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RESOLVENT CONVERGENCE FOR LAPLACE OPERATORS
ON UNBOUNDED CURVED SQUEEZED DOMAINS

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. We establish a resolvent convergence result for the Laplace

operator on certain classes of unbounded curved squeezed domains Ωε as
ε→ 0. As a consequence, we obtain Trotter–Kato-type convergence results

for the corresponding family of C0-semigroups. This extends previous re-
sults obtained by Antoci and Prizzi in [1] in the flat squeezing case.

1. Introduction

Let ω be an arbitrary domain in R`, bounded or not, with Lipschitz boundary.
Define the bilinear forms ãω and b̃ω by

ãω:H1(ω)×H1(ω) → R, (ũ, ṽ) 7→
∫

ω

∇ũ(x) · ∇ṽ(x)dx;

b̃ω:L2(ω)× L2(ω) → R, (ũ, ṽ) 7→
∫

ω

ũ(x)ṽ(x)dx.

Then the pair (ãω, b̃ω) generates a densely defined selfadjoint operator Bω on
L2(ω), which is commonly interpreted as the operator −∆ on ω with Neumann
boundary condition.
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In this paper we are interested in the case ω = Ωε, where Ωε, for ε > 0 small,
is ‘thin’ of order ε. As ε → 0+, the domain Ωε ‘degenerates’ to some limit set,
which may no longer be a domain in R`. Our purpose is then to determine the
asymptotic behavior of the corresponding family (BΩε

)ε as ε → 0.
More specifically, let M ⊂ R` be a smooth k-dimensional submanifold of

R` and U ⊃ M be a normal (tubular) neighbourhood of M with normal pro-
jection φ. For ε ∈ [0, 1] define the squeezing operator Γε:U → U by x 7→
εx+(1−ε)sφ(x). For any domain Ω in R` with Lipschitz boundary and ClΩ ⊂ U
we set Ωε = Γε(Ω) and Bε = BΩε

for ε ∈ ]0, 1]. A particular case is the
flat squeezing case in which, writing R` = Rk × R`−k, x = (x1, x2), we set
M = Rk × {0}, U = R` and φ(x) = (x1, 0).

Now using the change of variables defined by Γε we may pull Bε back to
L2(Ω) and thus obtain the densely defined selfadjoint operator Aε in L2(Ω)
given by:

(a) u ∈ D(Bε) if and only if u ◦ Γε ∈ D(Aε);
(b) Aε(u ◦ Γε) = (Bεu) ◦ Γε for u ∈ D(Bε).
If Ω is bounded, then there is a closed linear subspace L2

s(Ω) of L2(Ω) and
a densely defined selfadjoint operator A0 on L2

s(Ω) such that, as ε → 0+, the
eigenvalues and eigenfunctions of Aε converge, in a certain strong sense, to the
eigenvalues and eigenfunctions of A0. This spectral convergence result was first
proved in [6] (cf. also [7]) in the flat squeezing case, and later in [9] in the general
curved squeezing case.

The spectral convergence theorem implies various Trotter–Kato-type linear
convergence theorems of the C0-semigroups e−tAε to e−tA0 , cf. [6], [2], [9], which
are used to prove attractor semicontinuity and Conley index continuation results
for reaction-diffusion equations with nonlinearities satisfying certain growth as-
sumptions.

It is shown in [3] that certain abstract singular spectral convergence proper-
ties of families of selfadjoint operators imply fairly general linear convergence
results. These abstract results are then applied in [3] to reaction-diffusion equa-
tions with localized singularities, while in [10] they are applied to general curved
squeezed domains, relaxing the growth assumptions from [6], [2], [9].

If Ω is unbounded, then, in general, the operators Aε do not have compact
resolvents and so spectral convergence results in the above form are not expected
to hold. However, as shown in [1] in the flat squeezing case, the resolvents of
Aε converge in some sense to the resolvents of A0 and this is sufficient for the
validity of a corresponding linear convergence result.

It is the purpose of this paper to extend the above results from [1] to the
curved squeezing case. To this end we impose a geometric condition on M
requiring that M have bounded normal curvature, see Subsection 2.2. This
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condition is trivially satisfied in the flat squeezing case (the normal curvature of
M = Rk × {0} being zero) and for compact manifolds M. A simple example
of a noncompact manifold with bounded normal curvature is provided by the
graph of the exponential function exp: R → R, while the graph of the function
g: ]0,∞[ → R, x 7→ sin(1/x), is a manifold with unbounded normal curvature.

Given a manifold with bounded normal curvature there is normal neighbour-
hood U of M such that for every open set Ω with ClΩ ⊂ U the analogue of the
above mentioned resolvent convergence holds, see Theorem 2.11. We also ob-
tain the corresponding Trotter-Kato-type convergence results, see Corollary 4.5.
This latter result is actually obtained, in the spirit of [3], as a consequence of an
abstract resolvent assumption, cf. condition (Res) and Theorem 3.4.

The paper is organized as follows. In Section 2 we introduce some notation
and discuss the concept of bounded normal curvature for a smooth k-dimensional
submanifold M of R`. We prove that M has bounded normal curvature if and
only if M has bounded second fundamental form (cf. Proposition 2.2). We
also state the main result of this paper, a resolvent convergence for the Laplace
operator in the curved squeezing case (cf. Theorem 2.11). The abstract condition
(Res) is introduced in Section 3, where we show that this condition implies two
linear convergence results (cf. Theorem 3.4). The proof of Theorem 2.11 is given
in Section 4.

2. Curved squeezing and resolvent convergence

In this section we introduce some notation and establish preliminary results
required for the statement of the resolvent convergence result for the Laplace
operator on curved squeezed domains.

In this paper all linear spaces are over the reals.

2.1. Let H be a linear space and V be a linear subspace of H. Let a:V ×V →
R be a bilinear form on V and b:H ×H → R be a bilinear form on H. Define
R = R(a, b) to be the set of all pairs (u, w) ∈ V ×H such that a(u, v) = b(w, v)
for all v ∈ V . We call R the operator relation generated by the pair (a, b). If R

is the graph of a mapping B:D(B) → H, then this map is called the operator
generated by the pair (a, b).

The following result is well-known (cf. also [8, Lemma 4.4 and its proof]).

Proposition 2.1. Let V , H be two Hilbert spaces. Suppose V is a dense
linear subspace of H and the inclusion map from V to H is continuous. Let
b = 〈 · , · 〉 be the inner product of H and ‖ ·‖ and | · | denote the Euclidean norms
of V and H. Let a:V × V → R be a symmetric bilinear form on V . Assume
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that there are constants d, C, α ∈ R, α > 0, such that, for all u, v ∈ V ,

|a(u, v)| ≤ C‖u‖‖v‖,
a(u, u) ≥ α‖u‖2 − d|u|2.

Then the operator relation generated by (a, b) is the graph of a densely defined
selfadjoint operator B in (H, b). If d = 0, then B is positive, D(B1/2) = V and

a(u, v) = b(B1/2u, B1/2v), for u, v ∈ V .

Given a Hilbert space (H, 〈 · , · 〉H) and a densely defined selfadjoint operator
A on (H, 〈 · , · 〉H) which is nonnegative, i.e. 〈Au, u〉H ≥ 0 for u ∈ D(A), the
operator A + I, where I = IdH , generates a family (A + I)α:D((A + I)α) → H,
α ∈ [0,∞[ of fractional power spaces. The space D((A + I)α), equipped with
the scalar product

(2.1) (u, v) 7→ 〈u, v〉(A+I)α := 〈(A + I)αu, (A + I)αv〉H

is a Hilbert space.

2.2. We assume throughout this paper that `, k and r are positive integers
with r ≥ 2, ` ≥ 2 and k < `. Let 〈 · , · 〉 be an inner product on R` and ‖ · ‖ be
the corresponding Euclidean norm.

Let M ⊂ R` be a k-dimensional submanifold of R` of class Cr. Given
m ∈ [1. . r] and p ∈ M, a Cm-curve in M at p is a Cm-map γ: ]−δ, δ[ → R` for
some δ ∈ ]0,∞[ with γ(]−δ, δ[) ⊂ M and γ(0) = p. We identify, in the usual
way, the tangent space TpM to M at p with the linear subspace of R` consisting
of all points γ′(0) ∈ R` where γ is a C1-curve in M at p.

If V is open in M, p ∈ V , E is a normed space and f :V → E is differentiable
at p, then there is an open set U = Up in R` with p ∈ U and a map f̃ =
f̃p:U → E with f̃|(U∩V ) = f|(U∩V ) and f̃ is differentiable at p. The derivative
Df(p):Tp(M) → E of f at p is defined as the restriction Df̃|Tp(M). Df(p) is
independent of the choice of U or f̃ .

For p ∈ M let Q(p): R` → R` (resp. P (p): R` → R`) be the orthogonal
projection of R` onto Tp(M) (resp. T⊥p (M)). Thus P (p) = IdR` −Q(p).

It is well known that Q:M→ L(R`, R`) is of class Cr−1 (cf. Remark 4.2).
It is also well known that (DQ(p)a)b ∈ T⊥p (M) for each p ∈ M and all a,

b ∈ Tp(M) (cf. Remark 4.2) and the map

IIp:Tp(M)× Tp(M) → T⊥p (M), (a, b) 7→ (DQ(p)a)b

is bilinear and symmetric. The map IIp is called the second fundamental form
of M at p. Let sp:Tp(M) → T⊥p (M) be the quadratic form of IIp, i.e. sp(a) =
IIp(a, a) for a ∈ Tp(M). Let

‖IIp‖ = sup{ ‖IIp(a, b)‖ | (a, b) ∈ Tp(M)× Tp(M), ‖a‖ ≤ 1, ‖b‖ ≤ 1 }



Resolvent Convergence on Unbounded Curved Squeezed Domains 237

and

‖sp‖ = sup{ ‖sp(a)‖ | a ∈ Tp(M), ‖a‖ ≤ 1 }.

It follows from the polarization identity that

(2.2) ‖sp‖ ≤ ‖IIp‖ ≤ 2‖sp‖.

Given a C2 curve γ in M at p with γ′(0) 6= 0 its normal curvature cγ(p) is
defined as cγ(p) = ‖P (p)γ′′(0)‖/‖γ′(0)‖2.

We say that M has bounded normal curvature if

sup{cγ(p) | p ∈M and γ is a C2 curve in M at p with γ′(0) 6= 0 } < ∞.

We say that M has bounded second fundamental form if

sup{ ‖IIp(a, b)‖ | p ∈M, (a, b) ∈ Tp(M)× Tp(M), ‖a‖ ≤ 1, ‖b‖ ≤ 1 } < ∞.

Since sp(γ′(0)) = (DQ(p)γ′(0))γ′(0) = P (p)γ′′(0) for every C2 curve γ in M at
p and since for each a ∈ Tp(M) there is a C2 curve γ in M at p with a = γ′(0),
the following result follows from (2.2):

Proposition 2.2. M has bounded normal curvature if and only if M has
bounded fundamental form.

Moreover, the following result holds.

Proposition 2.3. The following conditions are equivalent:
(a) M0 := sup(p,a,c)∈A ‖(DQ(p)a)c‖ < ∞, where

A = { (p, a, c) ∈M× Tp(M)× T⊥p (M) | ‖a‖ ≤ 1, ‖c‖ ≤ 1 }.

(b) M has bounded second fundamental form, i.e.

M ′
0 := sup

(p,a,b)∈A′
‖(DQ(p)a)b‖ < ∞,

where A′ = { (p, a, b) ∈M× Tp(M)× Tp(M) | ‖a‖ ≤ 1, ‖b‖ ≤ 1 }.

The proof of Proposition 2.3 is given in Section 4.

Definition 2.4. An open set U in R` with M ⊂ U is called a normal
neighbourhood (or normal strip) of M if there is a map φ:U → M of class
Cr−1, called an orthogonal projection of U onto M and a continuous function
δ:M→ ]0,∞], called the thickness of U such that:

(a) whenever x ∈ U and p ∈M then φ(x) = p if and only if the vector x−p

is orthogonal to TpM (in R`) and ‖x− p‖ < δ(p);
(b) εx + (1− ε)φ(x) ∈ U for all x ∈ U and all ε ∈ [0, 1].
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Remark. Although in the papers [9], [10] the condition M ⊂ U is erro-
neously missing, it is implied and satisfied by all normal neighbourhoods con-
structed and considered there.

The following result follows immediately from Definition 2.4:

Lemma 2.5. Let U , φ and δ be as in Definition 2.4 and δ0:M → ]0,∞]
be a continuous function with δ0 ≤ δ. Let U0 be the set of all x ∈ U with
‖x − φ(x)‖ < δ0(φ(x)). Then U0 is a normal neighbourhood of M (relative to
the orthogonal projection φ0 = φ|U0 and the thickness δ0).

For the rest of this paper assume the following hypothesis:

(2.3) M has bounded normal curvature, i.e. bounded second fundamental form.

Choose M ∈ R arbitrarily with

(2.4) sup{ ‖(DQ(p)a)c‖ | (p, a, c) ∈M× Tp(M)× T⊥p (M),

‖a‖ ≤ 1, ‖c‖ ≤ 1 } ≤ M < ∞.

This is possible by assumption (2.3) and Proposition 2.3.
The following proposition is proved in Section 4.

Proposition 2.6. Let q0 ∈ ]0, 1[ be arbitrary and M be as in (2.4). There
is normal neighbourhood U of M with normal projection φ and thickness δ such
that Mδ(p) ≤ q0 for all p ∈M.

For the rest of this paper we fix a q0 ∈ ]0, 1[ and a normal neighbourhood
U with normal projection φ and thickness δ such that the assertions of Proposi-
tion 2.6 are satisfied.

2.3. For ε ∈ [0, 1] define the maps Γε:U → U by

x 7→ φ(x) + ε(x− φ(x)),

Jε:U → R by Jε(x) = |det(DΓε(x)|Tφ(x)(M))|, x ∈ U , and Sε:U → L(R`, R`) by

(2.5) Sε(x)h = Dφ(Γε(x))h− (DQ(φ(x))(Dφ(Γε(x))h))(x− φ(x))

for x ∈ U and h ∈ R`.
In the sequel, given a linear map B: R` → R` we denote by BT the adjoint

of B relative to the scalar product 〈·, ·〉.
For the rest of this paper we will assume that

(2.6) Ω is open in R` with Cl(Ω) ⊂ U . For ε ∈ ]0, 1], we write Ωε = Γε(Ω).

For ε ∈ ]0, 1] define the following bilinear forms:

ãε:H1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→
∫

Ωε

∇ũ(x) · ∇ṽ(x) dx;
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ǎε:H1(Ωε)×H1(Ωε) → R, (ũ, ṽ) 7→ ε−(`−k)

∫
Ωε

∇ũ(x) · ∇ṽ(x) dx;

b̃ε:L2(Ωε)× L2(Ωε) → R, (ũ, ṽ) 7→
∫

Ωε

ũ(x)ṽ(x) dx;

b̌ε:L2(Ωε)× L2(Ωε) → R, (ũ, ṽ) 7→ ε−(`−k)

∫
Ωε

ũ(x)ṽ(x) dx,

and finally let aε:H1(Ω)×H1(Ω) → R be defined by

aε(u, v) =
∫

Ω

Jε(x)〈Sε(x)T∇u(x), Sε(x)T∇v(x)〉 dx

+
1
ε2

∫
Ω

Jε(x)〈P (x)∇u(x), P (x)∇v(x)〉 dx, u, v ∈ H1(Ω).

For ε ∈ [0, 1] define the bilinear form bε:L2(Ω)× L2(Ω) → R by

bε(u, v) =
∫

Ω

Jε(x)u(x)v(x) dx, u, v ∈ L2(Ω).

We have

(2.7) ãε(u, u) + b̃ε(u, u) = |u|2H1(Ωε), ε ∈ ]0, 1] , u ∈ H1(Ωε).

Let ε ∈ ]0, 1] be arbitrary. Then, Proposition 2.1 and (2.7) imply that the
pair (ãε, b̃ε) generates a densely defined selfadjoint operator Bε in (L2(Ωε), b̃ε),
which we interpret, as usual, as the operator −∆ on Ωε with Neumann boundary
condition on ∂Ωε. Since ǎε = ε−(`−k)ãε and b̌ε = ε−(`−k)b̃ε, we see that

(2.8)
the pair (ǎε, b̌ε) generates Bε and both Bε and Bε + IdL2(Ωε) are
densely defined selfadjoint linear operators in (L2(Ωε), b̌ε) with Bε +
IdL2(Ωε) positive.

Furthermore the following estimates hold:

Proposition 2.7. There are constants k1, k2 ∈ ]0,∞[ such that

(2.9) k1bε(u, u) ≤ |u|2L2(Ω) ≤ k2bε(u, u), for ε ∈ [0, 1] and u ∈ L2(Ω).

The proof of Proposition 2.7 is given in Section 4. Let us now define the
space

H1
s (Ω) := {u ∈ H1(Ω) | P (x)∇u(x) = 0 a.e. }.

Note that

(2.10) H1
s (Ω) is a closed linear subspace of the Hilbert space H1(Ω).

Now define the ‘limit’ bilinear form

a0:H1
s (Ω)×H1

s (Ω) → R, (u, v) 7→
∫

Ω

J0(x)〈S0(x)T∇u(x), S0(x)T∇v(x)〉 dx.
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Finally, let L2
s(Ω) be the closure of H1

s (Ω) in L2(Ω). Note that

(2.11) L2
s(Ω) is a closed linear subspace of the Hilbert space L2(Ω).

For ε ∈ ]0, 1] and u, v ∈ L2(Ω) set

〈u, v〉ε := bε(u, v).

For ε ∈ ]0, 1] and u, v ∈ H1(Ω) set

〈〈u, v〉〉ε := aε(u, v) + bε(u, v).

By (2.9), 〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε) is a scalar product on L2(Ω) (resp. H1(Ω)). Let
| · |ε (resp. ‖ · ‖ε) be the Euclidean norm on L2(Ω) (resp. H1(Ω)) induced by
〈 · , · 〉ε (resp. 〈〈 · , · 〉〉ε). Furthermore, for u, v ∈ L2

s(Ω) set

〈u, v〉0 := b0(u, v).

Finally, for u, v ∈ H1
s (Ω) set

〈〈u, v〉〉0 := a0(u, v) + b0(u, v).

Again by (2.9), 〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0) is a scalar product on L2
s(Ω) (resp. H1

s (Ω)).
Let | · |0 (resp. ‖ ·‖0) be the Euclidean norm on L2

s(Ω) (resp. H1
s (Ω)) induced

by 〈 · , · 〉0 (resp. 〈〈 · , · 〉〉0). By (2.9) the norms | · |ε, ε ∈ [0, 1], are all equiva-
lent to the usual norm on L2(Ω), with equivalence constants independent of ε.
Writing Hε = L2(Ω) for ε ∈ ]0, 1] and H0 = L2

s(Ω) we thus see that

(2.12) for ε ∈ [0, 1], (Hε, 〈 · , · 〉ε) is a Hilbert space.

We have the following result which is also proved in Section 4.

Proposition 2.8. The following properties hold:

(2.13)

There exist constants γ1, γ2 ∈ ]0,∞[ such that
γ1|u|H1(Ω) ≤ ‖u‖ε ≤ (1/ε2)γ2|u|H1(Ω) for all ε ∈ ]0, 1] and u ∈ H1(Ω)
and
γ1|u|H1(Ω) ≤ ‖u‖0 ≤ γ2|u|H1(Ω) for all u ∈ H1

s (Ω)

and

(2.14)

there exists a constant C ∈ ]1,∞[ such that, for ε ∈ ]0, 1],
‖u‖ε ≤ C‖u‖0 and ‖u‖0 ≤ C‖u‖ε, whenever u ∈ H1

s (Ω)
and
|u|ε ≤ C|u|0 and |u|0 ≤ C|u|ε, whenever u ∈ H0.

We obtain from (2.13) that the norm ‖ · ‖ε is, for each ε ∈ [0, 1], equivalent
to the usual norm | · |H1(Ω).

Now let (uk)k in H1
s (Ω) be a ‖ · ‖0-Cauchy sequence. By (2.14) we have that,

for any given ε ∈ ]0, 1], (uk)k is a ‖ · ‖ε-Cauchy sequence and consequently also
a | · |H1(Ω)-Cauchy sequence. Thus, for some u ∈ H1(Ω), the sequence (uk)k
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converges to u in the | · |H1(Ω)-norm. Hence u ∈ H1
s (Ω) as H1

s (Ω) is closed in
H1(Ω) in the | · |H1(Ω)-norm. It follows that (uk)k converges to u in the ‖ · ‖ε-
norm and thus, since uk − u ∈ H1

s (Ω) for k ∈ N, (uk)k converges to u in the
‖ · ‖0-norm. It follows that (H1

s (Ω), 〈〈 · , · 〉〉0) is a Hilbert space. By definition,
H1

s (Ω) is dense in (H0, 〈 · , · 〉0).
Altogether we obtain that

(2.15)

for ε ∈ ]0, 1], (H1(Ω), 〈〈 · , · 〉〉ε) is a Hilbert space which is continu-
ously and densely embedded in (Hε, 〈·, ·〉ε).
(H1

s (Ω), 〈〈 · , · 〉〉0) is a Hilbert space which is continuously and densely
embedded in (H0, 〈 · , · 〉0).

Now, using (2.13) we obtain the estimates

aε(u, u) ≥ γ2
1 |u|2H1(Ω) − |u|

2
ε, ε ∈ ]0, 1] , u ∈ H1(Ω),(2.16)

a0(u, u) ≥ γ2
1 |u|2H1(Ω) − |u|

2
0, u ∈ H1

s (Ω).(2.17)

Proposition 2.1 together with (2.16) and (2.17) implies that,

(2.18)
for ε ∈ [0, 1], the pair (aε, 〈 · , · 〉ε) generates a densely defined selfad-
joint operator Aε on (Hε, 〈 · , · 〉ε).

The definition of aε implies that

(2.19) Aε is nonnegative, i.e. 〈Aεu, u〉ε ≥ 0 for ε ∈ [0, 1] and u ∈ D(Aε).

Let us relate the operators Aε and Bε, ε ∈ ]0, 1], to each other. Note
that, for ε ∈ ]0, 1], the inverse Γ−1

ε :U → U of Γε exists and is given by y 7→
φ(y) + ε−1(y − φ(y)) so Γ−1

ε is of class Cr−1 and

(2.20) D(Γ−1
ε )(y)w = Dφ(y)w+ε−1(w−Dφ(y)w), ε ∈ ]0, 1] , y ∈ U , w ∈ R`.

Define
Lε:U → L(R`, R`), x 7→ D(Γ−1

ε )(Γε(x)).

Proposition 2.9. For ε ∈ ]0, 1], the assignment

u 7→ ũ = u ◦ (Γε)|Ω

restricts to linear isomorphisms L2(Ωε) → L2(Ω) and H1(Ωε) → H1(Ω). More-
over,

∇u(Γε(x)) = (Lε(x))T (∇ũ(x)), for all u ∈ H1(Ωε) and almost all x ∈ Ω.

For ε ∈ ]0, 1],

(2.21) aε(u ◦ (Γε)|Ω, v ◦ (Γε)|Ω) = ǎε(u, v), for all u, v ∈ H1(Ωε).

Moreover,

(2.22) bε(u ◦ (Γε)|Ω, v ◦ (Γε)|Ω) = b̌ε(u, v), for all u, v ∈ L2(Ωε).
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For the proof of Proposition 2.9 we refer to Section 4. Using formulas (2.21)
and (2.22) we obtain the following

Proposition 2.10. The (linear) operators Bε (resp. Aε) defined by (ǎε, b̌ε)
(resp. (aε, bε)) satisfy the following properties:

(a) u ∈ D(Bε) if and only if u ◦ (Γε)|Ω ∈ D(Aε);
(b) Aε(u ◦ (Γε)|Ω) = (Bεu) ◦ (Γε)|Ω for u ∈ D(Bε).

Given ε ∈ [0, 1] and letting Iε be the identity operator on Hε we see that
the operator Aε + Iε is the operator generated by the pair (〈〈 · , · 〉〉ε, 〈 · , · 〉ε).
Applying Proposition 2.1 we thus obtain

(2.23)

For ε ∈ [0, 1], Aε + Iε:D(Aε + Iε) = D(Aε) ⊂ Hε → Hε is a densely
defined positive selfadjoint operator in (Hε, 〈 · , · 〉Hε).
For ε ∈ ]0, 1], D((Aε + Iε)1/2) = H1(Ω) and
〈〈u, v〉〉ε = 〈(Aε + Iε)1/2u, (Aε + Iε)1/2v〉ε for u, v ∈ H1(Ω).
D((A0 + I0)1/2) = H1

s (Ω) and
〈〈u, v〉〉0 = 〈(A0 + I0)1/2u, (A0 + I0)1/2v〉ε for u, v ∈ H1

s (Ω).

We can now state the first main result of this paper:

Theorem 2.11. Whenever (εn)n is a sequence in ]0, 1] converging to zero,
w ∈ H0 and (wn)n is a sequence in H0 with |wn − w|0 → 0 as n → ∞, then
‖(Aεn

+ Iεn
)−1wn − (A0 + I0)−1w‖εn

→ 0 as n →∞.

The proof is presented in Section 4.

3. An abstract convergence result for linear semiflows

In this section we introduce an abstract hypothesis, condition (Res), and we
show that this condition implies two Trotter–Kato-type convergence results for
C0-semigroups of linear operators.

Definition 3.1. We say that the family (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfies
condition (Res) if the following properties are satisfied:

(a) ε0 ∈ ]0,∞[ and for every ε ∈ [0, ε0], (Hε, 〈·, ·〉Hε) is a Hilbert space and
Aε:D(Aε) ⊂ Hε → Hε is a densely defined nonnegative self-adjoint op-
erator on (Hε, 〈 · , · 〉Hε). For α ∈ [0,∞[ write Hε

α := D((Aε + Iε)α/2),
where Iε = IdHε , and 〈 · , · 〉Hε

α
:= 〈 · , ·〉(Aε+Iε)α/2 with the correspond-

ing norm | · |Hε
α
. In particular, Hε

0 = Hε;
(b) for each ε ∈ ]0, ε0], H0 is a linear subspace of Hε and H0

1 is a linear
subspace of Hε

1 ;
(c) there exists a constant C ∈ ]1,∞[ such that, for ε ∈ ]0, ε0],

|u|Hε
1
≤ C|u|H0

1
and |u|H0

1
≤ C|u|Hε

1
, whenever u ∈ H0

1 ,

|u|Hε ≤ C|u|H0 and |u|H0 ≤ C|u|Hε , whenever u ∈ H0;
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(d) whenever (εn)n is a sequence in ]0, ε0] converging to zero, w ∈ H0 and
(wn)n is a sequence in H0 with |wn − w|H0 → 0 as n →∞, then

|(Aεn
+ Iεn

)−1wn − (A0 + I0)−1w|Hεn
1
→ 0 as n →∞.

Proposition 3.2. If (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Res), then
for every ε ∈ ]0, ε0], the subspace H0

1 is closed in (Hε
1 , | · |Hε

1
).

Proof. Let ε ∈ ]0, ε0] and suppose (un)n is a sequence in H0
1 with |un −

u|Hε
1
→ 0 as n →∞ for some u ∈ Hε

1 . Part (c) of condition (Res) implies that

|un − um|H0
1
≤ C|un − um|Hε

1
,

so (un)n is a Cauchy sequence in the Banach space (H0
1 , | · |H0

1
). Therefore (un)n

converges in H0
1 to some v in H0

1 . But part (c) of condition (Res) implies that

|un − v|Hε
1
≤ C|un − v|H0

1
.

Hence u = v and thus u ∈ H0
1 . This proves the proposition. �

Remark 3.3. Note that, for α, t ∈ ]0,∞[ and λ ∈ [0,∞[

λαe−λt ≤ C(α)t−α with C(α) = (α/e)α.

Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Res). Let ε ∈ [0, ε0] and r ∈
]0,∞[. Using the Stone–Neumann operational calculus together with the above
estimate with α = 1/2 we obtain the estimates:

|e−Aεru|Hε ≤ |u|Hε , u ∈ Hε,(3.1)

|e−Aεru|Hε
1
≤ C0r

−1/2er|u|Hε , u ∈ Hε,(3.2)

where C0 = C(1/2).

We now state and prove the second main result of this paper.

Theorem 3.4. Let (Hε, 〈 · , · 〉Hε , Aε)ε∈[0,ε0] satisfy condition (Res). Sup-
pose (εn)n is a sequence in ]0, ε0] with εn → 0. Then the following properties
hold:

(a) If u0 ∈ H0 and (un)n is a sequence such that un ∈ Hεn for each n ∈ N
and |un − u0|Hεn → 0 as n →∞, then

|e−tAεn un − e−tA0u0|Hεn
1
→ 0 as n →∞,

uniformly on compact intervals in ]0,∞[.
(b) If u0 ∈ H0

1 and (un)n is a sequence such that un ∈ Hεn
1 for each n ∈ N

and |un − u0|Hεn
1
→ 0 as n →∞, then

|e−tAεn un − e−tA0u0|Hεn
1
→ 0 as n →∞,

uniformly on compact intervals in [0,∞[.
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Proof. We follow, with the appropriate modifications, the arguments in
the proof of [1, Proposition 3.2]. Let u ∈ H0 be arbitrary. Given n ∈ N and
t ∈ [0,∞[ consider the function wn = wn,t: [0, t] → Hεn defined by

wn(s) = (Aεn
+ Iεn

)−1/2e−Aεn (t−s)(e−A0s(A0 + I0)−1u− e−Aεn s(A0 + I0)−1u)

= (Aεn
+ Iεn

)−1/2e−Aεn (t−s)e−A0s(A0 + I0)−1u

− (Aεn
+ Iεn

)−1/2e−Aεn t(A0 + I0)−1u.

It is an easy exercise, using the estimate (3.1) and part (c) of condition (Res), to
prove that wn is continuous on [0, t], differentiable on ]0, t[ and, for all s ∈ ]0, t[,

w′n(s) = (Aεn
+ Iεn

)−1/2Aεn
e−Aεn (t−s)e−A0s(A0 + I0)−1u

− (Aεn
+ Iεn

)−1/2e−Aεn (t−s)A0e
−A0s(A0 + I0)−1u.

Since

(Aεn + Iεn)−1Aεne−Aεn (t−s)e−A0s(A0 + I0)−1u

− (Aεn + Iεn)−1e−Aεn (t−s)A0e
−A0s(A0 + I0)−1u

=(Aεn + Iεn)−1(Aεn + Iεn)e−Aεn (t−s)e−A0s(A0 + I0)−1u

− (Aεn + Iεn)−1e−Aεn (t−s)e−A0s(A0 + I0)−1u

− (Aεn
+ Iεn

)−1e−Aεn (t−s)(A0 + I0)e−A0s(A0 + I0)−1u

+ (Aεn
+ Iεn

)−1e−Aεn (t−s)e−A0s(A0 + I0)−1u

= e−Aεn (t−s)(A0 + I0)−1e−A0su− e−Aεn (t−s)(Aεn
+ Iεn

)−1e−A0su,

it follows that

w′n(s) = (Aεn + Iεn)1/2e−Aεn (t−s)((A0 + I0)−1e−A0su− (Aεn + Iεn)−1e−A0su).

Let τ ∈ ]0,∞[ be arbitrary. Since the set of all e−A0su with s ∈ [0, τ ] is compact
in (H0, | · |H0), part (d) of condition (Res) implies that

ρn(τ) := sup
s∈[0,τ ]

|(Aεn+Iεn)1/2((A0+I0)−1e−A0su−(Aεn+Iεn)−1e−A0su)|Hεn → 0

as n →∞. The mean-value theorem now implies that, if t ≤ τ ,

|(Aεn + Iεn)−1/2(e−A0t(A0 + I0)−1u− e−Aεn t(A0 + I0)−1u)|Hεn

= |wn(t)− wn(0)|Hεn ≤ t · sup
s∈]0,t[

|w′n(s)|Hεn ≤ τρn(τ).

Therefore we obtain

sup
t∈[0,τ ]

|(Aεn
+ Iεn

)−1/2(e−A0t(A0 + I0)−1u− e−Aεn t(A0 + I0)−1u)|Hεn → 0

as n →∞. Thus, for each v ∈ D(A0),

(3.3) sup
t∈[0,τ ]

|(Aεn + Iεn)−1/2(e−A0tv − e−Aεn tv)|Hεn → 0, as n →∞.
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Since |(Aεn
+ Iεn

)−1/2|L(Hεn ,Hεn ) ≤ 1, |e−A0tw|Hεn ≤ C|e−A0tw|H0 ≤ C|w|H0

and |e−Aεn tw|Hεn ≤ |w|Hεn ≤ C|w|H0 for w ∈ H0 and n ∈ N, we see that

sup
t∈[0,τ ]

|(Aεn
+ Iεn

)−1/2(e−A0tw − e−Aεn tw)|Hεn ≤ 2C|w|H0 .

This, together with the validity of (3.3) for v ∈ D(A0) and the density of D(A0)
in H0 implies that (3.3) holds for all v ∈ H0.

Now for all t ∈ [0, τ ] we obtain, using (3.3), (3.1) and part (d) of condition
(Res), that

|(Aεn
+ Iεn

)1/2(e−A0t(A0 + I0)−1u− e−Aεn t(A0 + I0)−1u)|Hεn

≤ |(Aεn
+ Iεn

)1/2(e−A0t(A0 + I0)−1u− (Aεn
+ Iεn

)−1e−A0tu)|Hεn

+ |(Aεn
+ Iεn

)1/2((Aεn
+ Iεn

)−1e−A0tu− e−Aεn t(Aεn
+ Iεn

)−1u)|Hεn

+ |(Aεn
+ Iεn

)1/2(e−Aεn t(Aεn
+ Iεn

)−1u− e−Aεn t(A0 + I0)−1u)|Hεn

≤ |(Aεn
+ Iεn

)1/2((A0 + I0)−1e−A0tu− (Aεn
+ Iεn

)−1e−A0tu)|Hεn

+ |(Aεn
+ Iεn

)−1/2(e−A0tu− e−Aεn tu)|Hεn

+ |(Aεn
+ Iεn

)1/2((Aεn
+ Iεn

)−1u− (A0 + I0)−1u)|Hεn

≤ 2ρn(τ) + sup
t∈[0,τ ]

|(Aεn
+ Iεn

)−1/2(e−A0tu− e−Aεn tu)|Hεn .

Thus, for all v ∈ D(A0),

(3.4) sup
t∈[0,τ ]

|(Aεn + Iεn)1/2(e−A0tv − e−Aεn tv)|Hεn → 0 as n →∞.

Now let t ∈ [0, τ ] and w ∈ H0 be arbitrary.

|(Aεn + Iεn)1/2(e−A0tw − e−Aεn tw)|Hεn

≤ |(Aεn + Iεn)1/2e−A0tw|Hεn + |(Aεn + Iεn)1/2e−Aεn tw|Hεn

≤C|(A0 + I0)1/2e−A0tw|H0 + |(Aεn + Iεn)1/2e−Aεn tw|Hεn =: T,

where, by (3.1), (3.2) and part (c) of condition (Res),

T ≤

{
2C0Ct−1/2et|w|H0 , if t > 0,

2C|w|H0
1
, if t ≥ 0 and w ∈ H0

1 .

Hence, if β ∈ ]0, τ ] we obtain

sup
t∈[β,τ ]

|(Aεn
+ Iεn

)1/2(e−A0tw − e−Aεn tw)|Hεn ≤ 2C0Cβ−1/2eτ |w|H0 .

Moreover, if w ∈ H0
1 we have

sup
t∈[0,τ ]

|(Aεn + Iεn)1/2(e−A0tw − e−Aεn tw)|Hεn ≤ 2C|w|H0
1
.
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This implies, together with the validity of (3.4) for v ∈ D(A0) and the density
of D(A0) both in (H0, | · |H0) and in (H0

1 , | · |H0
1
), that

(3.5) sup
t∈[β,τ ]

|e−A0tu− e−Aεn tu|Hεn
1
→ 0 as n →∞, if u ∈ H0 and β ∈ ]0, τ ]

and

(3.6) sup
t∈[0,τ ]

|e−A0tu− e−Aεn tu|Hεn
1
→ 0 as n →∞, if u ∈ H0

1 .

Now, if u0 and (un)n are as in part (a), then for β ∈ ]0, τ ], t ∈ [β, τ ] and n ∈ N
we have

|e−A0tu0 − e−Aεn tun|Hεn
1
≤ |e−A0tu0 − e−Aεn tu0|Hεn

1
+ |e−Aεn t(u0 − un)|Hεn

1

≤ |e−A0tu0 − e−Aεn tu0|Hεn
1

+ C0β
−1/2eτ |un − u0|Hεn .

Together with (3.5) this implies part (a) of the theorem.
If u0 and (un)n are as in part (b), then for t ∈ [0, τ ] and n ∈ N we have

|e−A0tu0 − e−Aεn tun|Hεn
1
≤ |e−A0tu0 − e−Aεn tu0|Hεn

1
+ |e−Aεn t(u0 − un)|Hεn

1

≤ |e−A0tu0 − e−Aεn tu0|Hεn
1

+ |un − u0|Hεn
1

.

This together with (3.6) implies part (b) of the theorem. The theorem is
proved. �

4. The proof of Theorem 2.11

In this section we prove Propositions 2.3, 2.6–2.9 and Theorem 2.11.
We will need the following easy local result:

Lemma 4.1. For every q ∈M there is an open set Vq in M and Cr−1-maps
hi = hq,i:Vq → R`, i ∈ [1. . k] and νj = νq,j :Vq → R`, j ∈ [1. . `− k] such
that for every p ∈ Vq the vectors hi(p), i ∈ [1. . k], form an orthonormal basis
of TpM, and the vectors νj(p), j ∈ [1. . `− k], form an orthonormal basis of the
orthogonal complement T⊥p (M) of TpM in R`.

It follows that

(4.1) Q(p)h =
k∑

i=1

〈h, hi(p)〉hi(p), q ∈M, p ∈ Vq, h ∈ R`

and

(4.2) (IdR` −Q(p))h = P (p)h =
`−k∑
j=1

〈h, νj(p)〉νj(p), q ∈M, p ∈ Vq, h ∈ R`.
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Therefore we obtain

(4.3) (DQ(p)a)b =
k∑

i=1

(〈b, Dhi(p)a〉hi(p) + 〈b, hi(p)〉Dhi(p)a),

q ∈M, p ∈ Vq, a ∈ Tp(M), b ∈ R`,

(4.4) − (DQ(p)a)b =
`−k∑
j=1

(〈b, Dνj(p)a〉νj(p) + 〈b, νj(p)〉Dνj(p)a),

q ∈M, p ∈ Vq, a ∈ Tp(M), b ∈ R`.

Remark 4.2. It follows from (4.1), (4.2) and Lemma 4.1 that Q:M →
L(R`, R`) and P :M → L(R`, R`) are Cr−1-maps. Moreover, (4.3) and (4.4)
imply that, for p ∈M and a ∈ Tp(M), (DQ(p)a)b ∈ T⊥p (M) for b ∈ Tp(M) and
(DQ(p)a)c ∈ Tp(M) for c ∈ T⊥p (M).

Lemma 4.3. For all q ∈M, all p ∈ Vq and all a ∈ Tp(M)

k∑
i=1

‖((DQ(p)a)hi(p))‖2 =
`−k∑
j=1

‖((DQ(p)a)νj(p))‖2.

Proof. It follows from (4.3) and (4.4) that for p ∈ Vq and a ∈ Tp(M)

(DQ(p)a)νj(p) =
k∑

i=1

〈νj(p), Dhi(p)a〉hi(p), j ∈ [1. . `− k] ,

−(DQ(p)a)hi(p) =
`−k∑
j=1

〈hi(p), Dνj(p)a〉νj(p), i ∈ [1. . k] .

Given i ∈ [1. . k] and j ∈ [1. . `− k] we have 〈hi(p), νj(p)〉 = 0 for p ∈ Vq and we
obtain

〈Dhi(p)a, νj(p)〉+ 〈hi(p), Dνj(p)a〉 = 0,

(DQ(p)a)hi(p) =
`−k∑
j=1

〈Dhi(p)a, νj(p)〉νj(p), i ∈ [1. . k] .

Hence

‖(DQ(p)a)νj(p)‖2 =
k∑

i=1

|〈νj(p), Dhi(p)a〉|2, j ∈ [1. . `− k] ,

‖(DQ(p)a)hi(p)‖2 =
`−k∑
j=1

|〈Dhi(p)a, νj(p)〉|2, i ∈ [1. . k] .

Finally we conclude
k∑

i=1

‖((DQ(p)a)hi(p))‖2 =
k∑

i=1

`−k∑
j=1

|〈νj(p), Dhi(p)a〉|2
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and
`−k∑
j=1

‖((DQ(p)a)νj(p))‖2 =
`−k∑
j=1

k∑
i=1

|〈νj(p), Dhi(p)a〉|2. �

Proof of Proposition 2.3. Let p ∈ M be arbitrary. Lemma 4.1 implies
that there is a q ∈ M with p ∈ Vq. Let hi = hq,i, i ∈ [1. . k], and νj = νq,j ,
j ∈ [1. . `− k], be as in that lemma.

Given (a, b, c) ∈ Tp(M) × Tp(M) × T⊥p (M) with ‖a‖ ≤ 1, ‖b‖ ≤ 1 and
‖c‖ ≤ 1, then

‖(DQ(p)a)b‖2 = ‖
k∑

i=1

〈b, hi(p)〉(DQ(p)a)hi(p)‖2 ≤ ‖b‖2‖
k∑

i=1

(DQ(p)a)hi(p)‖2.

Lemma 4.3 implies

(4.5) ‖(DQ(p)a)b‖2 ≤
`−k∑
j=1

‖((DQ(p)a)νj(p))‖2 ≤ M2
0 (`− k).

Analogously,

‖(DQ(p)a)c‖2 = ‖
`−k∑
j=1

〈c, νj(p)〉(DQ(p)a)νj(p)‖2 ≤ ‖c‖2‖
`−k∑
j=1

(DQ(p)a)νj(p)‖2.

It follows from Lemma 4.3 that

(4.6) ‖(DQ(p)a)c‖2 ≤
k∑

i=1

‖((DQ(p)a)hi(p))‖2 ≤ (M ′
0)

2k.

Now (4.5) and (4.6) imply that M2
0 ≤ (M ′

0)
2k and (M ′

0)
2 ≤ M2

0 (` − k), so
M0 < ∞ if and only if M ′

0 < ∞. This shows that (a) is equivalent to (b). �

Proof of Proposition 2.6. By [10, Proposition 3.4] there is a normal
neighbourhood U of M with normal projection φ and thickness δ. If M = 0,
then there is nothing to prove. Let M > 0 and define δ0:M → ]0,∞] by p 7→
min(δ(p), q0/M). An application of Lemma 2.5 yields a normal neighbourhood
U0 ⊂ U of M with normal projection φ0 = φ|U0 and thickness δ0 satisfying
Mδ0(p) ≤ q0 for all p ∈ M. Dropping the index ‘0’ in ‘U0’, ‘δ0’ and ‘φ0’ we
obtain the assertion of the proposition. �

Recall that q0 ∈ ]0, 1[ and U is a normal neighbourhood with normal projec-
tion φ and thickness δ such that the assertions of Proposition 2.6 are satisfied.
Since x− φ(x) ∈ T⊥p (M) for x ∈ U , it thus follows that

(4.7) ‖(DQ(φ(x))h)(x− φ(x))‖ ≤ q0‖h‖ for x ∈ U and h ∈ Tφ(x)(M).

We also have Q(φ(x))(x− φ(x)) = 0 for x ∈ U , and so

(4.8) (DQ(φ(x))Dφ(x)h)(x− φ(x)) + Q(φ(x))(h−Dφ(x)h) = 0 for x ∈ U
and h ∈ R`.
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It follows from (4.8) and the fact that Dφ(x)h ∈ Tφ(x)(M) for x ∈ U and h ∈ R`

that, for x ∈ U and h ∈ R`

(4.9) Dφ(x)h = Q(φ(x))h + (DQ(φ(x))(Dφ(x)h))(x− φ(x)).

For ε ∈ [0, 1] recall that the map Γε:U → U is defined by x 7→ φ(x)+ε(x−φ(x)).
It follows that

(4.10)
For ε ∈ [0, 1], Γε is Cr−1-map and, for x ∈ U , DΓε(x)(Tφ(x)(M)) ⊂
Tφ(x)(M) and DΓε(x)(T⊥φ(x)(M)) ⊂ T⊥φ(x)(M) with DΓε(x)ν = εν

for ν ∈ T⊥φ(x)(M).

Now (4.10) implies that

det DΓε(x) = det(DΓε(x)|Tφ(x)(M)) · det(DΓε(x)|T⊥
φ(x)(M)).

Hence

(4.11) detDΓε(x) = ε`−k det(DΓε(x)|Tφ(x)(M)) for ε ∈ [0, 1] and x ∈ U .

Moreover, since

(4.12) φ(Γε(x)) = φ(x), for ε ∈ [0, 1] and x ∈ U

it follows that

(4.13) Dφ(Γε(x)) ◦DΓε(x) = Dφ(x), ε ∈ [0, 1] , x ∈ U .

Using (4.12) we also obtain from (4.9)

(4.14) Dφ(Γε(x))h = Q(φ(x))h + (DQ(φ(x))(Dφ(Γε(x))h))(Γε(x)− φ(x))

= Q(φ(x))h + (DQ(φ(x))(εDφ(Γε(x))h))(x− φ(x)).

It follows from (2.5) that

(4.15) Sε(x)(R`) ⊂ Tφ(x)(M).

Moreover, by (2.5) and (4.13) we have

Sε(x)(DΓε(x)h) =Dφ(Γε(x))(DΓε(x)h)

− (DQ(φ(x))(Dφ(Γε(x))(DΓε(x)h)))(x− φ(x))

=Dφ(x)h− (DQ(φ(x))(Dφ(x)h))(x− φ(x)).

Hence (4.9) implies

(4.16) Sε(x)(DΓε(x)h) = Q(φ(x))h, ε ∈ [0, 1] , x ∈ U , h ∈ R`.

In particular,

Sε(x)(DΓε(x)h) = h, ε ∈ [0, 1] , x ∈ U , h ∈ Tφ(x)(M)
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so DΓε(x)|Tφ(x)(M):Tφ(x)(M) → Tφ(x)(M) is linear and injective, i.e. bijective
as Tφ(x)(M) has finite dimension. We thus obtain

(4.17) DΓε(x)|Tφ(x)(M) = (Sε(x)|Tφ(x)(M))−1, ε ∈ [0, 1] , x ∈ U .

Since Q(p)T = Q(p) for all p ∈M, we obtain from (4.16) that

(4.18) DΓε(x)T ◦ Sε(x)T = Q(φ(x)), ε ∈ [0, 1] , x ∈ U .

We also have, in view of (4.15),

〈Sε(x)T ν, h〉 = 〈ν, Sε(x)h〉 = 0

for ε ∈ [0, 1], x ∈ U , h ∈ Tφ(x)(M), ν ∈ Tφ(x)
⊥(M). Thus

(4.19) Sε(x)T ν = 0, ε ∈ [0, 1] , x ∈ U , ν ∈ Tφ(x)
⊥(M).

We have the following technical result:

Lemma 4.4. For all ε0, ε ∈ [0, 1], x ∈ U and h ∈ R`:

(a) ‖Dφ(x)‖L(R`,R`) ≤ C1 with C1 = (1− q0)−1.
(b) ‖DΓε(x)‖L(R`,R`) ≤ C2 with C2 = (2(1− q0)−1 + 1).
(c) ‖Sε(x)‖L(R`,R`) ≤ C3 with C3 = (1 + q0)(1− q0)−1.
(d) C4 ≤ Jε(x) ≤ C5 with C4 = (k!Ck

3 )−1 and C5 = k!Ck
2 .

(e) C6‖Q(φ(x))h‖ ≤ ‖Sε(x)T h‖ ≤ C3‖Q(φ(x))h‖ with C6 = C−1
2 .

(f) ‖DΓε(x)−DΓε0(x)‖L(R`,R`) ≤ C7|ε− ε0| with C7 = (1 + (1− q0)−1).
(g) ‖Sε(x)− Sε0(x)‖L(R`,R`) ≤ C8|ε− ε0| with C8 = (1 + q0)q0(1− q0)−2.
(h) |det(DΓε(x)|Tφ(x)(M))− det(DΓε0(x)|Tφ(x)(M))| ≤ C9|ε− ε0| with C9 =

k!kCk−1
2 C7.

Proof. It follows from (4.9) and (4.7) that

‖Dφ(x)h‖ ≤ ‖h‖+ M‖Dφ(x)h‖ · ‖x− φ(x)‖ ≤ ‖h‖+ q0‖Dφ(x)h‖,

for x ∈ U , h ∈ R`. This proves part (a).
Now

(4.20) DΓε(x)h = Dφ(x)h + ε(h−Dφ(x)h), ε ∈ [0, 1] , x ∈ U , h ∈ R`

hence, by part (a), we obtain

‖DΓε(x)h‖ ≤ ‖Dφ(x)h‖+ ‖h‖+ ‖Dφ(x)h‖ ≤ (2(1− q0)−1 + 1)‖h‖

for x ∈ U and h ∈ R`. This implies part (b).
In view of (2.5), (4.7) and part (a) we have

‖Sε(x)h‖ ≤ ‖Dφ(Γε(x))h‖+ ‖(DQ(φ(x))(Dφ(Γε(x))h))(x− φ(x))‖
≤ ‖Dφ(Γε(x))h‖+ q0‖Dφ(Γε(x))h‖ ≤ (1 + q0)(1− q0)−1‖h‖

for x ∈ U and h ∈ R`. This implies part (c).
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Let x ∈ U . There is a q ∈ M with φ(x) ∈ Vq. Let hi = hq,i for i ∈
[1. . k]. For i, j ∈ [1. . k] let ai,j = 〈hi(φ(x)), DΓε(x)hj(φ(x))〉 and bi,j =
〈hi(φ(x)), DSε(x)hj(φ(x))〉. By parts (b) and (c), |ai,j | ≤ C2 and |bi,j | ≤ C3.

Denoting by Permk the set of all permutations σ of the set [1. . k] and writing
(−1)σ for the sign of σ, we have

det(DΓε(x)|Tφ(x)(M)) = det(ai,j)i,j =
∑

σ∈Permk

(−1)σ
k∏

i=1

ai,σ(i).

Thus

|det(DΓε(x)|Tφ(x)(M))| ≤ k!Ck
2 .

Analogously,

|det(DSε(x)|Tφ(x)(M))| ≤ k!Ck
3 .

These estimates together with (4.17) prove part (d).
Now (4.18) and part (b) yield

‖Q(φ(x))h‖ ≤ ‖DΓε(x)T ‖L(R`,R`)‖Sε(x)T h‖
= ‖DΓε(x)‖L(R`,R`)‖Sε(x)T h‖ ≤ C2‖Sε(x)T h‖.

Therefore we obtain

C6‖Q(φ(x))h‖ ≤ ‖Sε(x)T h‖

which proves the first estimate in part (e).
To prove the second estimate in part (e) notice that it follows from (4.19)

that Sε(x)T (P (φ(x))h) = 0. This implies that Sε(x)T h = Sε(x)T (Q(φ(x))h).
Therefore, by part (c),

‖Sε(x)T h‖ = ‖Sε(x)T (Q(φ(x))h)‖ ≤ ‖DSε(x)T ‖L(R`,R`)‖Q(φ(x))h‖
= ‖DSε(x)‖L(R`,R`)‖Q(φ(x))h‖ ≤ C3‖Q(φ(x))h‖.

This completes the proof of the second estimate in part (e).
An application of (4.20) yields

DΓε(x)h−DΓε0(x)h = (ε− ε0)(h−Dφ(x)h), ε, ε0 ∈ [0, 1] , x ∈ U , h ∈ R`.

Hence

‖DΓε(x)−DΓε0(x)‖L(R`,R`) ≤ (1 + (1− q0)−1)|ε− ε0|, ε, ε0 ∈ [0, 1] , x ∈ U .

This proves part (f).
We turn to the proof of part (g). Using formula (4.14) we obtain

Dφ(Γε(x))h−Dφ(Γε0(x))h =(DQ(φ(x))((ε− ε0)Dφ(Γε(x))h)

+ ε0(Dφ(Γε(x))h−Dφ(Γε0(x))h))(x− φ(x)),
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and so

‖Dφ(Γε(x))h−Dφ(Γε0(x))h‖
≤ q0

(
|ε− ε0|‖Dφ(Γε(x))h‖+ ε0‖Dφ(Γε(x))h−Dφ(Γε0(x))h‖

)
which implies that

(4.21) ‖Dφ(Γε(x))h−Dφ(Γε0(x))h‖ ≤ (|ε− ε0|q0(1− q0)−2)‖h‖

for ε, ε0 ∈ [0, 1], x ∈ U and h ∈ R`. Moreover, it follows from (2.5) that, for ε,
ε0 ∈ [0, 1], x ∈ U and h ∈ R`,

Sε(x)h− Sε0(x)h = (Dφ(Γε(x))h−Dφ(Γε0(x))h)

− (DQ(φ(x))(Dφ(Γε(x))h−Dφ(Γε0(x))h))(x− φ(x))

so (4.21) implies that

‖Sε(x)h− Sε0(x)h‖ ≤ (1 + q0)‖(Dφ(Γε(x))h−Dφ(Γε0(x))h)‖
≤ (1 + q0)

(
|ε− ε0|q0(1− q0)−2

)
‖h‖

for ε, ε0 ∈ [0, 1], x ∈ U and h ∈ R`. We finally obtain

‖Sε(x)h− Sε0(x)h‖L(R`,R`) ≤ (1 + q0)
(
|ε− ε0|q0(1− q0)−2

)
for ε, ε0 ∈ [0, 1] and x ∈ U . This implies part (g).

To complete the proof of the lemma note that if ai, ãi, i ∈ [1. . k] are real
numbers then

(4.22)

∣∣∣∣∣
k∏

i=1

ai −
k∏

i=1

ãi

∣∣∣∣∣ ≤ k

(
max

i∈[1..k]
max (|ai|, |ãi|)

)k−1

max
i∈[1..k]

|ai − ãi|.

This is easily proved by induction on k.
Let x ∈ U . There is a q ∈ M with φ(x) ∈ Vq. Let hi = hq,i for i ∈

[1. . k]. For i, j ∈ [1. . k] let ai,j = 〈hi(φ(x)), DΓε(x)hj(φ(x))〉 and ãi,j =
〈hi(φ(x)), DΓε0(x)hj(φ(x))〉. By part (b) and part (f), |ai,j | ≤ (2(1− q0)−1 +1),
|ãi,j | ≤ (2(1− q0)−1 + 1) and |ai,j − ãi,j | ≤ (1 + (1− q0)−1)|ε− ε0|. Now

det(DΓε(x)|Tφ(x)(M))− det(DΓε0(x)|Tφ(x)(M))

= det(ai,j)i,j − det(ãi,j)i,j =
∑

σ∈Permk

(−1)σ

(
k∏

i=1

ai,σ(i) −
k∏

i=1

ãi,σ(i)

)
,

hence, an application of (4.22) and the above estimates yield

|det(DΓε(x)|Tφ(x)(M)) − det(DΓε0(x)|Tφ(x)(M))|

≤
∑

σ∈Permk

∣∣∣∣∣
k∏

i=1

ai,σ(i) −
k∏

i=1

ãi,σ(i)

∣∣∣∣∣
≤ k!k(2(1− q0)−1 + 1)k−1(1 + (1− q0)−1)|ε− ε0|.
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This proves part (h). �

Recall that for ε ∈ ]0, 1], the inverse Γ−1
ε :U → U of Γε is given by y 7→

φ(y) + ε−1(y − φ(y)). Therefore, it follows from (2.20) that

(4.23) ‖D(Γ−1
ε )(y)‖ ≤ C1 + ε−1 + ε−1C1, ε ∈ ]0, 1] , y ∈ U ,

where the constant C1 ∈ ]0,∞[ is as in Lemma 4.4 part (a). Since Lε(x) =
D(Γ−1

ε )(Γε(x)) = (DΓε(x))−1, x ∈ U , we see from (4.16) that

(4.24) Q(φ(x))(Lε(x)h) = Sε(x)h, ε ∈ ]0, 1] , x ∈ U , h ∈ R`.

Moreover, (2.20) shows that

(4.25) P (φ(x))(Lε(x)h) = ε−1P (φ(x))h, ε ∈ ]0, 1] , x ∈ U , h ∈ R`.

Therefore, (4.24) and (4.25) imply that

(4.26) Lε(x)h = Sε(x)h + ε−1P (φ(x))h, ε ∈ ]0, 1] , x ∈ U , h ∈ R`.

Proof of Proposition 2.7. This follows from Lemma 4.4. �

Proof of Proposition 2.8. This follows from Lemma 4.4. �

Proof of Proposition 2.9. It follows from Lemma 4.4, the estimate (4.23)
and well known results from Sobolew space theory that, for ε ∈ ]0, 1], the as-
signment u 7→ ũ = u ◦ ((Γε)|Ω) restricts to linear isomorphisms L2(Ωε) → L2(Ω)
and H1(Ωε) → H1(Ω). It is easily checked that ∇u(Γε(x)) = (Lε(x))T (∇ũ(x))
for all u ∈ H1(Ωε) and almost all x ∈ Ω. Therefore, using Lemma 4.4 and the
change-of-variables formula we obtain formulas (2.21) and (2.22). �

Proof of Theorem 2.11. If the theorem is not true, then there exist a β ∈
]0,∞[, a sequence (εn)n in ]0, 1] converging to zero, w ∈ H0 and a sequence (wn)n

in H0 with |wn − w|H0 → 0 as n →∞ and such that

(4.27) ‖un − u‖εn ≥ β, n ∈ N,

where u = (A0 + I0)−1w and un = (Aεn
+ Iεn

)−1wn for n ∈ N.
Now, for n ∈ N, (2.14) implies

‖un‖2εn
= 〈〈un, un〉〉εn

= 〈wn, un〉εn

≤ |wn|εn
|un|εn

≤ |wn|εn
‖un‖εn

≤ C|wn|0‖un‖εn

so the boundedness of (|wn|0)n implies that

(4.28) (‖un‖εn)n is a bounded sequence.

Therefore, in view of (2.13) we see that (|un|H1(Ω))n bounded. Taking sub-
sequences if necessary, we may therefore assume that (un)n is weakly con-
vergent in (H1(Ω), | · |H1(Ω)) to some ũ ∈ H1(Ω). Now the linear operator
Φ: H1(Ω) 7→ L2(Ω, R`), h 7→ h̃, where h̃(x) = P (φ(x))∇h(x), x ∈ Ω, is strongly,
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hence weakly continuous, so (Φ(un))n weakly converges to Φ(ũ) in L2(Ω, R`). In
particular,

|Φ(ũ)|L2(Ω,R`) ≤ lim inf
n→∞

|Φ(un)|L2(Ω,R`).

Now (4.28) and the definition of aε together with Lemma 4.4 implies that
|Φ(un)|L2(Ω,R`) → 0 as n → ∞, so that Φ(ũ) = 0 in L2(Ω, R`), i.e. ũ ∈ H1

s (Ω).
We show that ũ = u. To this end it is sufficient to show that

(4.29) 〈〈ũ, v〉〉0 = 〈〈u, v〉〉0, for every v ∈ H1
s (Ω).

Let v ∈ H1
s (Ω) be arbitrary. Then

〈〈un,v〉〉εn
− 〈〈ũ, v〉〉0

=
∫

Ω

(
〈∇un(x), Jεn

(x)Sεn
(x)Sεn

(x)T∇v(x)〉+ un(x)Jεn
(x)v(x)

)
dx

−
∫

Ω

(
〈∇ũ(x), J0(x)S0(x)S0(x)T∇v(x)〉+ ũ(x)J0(x)v(x)

)
dx

so

|〈〈un, v〉〉εn − 〈〈ũ, v〉〉0| ≤ |∇un|L2(Ω,R`)|JεnSεn( · ) ◦ Sεn( · )T

− J0S0( · ) ◦ S0( · )T |L∞(Ω,L(R`,R`))|∇v|L2(Ω)

+ |un|L2(Ω)|Jεn − J0|L∞(Ω)|v|L2(Ω)

+
∣∣∣∣ ∫

Ω

(〈∇un(x), J0(x)S0(x)S0(x)T∇v(x)〉+ un(x)J0(x)v(x)) dx

−
∫

Ω

(〈∇ũ(x), J0(x)S0(x)S0(x)T∇v(x)〉+ ũ(x)J0(x)v(x)) dx

∣∣∣∣.
By Lemma 4.4,

(4.30)
|Jεn

Sεn
( · )◦Sεn

( · )T −J0S0(·)◦S0( · )T |L∞(Ω,L(R`,R`)) → 0, as n →∞
and |Jεn

− J0|L∞(Ω) → 0, as n →∞.

Since the linear maps H1(Ω) → L2(Ω, R`), u 7→ ∇u and H1(Ω) → L2(Ω), u 7→ u

are strongly, hence weakly continuous, the above estimate shows that

(4.31) for every v ∈ H1
s (Ω), 〈〈un, v〉〉εn

→ 〈〈ũ, v〉〉0 as n →∞.

The same argument, replacing ‘un’ by ‘ũ’, shows that

(4.32) for every v ∈ H1
s (Ω), 〈〈ũ, v〉〉εn → 〈〈ũ, v〉〉0 as n →∞.

Now, again for v ∈ H1
s (Ω),

〈〈un, v〉〉εn
− 〈〈u, v〉〉0 = 〈wn, v〉εn

− 〈w, v〉0
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and

|〈wn,v〉εn
− 〈w, v〉0|

≤ |Jεn
− J0|L∞(Ω)|wn|L2(Ω)|v|L2(Ω) + |J0|L∞(Ω)|wn − w|L2(Ω)|v|L2(Ω)

≤ |Jεn − J0|L∞(Ω)

√
k2|wn|0|v|L2(Ω) + |J0|L∞(Ω)

√
k2|wn − w|0|v|L2(Ω) → 0

as n →∞, so

(4.33) for every v ∈ H1
s (Ω), 〈〈un, v〉〉εn

→ 〈〈u, v〉〉0 as n →∞.

Note that (4.31) and (4.33) prove (4.29) and we obtain that ũ = u. Now,
using (4.31) and (4.32) we have

(4.34) ‖un − u‖2εn
− 〈〈un, un〉〉εn

= −2〈〈un, u〉〉εn
+ 〈〈u, u〉〉εn

→ −〈〈u, u〉〉0

as n →∞. Now

〈〈un, un〉〉εn − 〈〈u, u〉〉0 = 〈wn, un〉εn − 〈w, u〉0

and, using the fact that (un)n weakly converges in L2(Ω) to u, we obtain

|〈wn, un〉εn
− 〈w, u〉0| ≤ |wn − w|εn

|un|εn
+ |〈w, un〉εn

− 〈w, u〉0|
≤C|wn − w|0‖un‖εn

+ |Jεn
− J0|L∞(Ω)|w|L2(Ω)|un|L2(Ω)

+
∣∣∣∣ ∫

Ω

un(x)J0w(x) dx−
∫

Ω

u(x)J0w(x) dx

∣∣∣∣→ 0

as n →∞. Altogether we obtain that ‖un−u‖εn
→ 0 as n →∞, a contradiction

to (4.27). The theorem is proved. �

The statements (2.12), (2.23), (2.18), (2.19), (2.10), (2.11), (2.13), (2.14) and
Theorem 2.11 now imply the following result.

Corollary 4.5. The family (Hε, 〈 · , · 〉Hε ,Aε)ε∈[0,1] defined in Section 2
satisfies assumption (Res). Consequently, the assertions of Theorem 3.4 hold in
this case.
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