stably

(pM |)∗(TB)
)]

∈ Ωb(B;−TB)

This procedure neglects the “vertical” aspects of our fixed point data.
On the other hand A. Dold [1] has defined a fixed point index Ih(f) of f for

every multiplicative generalised cohomology theory h with unit. In view of the
universality property of stable cohomotopy theory the strongest (“universal”)
version of Dold’s index takes the form

(1.12) I(f) ∈ π0
stable(B

+) = lim−→[ΣkB+, Sk];

and actually classifies certain “horizontal” fixed point phenomena (cf. [1, Theo-
rem 4.3]); here B+ denotes the space B with a disjointly added point.

Note that the Pontrjagin–Thom procedure yields a canonical isomorphism

(1.13) PT:π0
stable(B

+)
∼=−→ Ωb(B;−TB)

(which will be described in Section 5 below).

Theorem 1.6. For every map f :M → M over B

I(f) = (PT)−1(pM∗(ωB(id, f))).

The proof will be given in Section 5 below.
As in illustration of our notions and methods we calculate the minimum

number MCCB (as well as the Reidemeister and the Nielsen numbers) and the
ωB-invariant for all pairs of B-maps involving the torus and/or the Klein bottle
over B = S1. Note that this is way outside of the stable dimension range
discussed in Theorem 1.2.

Example 1.7 (S1-bundles over S1). Let M , N be (possibly different) fibre
spaces over S1 with fibre S1. Thus M (and also N) is either the torus

(1.14) T = S1 × S1 = I × S1/(0, z) ∼ (1, z), z ∈ S1

or the Klein bottle

(1.15) K = I × S1/(0, z) ∼ (1, z), z ∈ S1

with the standard projection to I/0 ∼ 1 = S1. We define two sections sε, ε = ±1,
by

(1.16) sε([t]) = [(t, ε)].
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Given a map f :M → N over S1 we have two well defined numerical invari-
ants:

(1.17) q(f) := (degree of f | : FM → FN ) ∈ Z

(this vanishes if M 6= N); and

(1.18) r(f) := degree of
(

B = S1 f◦s+1−−−−→ N = [0, 1]× S1/∼ −→ S1

)
;

this lies in Z (and in Z2, respectively) if N = T (and if N = K and f preserves
the base point [(0, 1)], respectively); this number measures roughly how often
the section f ◦ s+1 (assumed to be base point preserving if N = K) “winds
around the fiber in N”. A base point free description of r(f) in the case N = K

is as follows: r(f) equals the mod 2 integer 0 (and 1, respectively) if f ◦ s+1 is
homotopic (through sections in K) to s+1 (and to s−1, respectively).

Returning to the base point free setting we obtain:

Proposition 1.8. Two maps f, f̂ :M → N over S1 are homotopic over S1

if and only if q(f) = q(f̂) and r(f) = r(f̂).

Thus each homotopy class can be represented by a map in a rather natural
standard form (enjoying constant angular velocities both along each fibre and
for f ◦ s+1). This is very helpful when we analyse coincidence data.

Now consider any two maps f1, f2:M → N over S1 and put

(1.19) q := q(f1)− q(f2) and r := r(f1)− r(f2)

(compare (1.17) and (1.18)).

Theorem 1.9. The minimum number MCCB(f1, f2) is equal to the Nielsen
numbers NB(f1, f2) and N#

B (f1, f2) (and also to #RB(f1, f2) whenever this Rei-
demeister number is finite). More precisely:

(a) Assume N = S1 × S1. Then (q, r) ∈ Z× Z and we have:

gcd(q, r) = MCCB(f1, f2) = NB(f1, f2) = #RB(f1, f2) if (q, r) 6= (0, 0);

0 = MCCB(f1, f2) = NB(f1, f2) 6= #RB(f1, f2) = ∞ if (q, r) = (0, 0).

In particular, the pair (f1, f2) is loose over B if and only if f1 ∼B f2.
(b) Assume N = K. Then (q, r) ∈ Z× Z2 and we have: if q 6= 0 :

MCCB(f1, f2) = NB(f1, f2) = #RB(f1, f2) =

{
|q|/2 if q even, r = 1,

[|q|/2] + 1 else;

if q = 0 :

MCCB(f1, f2) = NB(f1, f2) =

{
0 if r 6= 0,

1 if r = 0,
6= #RB(f1, f2) = ∞.
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In particular, the pair (f1, f2) is loose over B if and only if it consists of two
“antipodal” maps, i.e. −f1 ∼B f2.

Note that here the value of the Nielsen number is always 0 or 1 or the
Reidemeister number. A similar result in an entirely different setting was proved
in [12, Theorem 1.31].

Clearly, in all of Example 1.7 the ω̃B-invariant is a complete looseness ob-
struction. Actually, already its weaker version ωB(f1, f2) ∈ Ω1(M ;ϕ) (cf. (1.10))
allows us to distinguish maps up to homotopy over S1.

Theorem 1.10. Let (M,N) be any of the four combinations of S1-bundles
over S1 and let f1, f2:M → N be maps over S1. Then there are canonical
isomorphisms which describe Ω1(M ;ϕ) (and correspondingly ωB(f1, f2)) as (an
element of) a direct sum of three groups, as follows (compare Proposition 1.8 and
Theorem 1.9)

(M,N) Ω1(M ;ϕ) ωB(f1, f2)

(T, T ) Z ⊕ Z⊕ Z2 q r

(K, K) Z ⊕ Z2 ⊕ Z2 q r + 1 + ρ2(q) ρ2(NB(f1, f2))

(K, T ) 0⊕ Z⊕ Z2 q r (comp. Theorem 1.9)

(T,K) 0⊕ Z2 ⊕ Z2 q r + 1

Here ρ2: Z → Z2 denotes reduction mod 2. In particular, for every map f :M →
N over S1 the “fibred degree” (or “root invariant”) ωB(f, s+1 ◦ pM ) determines
q(f) and r(f) and hence the homotopy class (over S1) of f .

Remark 1.11. In view of Proposition 1.8 the homotopy class of f is already
determined by the first two components of ωB(f, s+1 ◦ pM ) or, equivalently, by

µ(ωB(f, s+ ◦ pM )) ∈ H1(M ; Z̃ϕ)

where µ denotes the Hurewicz homomorphism into the first homology group of
M with integer coefficients (which are twisted like the orientation line bundle
of ϕ). This is a very special phenomenon, related to the fact that both the
torus and the Klein bottle are K(π, 1)′s. For general M and N the methods
of singular homology theory are often far too weak, and the full power of our
approach (based on normal bordism theory and the pathspace EB(f1, f2)) yields
better results.

Remark 1.12. Consider a selfmap of the torus T or the Klein bottle K over
S1. Dold’s fixed point index [1] in its strongest form lies in

π0
stable((S

1)+) ∼= Ωfr
1 (S1) ∼= Z⊕ Z2
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and captures precisely the first and third components of ωB(id, f) or, equiva-
lently, ±q = ±(deg(f |F ) − 1) as well as the Nielsen number NB(f, id), taken
mod 2. However, it looses all information about the characteristic winding num-
ber r which together with q-determines f and which measures the “vertical”
aspect of the generic fixed point circles.

2. The ω-invariants

Given maps f1, f2:M → N over B, the definition of ω#
B (f1, f2), ω̃B(f1, f2)

and ωB(f1, f2) (as outlined in the introduction) is completely analoguous to the
definition (given in [10] and [9]) of the corresponding invariants for ordinary
maps between manifolds (or, equivalently, for maps over B = {point}). There-
fore many of the notions, methods and results of the ordinary (fibration free)
coincidence theory allow a straightforward generalization to the setting of fibre
preserving maps.

In particular, the proof of Theorem 1.2 proceeds in direct analogy to the proof
of Theorem 1.10 in ([9, pp. 213 and 223–224]): we just have to replace N × N

by N ×B N . Our (“stable”) dimension condition means that the dimension of
C(f1, f2), augmented by 2, is strictly smaller than the codimension in M . Hence
here ω̃B(f1, f2) is precisely as strong as ω#

B (f1, f2), and NB(f1, f2) = N#
B (f1, f2);

nulbordism data can be realized by a suitably embedded manifold in M ×I with
a nonstabilized description of its normal bundle and, above all, without new
coincidences occurring in its shadow (cf. [9, p. 224]).

Remark 2.1. The interested reader may check when the methods of [9,
(1.10) and (4.7)], can be generalized to yields the full equality MCCB(f1, f2) =
NB(f1, f2) (“Wecken theorem”).

Next let us consider the special case where the target fibration is trivial.
Given maps over B,

fi = (pM , f ′i):M → N = B × FN , i = 1, 2,

we see that EB(f1, f2) can be identified with the path-space E(f ′1, f
′
2) discussed

in [9] and [10]. Thus the ω-invariants and Nielsen numbers over B of the pair
(f1, f2) are equal to the corresponding ordinary (unfibred) invariants of (f ′1, f

′
2).

3. The algebraic Reidemeister classes
over B and the space EB(f1, f2)

In this section we fix maps f1, f2:M → N over B. We will give an algebraic
description of the (geometric) Reidemeister set π0(EB(f1, f2)) (compare (1.9)).
This generalizes and refines the classical approach. As an application we will
compute Reidemeister numbers for maps into the Klein bottle.
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Choose a coincidence point x0 ∈ C(f1, f2) (if it does not exist, the pair
(f1, f2) is loose and our initial Question 1.1 needs no further answer). Put
y0 := f1(x0) = f2(x0) and let FN ⊂ N be the fibre over b0 := pM (x0).

Using homotopy lifting extension properties (compare [13, I.7.16]) of the
(Serre) fibration pN we construct a well defined operation

∗B :π1(M,x0)× π1(FN , y0) −→ π1(FN , y0)

as follows. Given loops c: (I, ∂I) → (M,x0) and θ: (I, ∂I) → (FN , y0), lift the
homotopy

(3.1) h: I × I → B, h(s, t) := pM ◦ c(s),

to a map h̃: I × I → N such that

(3.2) h̃(0, t) = θ(t), h̃(s, 0) = f1 ◦ c(s), h̃(s, 1) = f2 ◦ c(s)

for all s, t ∈ I. Then the loop θ′ defined by θ′(t) := h̃(1, t) lies entirely in FN .
Due to the very special form of h (cf. (3.1)) the homotopy class [θ′] of θ′ in FN

(and not just in N) depends only on the homotopy classes of c and θ. We put

[c] ∗B [θ] := [θ′].

Definition 3.1. Two elements [θ], [θ′] ∈ π1(FN , y0) are called Reidemeister
equivalent over B if there exists [c] ∈ π1(M,x0) such that [c] ∗B [θ] = [θ′].

The algebraic Reidemeister set RB(f1, f2, x0) is the resulting set of equiv-
alence classes (i.e. of orbits of the group action ∗B of π1(M,x0) on (the set)
π1(FN , y0)).

Its cardinality is called Reidemeister number of f1, f2 over B.

There is also the classical group action (without any reference to B)

∗:π1(M,x0)× π1(N, y0) −→ π1(N, y0)

determined by the induced homomorphisms fj∗:π1(M,x0) → π1(N, y0), j = 1, 2,
i.e.

(3.3) [c] ∗ [θ] := f1∗([c])−1 · [θ] · f2∗([c])

for [c] ∈ π1(M,x0) and [θ] ∈ π1(N, y0) (compare e.g. [9, (2.1)]).
In view of the boundary conditions (3.2) of the lifting h̃ (which takes its value

in N and, in general, not already in FN ) we see that

(3.4) [c] ∗ i∗([θ]) = i∗([c] ∗B [θ])

for all [c] ∈ π1(M,x0), [θ] ∈ π1(FN , y0); here i:FN → N denotes the inclusion.
In particular, the standard action ∗ (cf. (3.3)) restricts to an action of π1(M,x0)
on i∗(π1(FN , y0)). In general this yields a coarser equivalence relation than the
one defined by our action ∗B (e.g. when pM = pN :S2k+1 → CP (k), k ≥ 1,
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is the Hopf fibration, then RB(f1, f2, x0) = π1(S1) ∼= Z, but i∗(π1(FN )) = 0).
However, if i∗ is injective (e.g. when π2(B) = 0) then (3.4) can be used to
compute

(3.5) RB(f1, f2, x0) = π1(FN , y0)/ ∼ ∗B ≈ i∗(π1(FN , y0))/∼ ∗.

In particular, when B = {b0} and hence FN = N , our definition of an algebraic
Reidemeister set coincides with the usual one.

More general, injectivity criteria for i∗ may be extracted from the exact
sequence

· · · −→ π2(B, b0) −→ π1(FN , y0)
i∗−→ π1(N, y0)

pN∗−−→ π1(B, b0).

Next let us compare our algebraic and geometric Reidemeister sets (cf. Def-
inition 3.1 and (1.9)). By definition EB(f1, f2) is the space of pairs (x, θ) where
x is a point in M and θ is a path in N from f1(x) to f2(x) which stays entirely
in one fibre of pN . In view of the very special form of the homotopy h (cf. (3.1))
its lifting h̃ determines a path

s ∈ I −→ ((c(s), h̃(s,−)) ∈ EB(f1, f2)

joining (x0, θ) to (x0, θ
′). Actually every other path in EB(f1, f2) which starts

and ends in the fibre pr−1({x0}) = {x0} × Ω(FN , y0) of pr (cf. (1.6)) can be
obtained in this way from some lifted homotopy h̃ as in (3.1) and (3.2). In other
words, two classes [θ], [θ′] ∈ π1(FN , y0) are Reidemeister equivalent over B if and
only if (x0, θ) and (x0, θ

′) lie in the same path-component of EB(f1, f2). Thus
the map

RB(f1, f2, x0) −→ π0(EB(f1, f2)),

which is induced by the fibre inclusion Ω(FN , y0) ≈ pr−1({x0}) ⊂ EB(f1, f2)
and by the resulting map

π1(FN , y0) = π0(Ω(FN , y0)) −→ π0(EB(f1, f2)),

is injective. It is also onto. Indeed, given any point (x, θ) of EB(f1, f2), we can
pick a path in M from x to x0 and lift it to a path in EB(f1, f2) which joins
(x, θ) to some point in pr−1({x0}).

We have showed

Theorem 3.2. For every pair f1, f2:M → N of maps over B and for every
choice x0 ∈ C(f1, f2) and y0 = f1(x0) = f2(x0) of base points there is a canonical
bijection

RB(f1, f2, x0) ≈ π0(EB(f1, f2))

between the algebraic and geometric Reidemeister sets.
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Corollary 3.3. The Reidemeister number depends only on the (base point
free) homotopy classes of f1 and f2 over B.

Proof. Indeed, any pair of homotopies f1 ∼ f ′1, f2 ∼ f ′2 over B induces a fi-
bre homotopy equivalence EB(f1, f2) ∼ EB(f ′1, f

′
2) over M (comp. [9, (3.2)]). �

Example 3.4 (Maps into the Klein bottle). We illustrate the previous dis-
cussion by a calculation which we will need in the proof of Theorem 1.9.

Proposition 3.5. Consider maps f1, f2:M → K over S1 where M is the
torus T or the Klein bottle K (and use the notations (1.17)–(1.19)). If M = T

or q = 0, then the Reidemeister number #RB(f1, f2) is infinite. If M = K and
q 6= 0, then

#RB(f1, f2) =

{
|q|/2 if q ≡ 0(2), r 6= 0,

[|q|/2] + 1 else.

Proof. In view of Corollary 3.3 f2 map x0 = [(0, 1)] to y0 = [(0, 1)] (cf.
(1.14) and (1.15)). Let us use these base points for computing the algebraic
Reidemeister set. Then π1(M) (and π1(K), respectively) is generated by

aM := iM∗(g) and bM := s+1∗(g)

(and by a := i∗(g) and b := s+1∗(g), respectively) where iM , i, s+1 denote fibre
inclusions and the section defined in (1.16); g is the standard generator of π1(S1).

Since π2(S1) vanishes, i∗ is injective and we have to evaluate only the stan-
dard action (3.3) of π1(M) on π1(FN ) ∼= Z. Given k ∈ Z, we obtain

aM ∗ ak = ak−(q(f1)−q(f2)) = ak−q,

bM ∗ ak = f1∗(bM )−1 · ak · f2∗(bM )

= b−1 · a−r(f1) · ak · ar(f2) · b = ar(f1)−r(f2)−k

where we consider r(fj) ∈ {0, 1} as an integer so that fj∗(bM ) = ar(fj) ·b, j = 1, 2
(compare (6.1)). Therefore we can interpret π1(FN )/ ∼ ∗B (cf. (3.5)) as the orbit
set of the involution ι on Z/qZ defined by

ι([k]) := [r(f1)− r(f2)− k], [k] ∈ Z/qZ.

In particular, its cardinality is infinite if q = 0. This is e.g. always the case
when M = T , since the map fj |:FM → FN = S1 is freely homotopic to its own
complex conjugate and hence has degree q(fj) = 0, j = 1, 2.

For the remainder of the proof it suffices to consider the case where M = K

and q > 0. Then

(3.6) #RB(f1, f2, x0) = (q + #Fix(ι))/2.
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Clearly the fixed point set Fix(ι) of ι consists just of the solutions of the
linear equation

2[k] = [r(f1)− r(f2)]

in Z/qZ. Therefore it is easy to see that

#Fix(ι) =


1 if q is odd,

2 if q ≡ 0(2), r(f1) = r(f2),

0 if q ≡ 0(2), r(f1) 6= r(f2).

In view of (3.6) this completes the proof. �

4. Nielsen coincidence classes over B

In this section we extend J. Jezierski’s notion of Nielsen classes over B (cf. [6])
in the obvious way from fixed points to coincidences of maps f1, f2 over B. The
resulting decomposition of the coincidence set turns out to correspond precisely
to the decomposition of the space

EB(f1, f2) =
⋃

A∈π0(EB(f1,f2))

A

into path-components and yields the description of

(4.1) ω̃B(f1, f2) = {(ω̃B(f1, f2))A} ∈ Ω∗(EB(f1, f2); ϕ̃) = ⊕AΩ∗(A; ϕ̃|A)

as a direct sum. We will discuss the Nielsen number

(4.2) NB(f1, f2) := #{A ∈ π0(EB(f1, f2)) | (ω̃B(f1, f2))A 6= 0}

(which counts the nontrivial direct summands of ω̃B(f1, f2)) and its nonstabilized
analogue

(4.3) N#
B (f1, f2) := #{A ∈ π0(EB(f1, f2)) | (ω#

B (f1, f2))A 6= 0}.

In classical fixed point theory (where B consists of a single point) both definitions
(4.2) and (4.3) just yield the familiar notion of the Nielsen fixed point number.

Definition 4.1. Let f1, f2:M → N be maps over B. Two coincidence
points x, x′ ∈ C(f1, f2) are called Nielsen equivalent over B if there exist a path
c: I → M joining x to x′, as well as a homotopy h̃: I× I → N from f1 ◦ c to f2 ◦ c

which keeps the end points fixed and such that for each s ∈ I the whole image
h̃({s} × I) lies in the fibre of pN over pM ◦ c(s).
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Proposition 4.2. The coincidence points x and x′ are Nielsen equivalent
over B if and only if the map

g̃B :C(f1, f2) −→ EB(f1, f2)

(defined by g̃B(x) = (x,constant path at f1(x) = f2(x)) takes them into the same
path-component A of EB(f1, f2). Therefore the Nielsen classes of (f1, f2) over B

are just those inverse images g̃−1(A), A ∈ π0(EB(f1, f2)), which are nonempty.

Proof. (Compare also the proof of Theorem 3.2). The data (c, h̃) in the
Definition 4.1 represent just another way of describing a path in EB(f1, f2) from
g̃B(x) to g̃B(x′). Indeed, for every s ∈ I the pair (c(s), h̃(s, · )) lies in EB(f1, f2),
since h̃(s, · ) is a path joining f1(c(s)) to f2(c(s)) in the fibre p−1

N (pM (c(s))). �

Corollary 4.3. Each Nielsen class is open and closed in C(f1, f2).

Indeed, it is not hard to see that each path-component A is open and closed
in EB(f1, f2).

We want to consider only those Nielses classes which survive (in some sense)
all possible B-homotopies of f1, f2. We try to detect them with the help of our
ω-invariants.

After a suitable approximation of f1, f2 the coincidence set C is a clossed
manifold, and so is each Nielsen class CA := g̃−1

B (A), A ∈ π0(EB(f1, f2)).
We call it strongly essential, and essential, respectively, if the corresponding
triple (CA, g̃B |CA, g(#)|CA) of restricted coincidence data is not nullbordant (in
the nonstabilized, and stabilized sense, respectively). Define N#

B (f1, f2) and
NB(f1, f2) to be the resulting numbers of (strongly) essential Nielsen classes.

Theorem 4.4. For all maps f1, f2:M → N over B we have:

(a) the Nielsen numbers N#
B (f1, f2) and NB(f1, f2) depend only on the ho-

motopy classes of f1, f2 over B;
(b) N#

B (f1, f2) = N#
B (f2, f1) and NB(f1, f2) = NB(f2, f1);

(c) 0 ≤ NB(f1, f2) ≤ N#
B (f1, f2) ≤ MCCB(f1, f2) < ∞ and N#

B (f1, f2) ≤
#RB(f1, f2);

(d) in classical fixed point theory (over B=point) both versions of our Niel-
sen numbers coincide with the classical notion of the Nielsen numbers.

The proof proceeds as in [9, (1.9)], and [10, (1.2)].

Unlike the ωB-invariants which lie in (possibly very complicated) bordism
sets (varying with f1, f2) our Nielsen numbers are simple numerical looseness
obstructions. To what extend are they less powerful?
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Proposition 4.5. NB(f1, f2) = 0 if and only if ω̃B(f1, f2) = 0.

This follows from the direct sum decomposition (4.1).
It is not clear whether the corresponding statement holds for N#

B and ω#
B . If

N#
B (f1, f2) = 0, then the Nielsen classes CA allow individual embedded nullbor-

disms in M × I. But these may not fit together disjointly to yield an embedded
nullbordism for all of C(f1, f2) (which is needed to show that ω#(f1, f2) = 0).

5. Relation to Dold’s index

In this section we study the special case 1.5 where the two fibrations pM and
pN coincide, f1 is the identity map id and we are interested in the fixed point
behaviour of a map f2 = f over B.

We will see that our weakened normal bordism invariant pM∗(ω(id, f)) de-
termines the strongest version of Dold’s fixed point index (which generalizes the
Lefschetz index, cf. [1]).

First let us describe the Pontrjagin–Thom isomorphism PT (cf. (1.13)) which
relates these invariants. Given a real number R > 0, let D

k
(R) (and Dk(R),

respectively) denote the compact (and open, respectively) ball of radius R in
euclidian space Rk and identify the quotient space

D
k
(R)/∂D

k
(R) = Rk/(Rk −Dk(R))

with the sphere Sk = Rk ∪ {∞} in the standard fashion. Moreover, define

(5.1) Ek
R := B ×D

k
(R) ⊂ Ek := B × Rk.

Then we can interpret the suspension

(5.2) ΣkB+ = B × Sk/(B × {∞}) = Ek/(Ek −
◦
Ek

R) = Ek
R/∂Ek

R

as a one point-compactification of
◦
Ek

R = B ×Dk(R). Now, given a map

u: (ΣkB+,∞) → (Sk,∞), k >> 0,

up to homotopy, we may assume that u|
◦
Ek

R is smooth with regular value 0 ∈ Rk ⊂
Sk. Thus its inverse image u−1({0}) is a smooth submanifold of B × Rk whose
normal bundle is trivialized via the tangent map of u. The resulting normal bor-
dism class [(u−1({0}),first projection, gB)] is the value of [u] ∈ π0

stable(B
+) under

the Pontrjagin–Thom isomorphism PT (cf. (1.13); compare (1.7) and (1.12)).

Proof of Theorem 1.6. In view of the homotopy invariance of Dold’s
index I(f) (cf. [1, (2.9)]) we may assume that the map (id, f):M → M ×B M is
smooth and transverse to the diagonal ∆. Then the fixed point set

(5.3) C = C(id, f) = (id, f)−1(∆)
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is a smooth submanifold of M with the description

(5.4) g#
B : ν1 := ν(C,M) ∼= TF(pM )|C

of its normal bundle as in (1.5).
For large k there exists a smooth embedding M ⊂ B × Rk over B whose

normal bundle ν2 := ν(M,B×Rk) can be identified with a “vertical” subbundle
of T (B×Rk) which, together with TF(pM ), spans the tangent bundle along the
fibres of B ×Rk → B. Let V (and V , respectively) be a corresponding compact
(and open, respectively) tubular neighbourhood of M in B × Rk and consider
the composite map

(5.5) f̂ :V
projection−−−−−−−→ M

f−→ M ⊂ B × Rk

over B. Clearly its fixed point set is also equal to C (cf. (5.3)). Hence there exists
a radius R > 0 such that v− f̂(v) /∈ B×Dk(R) for every v ∈ ∂V . Moreover, we
can pick a radius ρ > 0 such that the space V lies in B ×D

k
(ρ). Collapsing its

complement and using (5.1) and (5.2) we obtain the composite map

û: ΣkB+ = Ek
ρ/∂Ek

ρ −→ V /∂V
id− bf−−−−→ Ek/(Ek −

◦
Ek

R) = ΣkB+.

Now, according to [1, (2.15), (2.3) and (2.1)], Dold’s indices of f and of f̂ |V
(cf. (5.5)) agree and are defined to be the value of 1 ∈ π0

stable(B
+) under the

induced homomorphism of û. In other words, we can represent I(f) by the
obvious composite map

u: ΣkB+ bu−→ ΣkB+ −→ Σk({point}+) = Sk.

Let us apply the Pontrjagin–Thom procedure (as described above) to I(f) =
[u]. Clearly u−1({0}) is just the fixed point set C of f (cf. (5.3)). The trivial-
ization

gB : ν(C,B × Rk) = ν1 ⊕ ν2|C
∼=−→ TF(pM )⊕ ν2|C = C × Rk

is induced by the tangent map of id − f . On ν1 it coincides with g#
B (cf. (5.4))

and on ν2 it is given by the identity map (since f is constant along each normal
ball in the tubular neighbourhood V of M in B × Rk). Thus the data (C ⊂
B × Rk → B, gB), k >> 0, which describe PT(I(f)) are just the stabilized
coincidence data of (id, f), projected down to B. This proves the identity claimed
in Theorem 1.6. �

Remark 5.1. A key point in the previous proof is the fact that Dold’s index
remains unchanged by the passage f  f̂ (cf. (5.5)). This parallels closely the
stabilizing transition ω#(id, f) ω̃(id, f).
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6. S1-bundles over S1

In this section we study the Example 1.7 of the introduction in some detail.
In particular, we prove Theorems 1.9 and 1.10.

Given possible values q and r of the numerical invariants discussed in Propo-
sition 1.8, let us describe the corresponding map f :M → N in standard form:
for any element [(t, z)] in the domain (cf. (1.14) or (1.15)), the standard map is
defined by

(6.1) f([(t, z)]) =

{
[(t, e2πirtzq)] if N = T,

[(t, (−1)rzq)] if N = K.

Using the linear structures on the universal covering spaces of T and K we
see that every map over S1 can be deformed over S1 into standard form. This
proves Proposition 1.8.

Next we calculate the group Ω1(M ;ϕ) in which the (weakened) coincidence
invariant ωB(f1, f2) of maps f1, f2:M → N over S1 lies. Here ϕ is trivial if
M = N ; ϕ is the pullback p∗M (λ) of the nontrivial line bundle over B = S1 if
M 6= N (cf. (1.11)).

From [7, Theorem 9.3], we obtain the exact sequence

(6.2) 0 → Ωfr
1

δ−→ Ω1(M ;ϕ)
γ−→ Ω1(M ;ϕ) −→ 0

where γ forgets about stable vector bundle isomorphisms and retains only the
corresponding orientation information. If M = N , then γ maps the classi-
cal framed bordism group Ωfr

1 (M) to the oriented bordism group Ω1(M) ∼=
H1(M ; Z), and the obvious forgetful homomorphism Ωfr

1 (M) → Ωfr
1 yields a split-

ting of (6.2). If M 6= N then a splitting can be extracted from the exact Gysin
sequence

Ωfr
1 (M) d−→ Ωfr

1 (M̃)
proj∗−−−−→ Ω1(M ;ϕ) −→ 0

where M̃ is the double cover (or S0-bundle) corresponding to the line bundle
λM := p∗M (λ) over M , d takes double coverings and proj denotes the obvious
projection. (This is essentially the exact sequence of the pair (λM , λM − s0(M))
and uses the Thom isomorphism

Ωi(λM , λM − s0(M);−λM ) ∼= Ωfr
i−1(M)

obtained by intersecting transversely with the zero section s0 of λM ).
Recall that any connected closed smooth 1-manifold S can carry two distinct

stable framings:

(i) the invariant framing obtained from a nonstable parallelization TS ∼=
S × R (which is essentially invariant under rotations along the circle
S ∼= S1); and

(ii) the boundary framing induced from a disk D which bounds S = ∂D.
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The corresponding bordism classes are 1 and 0, respectively, in Ωfr
1
∼= Z2.

Now we can describe the direct sum decomposition of Ω1(M ;ϕ) in Theo-
rem 1.10. The projection to the first (and the second, respectively) component
group is obtained via intersecting circles in M with the fibre FM (and with the
section s−1(B) at −1, respectively); the three direct summands are generated
by the circles s+1(B) and FM (both with the boundary framing) and by

δ(1) := [(invariantly framed S1, constant map)].

In order to compute the summands of ωB(f1, f2) (corresponding to this de-
composition of Ω1(M ;ϕ)) we may assume that f1, f2 are in standard form (cf.
(6.1)). Then the pairs (f1, f2) and (f := f1◦f−1

2 , f0 := f2◦f−1
2 = s+1◦pM ) have

the same coincidence locus C which consists of “parallel” circles in M . (Here we
use fibrewise complex multiplication of standard maps; it is compatible with the
gluing diffeomorphisms of T and K, cf. (1.14) and (1.15)). The transverse inter-
sections of C with FM and s−1(B) determine q and r (as indicated in the first
two columns concerning ωB(f1, f2) in the table of Theorem 1.10; the correction
terms 1 and ρ2(q) result from the fact that the sections s+1 and s−1 have each
a self-intersection in K).

Furthermore each circle S in the coincidence locus C is invariantly framed and
hence contributes nontrivially to the third component of ωB(f1, f2); it constitutes
a full Nielsen class which therefore must be essential (see also the following
proof). This establishes Theorem 1.10.

Proof of Theorem 1.9. If N = S1 × S1, we are in the special case of
a product fibration (c.f. special case 1.4), and our coincidence theory of maps f1,
f2 over B reduces to the classical coincidence theory of their projections f ′1, f ′2
to the fibre S1. But this situation has been thoroughly discussed in [9, Theorem
1.13 and Section 6], where even the fibre homotopy type of E(f ′1, f

′
2) over M is

described. In particular, the Reidemeister number is just the cardinality of the
cokernel of the induced homomorphism

f ′1∗ − f ′2∗:H1(M, Z) −→ H1(S1, Z) ∼= Z

whose image is generated by the greatest common divisor of (q(f1) − q(f2))
and (r(f1) − r(f2)). The Reidemeister number equals MCC(f ′1, f

′
2) = N(f ′1, f

′
2)

except in the selfcoincidence case f1 ∼B f2 when (f1, f2) is loose (cf. [9], (1.9)).
If N = K the only sections (up to homotopy) of pN are sε, ε = ±1 (cf.

(1.16)); each can be deformed away from itself until it has only one selfinter-
section point in K. Therefore, if maps fi:M → K over S1 are homotopic to
sεi

◦ pM , i = 1, 2, (e.g. if M = T ), their coincidence data can be represented by
a whole fibre (or by ∅, respectively) when ε1 = ε2 (or ε1 6= ε2, respectively), and
MCCB(f1, f2) = N#

B (f1, f2) = NB(f1, f2) equals 1 (or 0, respectively).
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It remains to study the coincidence behaviour of maps f1, f2:K → K over
S1 in standard form or, equivalently, of maps f1 ◦ f−1

2 =: f and f2 ◦ f−1
2 =

s+1 ◦ pK =: f0 (here we use fibrewise complex multiplication). In view of the
previous paragraph we may assume q 6= 0. Then the locus C(f1, f2) consists of
“horizontal” circles which are “parallel” to the sections s±1 and intersect each
fibre S1 in η, ηz1, . . . , ηz

|q|−1
1 where z1 = e2πi/|q| and η = eπir/|q| for r = 0, 1.

Given 0 ≤ k < k′ < |q|, we need to know when the coincidence points ηzk
1 ,

ηzk′

1 are Nielsen equivalent over B. This happens precisely if there is a path
c = l · ĉ from ηzk

1 to ηzk′

1 in K (consisting of a loop l at ηzk
1 , followed by a path

ĉ in the fibre) such that f ◦ c = (f ◦ l) · (f ◦ ĉ) is homotopic to f0 ◦ c ∼ f0 ◦ l

keeping end points fixed. In other words, the loop f ◦ ĉ which winds k′− k + jq,
j ∈ Z, times around the fibre is Reidemeister equivalent to the trivial loop. Since
π2(S1) = 0 (cf. (3.5)) this means that k′ is equal to k or to −k + ((−1)r − 1)/2
mod |q|, or, equivalently, that ηzk

1 and ηzk′

1 lie in the same coincidence circle (due
to the glueing reflection of K). Thus each Reidemeister class corresponds to an
essential Nielsen class which consist of a single “horizontal” circle with winding
number ±1 or ±2 with respect to the base S1.

Recall that the Reidemeister numbers were computed in Proposition 3.5. �

Remark 6.1. It is intriguing to compare the roles of the involution ι (in
the proof of Proposition 3.5) on the one side and of complex conjugation (in the
proof above) on the other side.
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