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SOLUTIONS TO SOME SINGULAR
NONLINEAR BOUNDARY VALUE PROBLEMS

Beata Medak — Alexey A. Tret’yakov — Henryk Żołądek

This article is devoted to the memory of Jerry Marsden

Abstract. We apply the so-called p-regularity theory to prove the exis-

tence of solutions to two nonlinear boundary value problems: an equation
of rod bending and some nonlinear Laplace equation.

1. Introduction

The p-regularity theory is an effective apparatus to study many nonlinear
mathematical, physical and numerical problems (see [3], [4]). Usually such
a problem is given as a nonlinear equation

F (x) = 0

where F is a sufficiently smooth map between Banach spaces X and Y . The
above equation describes a regular submanifold of X near a regular point x∗, i.e.
when the operator F ′(x∗) is surjective.
The p-regularity theory [3]–[5], [7] deals with the irregular cases. The main

idea of this construction is to replace the operator F ′(x∗) (which is not surjective)
with another linear operator which is surjective. The latter operator, denoted
by Ψp(x∗, h), is related with the pth order of the Taylor expansion of F at x∗.
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Here the vector h is taken from the tangent cone to the set {F (x) = 0} at x∗

and p is taken so large that the operator Ψp(x∗, h) is really surjective (this is the
so-called p-regularity condition). In the next section we recall the main concepts
of the p-regularity theory.

In the third section we apply the p-regularity theory to the following boun-
dary value problems:

• the equation of rod bending

(1.1)
d2u

dx2
+ (1 + ε)(u+ u2) = 0, u(0) = u(π) = 0;

• the nonlinear Laplace equation

(1.2) ∆u+ (10 + ε)φ(u) = 0, u|∂Ω = 0

where Ω = [0, π]× [0, π], ε is a small parameter and φ is some function
of one variable).

These problems are related respectively with the string oscillations and the
membrane oscillations (see [2]). Analogous problems were studied by M. Buch-
ner, J. Marsden and S. Schechter [1]; they used methods of the bifurcation theory
(the Lyapunov–Schmidt reduction) and results obtained are similar to ours.

2. Elements of the p-regularity theory

We begin with some notations. X and Y will denote fixed Banach spaces. If

B:X × . . .×X = Xr 7→ Y

is a symmetric r-linear continuous operator then we consider its two restrictions:

(2.1) B ◦∆r:X 7→ Y, B ◦ Γr:X ×X 7→ Y,

where ∆r:X 7→ Xr, ∆r(x) = (x, . . . , x), is the diagonal embedding and Γr:X ×
X 7→ Xr is defined as Γ1(h, g) = g and Γr(h, z) = (h, . . . , h, g) for r ≥ 2. Thus

(2.2) B ◦∆r(h) = B(h, . . . , h), B ◦ Γr(h, g) = B(h, . . . , h, g).

The map B ◦∆r is homogeneous polynomial of degree r and the map B ◦ Γr is
homogeneous polynomial of degree r − 1 with respect to the first argument and
is linear with respect to the second argument. Note also that B ◦ Γr equals the
derivative of B ◦∆r (up to a factor).
Let F :U 7→ Y be a p times Frechet differentiable map from an open subset

U ⊂ X. Let x∗ ∈ U .
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Definition 2.1. We say that the map F is regular at x∗ if ImF ′(x∗) = Y ;
otherwise, we say that F is degenerate at x∗ (1). We say that F is completely
degenerate at x∗ up to order p if F (r)(x∗) = 0 for r = 1, . . . , p− 1.

By the classical Lyusternik theorem the solution set

(2.3) M =M(x∗) = {F (x) = F (x∗)}

is a submanifold near x∗ if F is regular at x∗. Moreover, the tangent space

(2.4) Tx∗M = kerF ′(x∗).

Since the point x∗ is fixed below the derivatives F (j)(x∗) will be denoted simply
by F (j).
Let us pass to the definition of p-regularity. Assume that F is degenerate

at x∗. Therefore
Y1 = cl ImF ′ 6= Y

(where cl denotes the closure and the derivative is taken at x∗).
We define two series Z2, Z3, . . . and Y2, Y3, . . . of subspaces of Y as follows.

We put Z2 as some closed subspace complementary to Y1. Let P2:Y 7→ Z2 be
the projection to Z2 along Y1. We then put

Y2 = cl span ImP2F (2) ◦∆2.

Next, we define Z3 as a closed complementary to Y1 ⊕ Y2 with a correspond-
ing projection P3 onto Z3 and Y3 = cl span ImP3F (3) ◦ ∆3. Further subspaces
are defined along this scheme: Zi is complementary to Y1 ⊕ . . . ⊕ Yi−1 with
corresponding projection Pi and Yi = cl span ImPiF (i) ◦∆i.
Assume that this construction ends-up at some moment, thus

(2.5) Y = Y1 ⊕ . . .⊕ Yp

for some finite p. Denote also Qj :Y 7→ Yj the projections corresponding to the
above decomposition. Then we have the maps

fj :U 7→ Yj , fj(x) = QjF (x).

Definition 2.2. For a fixed h ∈ X the linear operator

(2.6) Ψp(h) = Ψp(x∗, h):X 7→ X, Ψp(h)g =
p∑
j=1

f
(j)
j ◦ Γj(h, g),

(see (2.1)) is called the p-factor operator. We say that F is p-regular at x∗ along
vector h if ImΨp(h) = Y

(1) Usually, e.g. in the finite dimensional case, the notion of critical point x∗ of F
is used. It is such a point that F ′(x∗) is neither injective nor surjective; rank F ′(x∗) <

min(dim X, dim Y ) if dim X, dim Y <∞. Definition 2.1 is specific for this paper and is slightly
different.
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Using the decomposition (2.5) the operator (2.6) can be written as follows

g 7→ (Q1F ′g,Q2F (2) ◦ Γ2(h, g), . . . , QpF (p) ◦ Γp(h, g)).

Below the vector h is chosen from the following generalization of the kernel
of F ′(x∗).

Definition 2.3. The p-kernel of Ψp is the set

H(x∗) = {h : Ψp(x∗, h)h = 0}.

In other words, it is the intersection

H(x∗) =
p⋂
j=1

{f (j)j ◦∆j(h) = 0}

of p cones corresponding to the zero loci of the homogeneous polynomials h 7→
f
(j)
j ◦∆j(h). In the completely degenerate case we have

H(x∗) = {F (p) ◦∆p(h) = 0}.

Definition 2.4. We say that F is p-regular at x∗ if either H(x∗) = 0 or F
is p-regular at x∗ along every h ∈ H(x∗) \ 0.

We can regard the p-regularity as the usual regularity of the map h 7→ Ψp(h)h
along the punctured p-kernel; thus kerpΨp \ 0 is a smooth (and homogeneous)
submanifold of X.
The following generalization of the Lyusternik theorem holds.

Theorem 2.5 ([4], [5]). If F is p-regular at x∗ then the tangent cone Cx∗M
to the level set (2.2) equals H(x∗). In particular, the solution set M is either re-
duced to {x∗} or is higher dimensional and each component of Cx∗M corresponds
to a local branch of M of the same dimension.

In the sequel we shall use the following standard results from analysis.

Remark 2.6. A linear bounded operator A:X 7→ Y is called Fredholm if
its kernel kerA and cokernel coKerA = Y/ImA have finite dimension. Recall
that in such a case ImA is closed and equals to the annihilator of kerA∗, i.e.
ImA = (kerA∗)>.

In this paper we consider second order differential operators acting on func-
tions on a domain Ω ⊂ Rn. There we have the scalar product

〈u, v〉 =
∫
Ω
u(x)v(x)dnx.

The operators considered are symmetric, i.e. 〈Au, v〉 = 〈u,Av〉 for u, v ∈ X. The
standard theory (see [6]) says that in this case we have the decomposition

Y = ImA⊕ kerA and dim kerA = dim coKerA.
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Remark 2.7. Let A and B be bounded operators between Banach spaces
X and Y . Let Y = Y1⊕Y2 where Y1 = ImA. Let also Q2 be the projection onto
Y2 along Y1. Then the operator A+Q2B is surjective if and only if the operator
Q2B|kerA: kerA 7→ Y2 is surjective.

3. Applications

3.1. The equation of rod bending. The differential equation (1.1) can
be written in the form

F (u, ε) :=
d2u

dx2
+ (1 + ε)(u+ u2) = 0,

where F acts between the Banach spaces

X = C20 ([0, π])× R and Y = C([0, π]),

where Cr0(Ω) = C
r(Ω) ∩ {u|∂Ω = 0}. Of course, (u, ε) = (0, 0) is a solution to

this equation. Our aim is to solve this equation for small and nonzero ε.
The first derivative of F at (0, 0) is

(3.1) F ′ = (F ′u, F
′
ε) =
(
d2

dx2
+ 1, 0

)
and the second derivative at (0, 0) is

F ′′ =
(
F ′′uu F

′′
uε

F ′′εu F ′′εε

)
=
(
2 1
1 0

)
,

thus

(3.2) F ′′(h, g) = 2hu(x)gu(x) + hεgu(x) + gεhu(x)

for h = (hu(x), hε) and g = (gu(x), gε) from X (which consists of functions and
constants).
We easily find that

(3.3) kerF ′ = R · sinx× R.

The image of F ′ consists of those function v(x) for which the equation

d2u/dx2 + u = v

admits a solution u(x) with the Dirichlet boundary condition. The general so-
lution to the latter equation (which we find using the variation of constants
method) takes the form

u(x) = C1 cosx+ C2 sinx− cosx
∫ x
0
v(s) sin s ds+ sinx

∫ x
0
v(s) cos s ds
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and the boundary condition implies C1 = 0 and the following:

(3.4) Y1 = ImF ′ =
{
v : 〈v, sinx〉 =

∫ π
0
v(s) sinx dx = 0

}
.

Of course, the function v(x) = sinx does not belong to ImF ′(0, 0) = ImF ′ which
means that the point (0, 0) ∈ X is irregular for F . We choose

(3.5) Z2 = R · sinx ⊂ Y,

which satisfies Y = Y1 ⊕ Z2 (this agrees with Remark 2.6). The projection
operator P2 to Z2 along Y1 can be described as

(3.6) P2v =
2
π
sinx · 〈v, sinx〉.

Note that
F ′′ ◦∆2(hu, hε) = 2h2u(x) + 2hεhu(x)

(see (3.2)), hence the subspace Y2 =span ImP2F ′′ ◦∆2 equals Z2. So we have
the expansion (2.5) with p = 2, i.e. Y = Y1 ⊕ Y2; we recall the corresponding
projectors Q1,2:Y 7→ Y1,2 where Q2 = P2 is defined above.
Let us pass to the description if the 2-factor operator and the examination

of the 2-regularity condition. For h = (hu(x), hε) and g = (gu(x), gε) we have

Ψ2(h)g = Q1F ′g +Q2F ′′ ◦ Γ2(h, g)
= {d2gu(x)/dx2 + gu(x)}+ P2{2hu(x)gu(x) + hεgu(x) + gεhu(x)}.

The determination of the 2-kernel of Ψ2, i.e. {Ψ2(h)h = 0}, runs as follows:

hu = C sinx,

〈sinx, h2u(x) + hεhu(x)〉 = C2
∫ π
0
sin3 x+ hεC

∫ π
0
sin2 x = 0.

Calculation of the above integrals gives two possibilities (which correspond to
two 1−dimensional components of ker2Ψ2):

1. C = 0, i.e. hu(x) ≡ 0 and hε arbitrary;
2. hε = −8C/(3π).
Recall that the 2-regularity means that the linear operator Ψ2(h) is surjective

for any h ∈ ker2Ψ2. In the both cases of the choice of h the operator Ψ2(h) has
the form A + P2B, where Y1 = ImA is complementary to Y2 = ImP2. By
Remark 2.7 it is enough to show that Im (P2B|kerA) = Y2, i.e. that the integral

〈sinx, 2hu(x)gu(x) + hεgu(x) + gεhu(x)〉

is nonzero for gu = sinx and typical constant gε.
In the case 1 the problem reduces to the nonvanishing of the integral

〈sinx, gu〉 =
∫ π
0
sin2 x.
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But this case is non-interesting, because it corresponds to the obvious 1-dimen-
sional family of solutions to equation (1.1) of the form

u(x) ≡ 0, ε – arbitrary.

In the case 2 we reduce the problem to the case

hu = gu = sinx, hε = −8/3π, gε – arbitrary

and to non-vanishing of the integral

(3.7)
〈
sinx, 2 sin2 x+

(
gε −

8
3π

)
sinx
〉
.

Of course, for a typical constant gε the latter expression is nonzero.
Now Theorem 2.5 applied to the second component of the tangent cone to

M implies the following.

Theorem 3.1. For sufficiently small |ε| the rod bending equation (1.1) has
a unique nonzero solution u(x, ε) such that

u(x, ε) =
3π
8
ε sinx+ o(ε).

3.2. The nonlinear membrane equation. Like in the rod bending case
equation (1.2) takes the form:

F (u, ε) := ∆u+ (10 + ε)φ(u) = 0,

where ∆ = ∂2/∂x21 + ∂
2/∂x22 is the Laplacian, ε is a small constant and the

function φ satisfies the following properties:

(3.8) φ(0) = 0, φ′(0) = 1, 10φ′′(0) = a 6= 0.

Above the nonlinear operator F acts between the Banach spaces

X = C20 (Ω)× R, Ω = [0, π]× [0, π] and Y = C(Ω).

Of course, (u, ε) = (0, 0) is a solution.
Moreover, we have the following 1-parameter family of solutions:

(3.9) u(x) ≡ 0, ε – arbitrary.

The first and the second derivatives of F at (0, 0) are following:

(3.10) F ′ = (F ′u, F
′
ε) = (∆ + 10, 0),

(3.11) F ′′ =
(
a 1
1 0

)
.
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We see that kerF ′ consists of pairs h = (hu(x), hε) such that hε ∈ R and hu(x)
is an eigenfunction of the Laplacian in Ω with the Dirichlet boundary conditions
with the eigenvalue −10 = −1− 32. Therefore

(3.12) kerF ′ = {R · u1(x) + R · u2(x)} × R,

where

(3.13) u1 =
2
π
sinx1 · sin(3x2), u2 =

2
π
sinx2 · sin(3x1)

are orthonormal with respect to the scalar product

〈u, v〉 =
∫
Ω
u(x)v(x) d2x.

The operator F ′u = ∆ + 10 is symmetric and Fredholm. From the general
theory (see Remark 2.6) it follows that dim kerF ′u = dim ker(F

′
u)
∗ < ∞ and

that
Y = ImF ′u ⊕ kerF ′u = Y1 ⊕ Y2,

where the latter decomposition is orthogonal with respect to the above scalar
product. As usually, we denote by Q1,2 the projectors corresponding to the
above decomposition. We have

(3.14) Q2v = 〈v, u1〉u1 + 〈v, u2〉u2.

Of course, the above means that the point (u, ε) = (0, 0) is irregular for F .
Now we pass to application of the 2-regularity theory. By (3.11) we have

F ′′(h, g) = ahu(x)gu(x) + hεgu(x) + gεhu(x)

where h = (hu(x), hε) and g = (gu(x), gε) are vectors from X = C20 (Ω) × R.
Therefore we get

(3.15) Ψ2(h)g = {∆+ 10}gu +Q2{ahu(x)gu(x) + hεgu(x) + gεhu(x)},

hence ker2Ψ2 consists of

h = (hu, hε) = (H1u1(x) +H2u2(x), hε)

such that

(3.16) 〈uj , ah2u(x) + 2hεhu(x)〉 = 0, j = 1, 2.

Let

(3.17) α =
∫
Ω
u31,2 =

16
27
·
(
2
π

)3
, β =

∫
Ω
u21u2 =

∫
Ω
u1u

2
2 = −

48
175
·
(
2
π

)3
(as one can calculate). Then system (3.16) takes the form:

a(αH21 + 2βH1H2 + βH
2
2 ) + 2hεH1 = 0,(3.18)

a(βH21 + 2βH1H2 + αH
2
2 ) + 2hεH2 = 0.(3.19)
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Using the matrices H = (H1,H2)> and

M(H) = a
(
αH1 + βH2 βH1 + βH2
βH1 + βH2 βH1 + αH2

)
we rewrite it in the following form:

(3.20) (M(H) + 2hε)H = 0.

On the other hand, the Y2- part (where Y2 ' R2) of the 2-factor operator
Ψ2(h) takes the form:

(3.21) (G, gε) 7→ (M(H) + hε)G+ gεH = [M(H) + hε,H](G, gε)>,

where g = (G1u1(x) + G2u2(x), gε) and G = (G1, G2)>; accordingly with Re-
mark 2.7 g is taken from kerF ′.
Equation (3.20) has two types of possible solutions:

1. H = 0, hε 6= 0;
2. det(M(H) + 2hε) = 0, H ∈ ker(M(H) + 2hε) \ 0.

In the case 1 the operator (3.21) is obviously surjective; but this case corre-
sponds to the tangent cone to the solution (3.9).
In the case 2 we multiply the equations (3.18)–(3.19) by H2 and H1, respec-

tively. Then we take the difference which implies the following equation:

(H2−H1)(βH21+(3β−α)H1H2+βH22 ) = β(H2−H1)(H1+κH2)(H1+H2/κ) = 0

where

(3.22) κ =
209
81
+
16
81

√
145 ≈ 4.9588

is the greater root of the equation βκ2−(3β−α)κ+β = 0, i.e. κ+1/κ = 418/81.
Thus we have three possibilities:

(3.23)

H2 = H1, hε = −(a/2)(α+ 3β)H1,
H2 = −κH1, hε = −(a/2)(α− β)(κ− 1)H1,
H1 = −κH2, hε = −(a/2)(α− β)(κ− 1)H2.

The 2-regularity condition along any of the latter solution means that the linear
operators (3.21) is surjective. Of course, this is equivalent to the property that
the 2×3 matrix

(3.24) [M(H) + hε,H]

has maximal rank (equal 2) when (H1,H2) satisfies one of the conditions (3.23).
But a sufficient condition for this is that

(3.25) det(M(H) + hε) 6= 0;
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(we recall that det(M(H) + 2hε) = 0 in the case 2). Since det(M + λ) =
(λ+trM/2)2+detM−tr2M/4 we have det(M(H)+2hε)−det(M(H)+hε) =
hε(3hε + trM). So, if (3.25) does not hold then it must be

hε = −
trM
3
= −a
3
(α+ β)(H1 +H2).

It is easy that this contradicts (3.23) for nonzero H.
Like in the previous section we can conclude this section with the following

Theorem 3.2. For sufficiently small |ε| the membrane equation (1.2) has
three nonzero solution u(x, ε) such that

u(x, ε) =
−2/a
α+ 3β

ε · {u1(x) + u2(x)}+ o(ε),

u(x, ε) =
−2/a

(α− β)(κ− 1)
ε · {u1(x)− κu2(x)}+ o(ε),

u(x, ε),=
−2/a

(α− β)(κ− 1)
ε · {u2(x)− κu1(x)}+ o(ε),

where a, α, β, κ, u1,2(x) are given in equations (3.8), (3.16), (3.17) and (3.22).

3.3. Comparison with the bifurcation theory approach. The whole
our paper was inspired by the paper [1]. There the authors consider the bifur-
cation problem for a map of the form

F (u, λ) = Lu+ (λ− λ0)u+R(u),

where L is an elliptic selfadjoint operator, with a domain X ⊂ Y being a suitable
Sobolev space, R:X 7→ Y is a smooth map with R(0) = 0,R′(0) = 0 and λ0 is an
eigenvalue of L of multiplicity n ≥ 1. They use the Lyapunov–Schmidt procedure
to arrive at a system of finite dimensional algebraic equations. In our examples
we arrive at a similar system of equations, but in somewhat different way.
Our 2-regularity condition corresponds to the following regularity hypothesis

in [1] (denoted by (R)):

Let Cjki = 〈R′′(0)(uj , uk), ui〉, where {uj}j=1,... ,n is an orthogonal basis of
ker(L− λ0). Then for each nonzero (x, λ) ∈ Rn × R satisfying

2λxi +
∑
j,k

Cjki xjxk = 0, i = 1, . . . , n,

the n× (n+ 1) matrix
[∑
j

Cjki xk + λδ
k
i , xi

]
has maximal rank.

In the above membrane case Cjki = a 〈ujuk, ui〉 = aα or = aβ, xi correspond
to Hi and λ corresponds to hε. Moreover, in the case of equation (1.2) the
authors of [1] do not get as precise leading terms as in Theorem 3.2.
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