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A CLASS OF POSITIVE LINEAR OPERATORS
AND APPLICATIONS

TO NONLINEAR BOUNDARY VALUE PROBLEMS

Jeffrey R.L. Webb

Abstract. We discuss the class of u0-positive linear operators relative

to two cones and use a comparison theorem for this class to give some

short proofs of new fixed point index results for some nonlinear operators
that arise from boundary value problems. In particular, for some types of

boundary conditions, especially nonlocal ones, we obtain a new existence

result for multiple positive solutions under conditions which depend solely
on the positive eigenvalue of a linear operator. We also treat some problems

where the nonlinearity f(t, u) is singular at u = 0.

1. Introduction

In a recent paper [35] we introduced a class of positive linear operators we
called u0-positive relative to two cones K0 ⊂ K1. This is a modification of
a concept due to Krasnosel’skĭı [12], [14]. The motivation was the example of
linear operators that arise when studying nonlinear boundary value problems.
Using the new concept enabled us to prove, in a simple manner, a new fixed
point index result which has applications to nonlinear boundary value problems.
In the present paper we continue this study.
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We extend from [35] a comparison result for the eigenvalues of these op-
erators. We also give a new proof of a result on the existence of a positive
eigenvalue with a positive eigenfunction under an hypothesis that is sharp. This
result is known [5], but our proof is shorter than the previous one. We also prove
uniqueness of the eigenvalue when the operator satisfies the u0-positivity notion.

We then discuss the linear operators that arise in the space C[0, 1] when
studying boundary value problems (BVPs) via the Hammerstein integral equa-
tion that involves the Green’s function of the BVP. We discuss when the related
linear operator L is u0-positive relative to two cones. We show how the principal
eigenvalue (the spectral radius r(L)) can be estimated from above and below
and give examples to illustrate the simple use of the result.

Much of our work concentrates on the case when the Green’s function G(t, s)
of the problem satisfies the strong positivity condition that there exist a non-
negative measurable function Φ with Φ(s) > 0 for almost all s ∈ (0, 1), and
a constant c0 > 0 such that

c0Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 ≤ t, s ≤ 1.

This is satisfied by many BVPs, for example, the second order problem

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

with boundary conditions (BCs)

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,

when αγ + αδ + βγ > 0 provided that β > 0, δ > 0. The condition does not
hold if one BC is u(0) = 0 or u(1) = 0 but the condition is also satisfied by some
nonlocal BCs, for example, the ‘three-point’ BC u′(0) = 0, u(1) = βu(η), with
0 < β < 1 or the problem with BCs u(0) = αu(ξ), u(1) = βu(η) (with α > 0,
β > 0 and suitably bounded above). The condition can also be satisfied by higher
order problems. Some other second order equations and BCs are discussed in [8],
[9], [16].

Under this strong positivity condition on G, with a very simple proof, using
the u0-positive concept, we prove some new fixed point index results. These are
then used to prove a new result on the existence of multiple positive solutions
when the nonlinearity has multiple ‘crossings of the eigenvalue’. This is appar-
ently the first time that results on existence of multiple solutions that only use
‘crossing of the eigenvalue’ have been given. This result applies to many BVPs
of local and non local type. In particular, we give simple examples that fit the
new theory but cannot be handled by previous theory that uses the tool of fixed
point index or equivalent methods.

When G satisfies the strong positivity condition, we also treat singular prob-
lems, that is problems where the nonlinearity f(t, u) is singular in u at u = 0.



Positive Linear Operators and Nonlinear BVPs 223

We obtain a new result on existence of multiple positive solutions with a rather
simple proof.

2. Eigenvalues of positive linear operators

A subset K of a Banach space X is called a cone if K is closed and x, y ∈ K

and α ≥ 0 imply that x + y ∈ K and αx ∈ K, and K ∩ (−K) = {0}. We always
suppose that K 6= {0}. A cone defines a partial order by x �K y ⇔ y − x ∈ K.
A cone is said to be reproducing if X = K −K and to be total if X = K −K.

In the space C[0, 1] of real-valued continuous functions on [0, 1], endowed
with the usual supremum norm, ‖u‖ := sup{|u(t)| : t ∈ [0, 1]}, the cone of non-
negative functions P := {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]} is well known (and
easily shown) to be reproducing.

A useful concept due to Krasnosel’skĭı, [12], [14] is that of a u0-positive
linear operator on a cone. A bounded linear operator L:X → X is said to be
u0-positive on a cone K, [11], [14], if there exists u0 ∈ K \ {0}, such that for
every u ∈ K \ {0} there are constants k2(u) ≥ k1(u) > 0 such that

(2.1) k1(u)u0 �K Lu �K k2(u)u0.

In a recent paper [35] we have given a modification of this definition. We
suppose that we have two cones in X, K0 ⊂ K1 and we let � denote the partial
order defined by the larger cone K1, that is, x � y ⇔ y − x ∈ K1. We say that
L is positive if L(K1) ⊂ K1,

Our modified definition reads as follows.

Definition 2.1. We say that a positive bounded linear operator L:X → X

is u0-positive relative to the cones (K0,K1), if there exists u0 ∈ K1 \ {0}, such
that for every u ∈ K0 \ {0} there are constants k2(u) ≥ k1(u) > 0 such that

k1(u)u0 � Lu � k2(u)u0.

This is stronger than requiring that L is positive and is clearly satisfied if L

is u0-positive on K1 according to (2.1).
The idea behind our modified definition is that we wish to exploit the extra

properties satisfied by elements of K0 but only use the weaker K1-ordering. Two
cones are used, with the same motivation, in some work of J. Mallet–Paret and
R.D. Nussbaum [20], [21], where there is a deep discussion of some spectral
properties of nonlinear maps that are homogeneous of degree one, which, of
course, includes linear operators.

In the recent paper [35] we proved the following comparison theorem which
is similar to one of M.S. Keener and C.C. Travis [11], which was itself a sharp-
ening of some results of Krasnosel’skĭı [12, § 2.5.5]. Some applications of the
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M.S. Keener and C.C. Travis theorem to some nonlinear problems were given
in [33], [34].

Theorem 2.2 ([35]). Let K0 ⊂ K1 be cones in a Banach space X, and let �
denote the partial order of K1. Suppose that L1, L2 are bounded linear operators
and that at least one is u0-positive relative to (K0,K1). If there exist

(2.2)
u1 ∈ K0 \ {0}, λ1 > 0, such that λ1u1 � L1u1,

and u2 ∈ K0 \ {0}, λ2 > 0, such that λ2u2 � L2u2,

and L1uj � L2uj for j = 1, 2, then λ1 ≤ λ2. If, in addition, Lj(K1 \ {0}) ⊂
K0 \ {0} and if λ1 = λ2 in (2.2), then it follows that u1 is a (positive) scalar
multiple of u2.

This is typically applied when one of uj is an eigenfunction of Lj and λj is
the corresponding eigenvalue.

We begin by proving an extension of this result. We first observe that if a lin-
ear operator L is u0-positive relative to (K0,K1) then, with an extra condition,
all positive powers of L are also u0-positive relative to (K0,K1). For example,
if also u0 ∈ K0, and for u ∈ K0 \ {0}, we have k1(u)u0 � Lu � k2(u)u0, then
k1(u0)u0 � Lu0 � k2(u0)u0. Thus, as L:K1 → K1 we have

k1(u) k1(u0)u0 � L(k1(u)u0) � L(L(u)) � L(k2(u)u0) = k2(u) k2(u0)u0.

This proves that L2 is u0-positive relative to (K0,K1) and this argument extends
to all positive powers.

Alternatively, if L maps K0 \{0} into K0 \{0} then for u ∈ K0 \{0}, we also
have Lu ∈ K0 \ {0} and L2 is then u0-positive by the argument

k1(Lu)u0 � L(Lu) � k2(Lu)u0.

The argument extends to all larger positive powers.

Theorem 2.3. Let K0 ⊂ K1 be cones in a Banach space X, and let �
denote the partial order of K1. Suppose that L1, L2 are bounded linear operators
and for some p ∈ N and some q ∈ N at least one of Lp

1, Lq
2 is u0-positive relative

to (K0,K1), if p 6= q suppose also that u0 ∈ K0. Let p̃ := max{p, q}. If there
exist

(2.3)
u1 ∈ K0 \ {0}, λ1 > 0, such that λ1u1 � L1u1

and u2 ∈ K0 \ {0}, λ2 > 0, such that λ2u2 � L2u2,

and Lep
1uj � Lep

2uj for j = 1, 2, then λ1 ≤ λ2. If, in addition, Lep
j (K1 \ {0}) ⊂

K0 \ {0} and if λ1 = λ2 in (2.3), then it follows that u1 is a (positive) scalar
multiple of u2.

Proof. We consider the case p 6= q, the case p = q is similar. By the
argument preceding the statement of the theorem, one of Lep

j is u0-positive relative
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to (K0,K1). Also it follows that

λep1u1 � Lep
1u1 and λep2u2 � Lep

2u2.

By Theorem 2.2, λep1 ≤ λep2, thus λ1 ≤ λ2. The last part also follows immediately
from the previous result. �

We now give a new proof of the existence of a positive eigenvalue. The
results are closely related to a result of Krasnosel’skĭı, Theorem 2.5 of [12], and
of D.E. Edmunds, A.J.B. Potter and C.A. Stuart, Theorem 3 of [5]. In [12] it is
assumed that L is compact, in [5] it is assumed that L is a k-set contraction, and
the Schauder fixed point theorem, and its analogue for k-set contractions, for
nonlinear operators is used in their proofs. We use the concept of a condensing
operator, which is essentially the same assumption as made in [5]. For a linear
operator L it is known, Lemma 6 of [24], (or see Theorem 9.11 of [4]) that L is
condensing if and only if it can be written L = L1 + L2 where L1 has finite rank
(hence compact) and ress(L) ≤ r(L2) ≤ ‖L2‖e < 1 where ‖ · ‖e is an equivalent
norm on X and ress(L) denotes the essential spectral radius of L. Thus, when
an equivalent norm is employed, saying L is condensing is equivalent to saying
ress(L) < 1. Although there are several inequivalent definitions of ‘essential
spectrum’, it was shown in [24] that the radius is the same whatever definition
is employed.

We use the condensing notion so that there is a well defined fixed point index
theory, see [4], [35], the result applies whatever measure of non-compactness is
used in the definition of condensing. Note that measures of non-compactness
need not be equivalent, see the paper [22]. The important special case is when
the map is compact. The papers [5] and [12] use fewer tools, but our new proof is
short, and, when we impose a u0-positivity assumption, we also get uniqueness.

Theorem 2.4. Let K1 be a cone in a Banach space X, and let � denote the
partial order of K1. Suppose that L is a bounded linear operator and maps K1

into K1. Let there exist λ0 > 0 and v ∈ X such that Lv � λ0v where −v /∈ K1

and v has the form v = v1 − v2 where v1, v2 ∈ K1. Then, if 1
λ0

L:X → X is
condensing, there exist λ ≥ λ0 and ϕ ∈ K1 \ {0} such that Lϕ = λϕ.

Furthermore, if K0 is a cone in X with K0 ⊂ K1, and if L maps K1 \ {0}
into K0 \{0} and is u0-positive relative to (K0,K1), then λ is the unique positive
eigenvalue with an eigenfunction ϕ in K0. Moreover, any other eigenfunction in
K0 with eigenvalue λ is a scalar multiple of ϕ.

Note that v is as required if v ∈ K1 \ {0}.
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Proof. We observe that v1 6= 0 and v1 � v. Let B1 be the open unit ball
of X and let ∂B1 be its boundary. We first show that

(2.4) u 6= 1
λ0

Lu + σv1 for all u ∈ ∂B1 ∩K1 and all σ ≥ 0.

In fact, if not, then there exist σ ≥ 0 and u ∈ ∂B1 ∩K1 such that

(2.5) u =
1
λ0

Lu + σv1.

We may suppose that σ > 0 for otherwise u is the required eigenfunction with
eigenvalue λ0. From (2.5) we have u � σv1 so that

Lu � σLv1 � σLv � σλ0v,

and so, from (2.5) again, u � σv + σv1. Then Lu � σLv + σLv1 � 2σλ0v

and hence, using (2.5), we obtain u � 2σv + σv1. Repeating this argument
shows that u � nσv + σv1 for every n ∈ N, and thus 1

nσ u − 1
nv1 − v ∈ K1.

Letting n → ∞ gives the contradiction −v ∈ K1. This shows that (2.4) holds.
Thus iK1(

1
λ0

L,B1 ∩K1) = 0, by standard properties of fixed point index, see for
example, any of [1], [4], [7], [35].

Now, suppose that Lu 6= λu for all λ ≥ λ0 and for all u ∈ K1 \ {0}. Then
1
λ0

Lu 6= λu for all λ ≥ 1 and for all u ∈ ∂B1 ∩ K1. Standard properties of
fixed point index then imply that iK1(

1
λ0

L,B1 ∩ K1) = 1. This contradicts
iK1(

1
λ0

L,B1∩K1) = 0 and we conclude that Lu = λu for some λ ≥ λ0 and some
u ∈ ∂B1 ∩K1; let ϕ = u.

If L is u0-positive relative to (K0,K1) and λ1, λ2 are positive eigenvalues
with eigenfunctions ϕ1, ϕ2 ∈ K1 \ {0} then

λ1ϕ1 = Lϕ1 and λ2ϕ2 = Lϕ2,

hence ϕ1, ϕ2 ∈ K0 and then the comparison theorem, Theorem (2.2), gives
λ1 = λ2 and ϕ2 is a scalar multiple of ϕ1. �

Remark 2.5. (a) If K1 is a total cone, L is compact and r(L) > 0, (or if L is
bounded and ress(L) < r(L)), then r(L) is an eigenvalue of L with an eigenvector
in K1 by the Krein–Rutman theorem, (or some results of Nussbaum [27]; see also
[5], [21]). The unique eigenvalue λ whose existence is asserted in Theorem 2.4
then equals r(L).

(b) The proof applies whenever 1
λ0

L belongs to a class of mappings for which
there is a fixed point index theory satisfying the standard properties, for example
the P -compact operators of W.V. Petryshyn, see for example [3], [30], [40]. The
result for P -compact operators was previously proved in [5].

Our hypothesis on (1/λ0)L means that λ0 > ress(L). In [5] an example is
given to show that the result can fail if L is a k-set contraction and λ0 ≤ k,
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so the condition is sharp. The example is in the space `2 and the cone is the
natural one, which is reproducing. By Nussbaum’s result [27], the real reason
for the failure is that r(L) = ress(L) = k in that example.

We give another simpler example.

Example 2.6. Let X = C[0, 1] and let P := {u ∈ C[0, 1] : u(t) ≥ 0, t ∈
[0, 1]}, be the usual cone of non-negative functions. Let k > 0 and ε > 0 and
define a bounded linear operator by Lu(t) = (k + εkt)u(t). Let 1̂ denote the
constant function with value 1. Then we have L1̂(t) = (k + εkt)1̂(t) ≥ λ01̂(t)
where λ0 = k, but, as is easily checked, L has no positive eigenvalue with an
eigenfunction in P \ {0}. In this case 1

λ0
Lu(t) = (1 + εt)u(t) is not condensing.

Since ε can be arbitrarily small this shows that the hypothesis is sharp.

There is one result, which is known and has probably been rediscovered many
times, but we do not know the original source, which has a similar appearance
and requires no condensing or u0-positivity hypotheses on L and no restriction
on K. For completeness we give the simple proof.

Theorem 2.7. Let L be a bounded linear operator in a Banach space X and
let K be a cone in X. Suppose that L(K) ⊂ K and there exist λ0 > 0 and
v ∈ K \ {0} such that Lv �K λ0v. Then it follows that r(L) ≥ λ0.

Proof. If not, we have 0 ≤ r(L) < λ0. Hence L/λ0 maps K into K and
r(L/λ0) < 1. As is well known, from the Neumann series, (I − L/λ0)−1 then
maps K into K. We have v �K L(v/λ0) that is (I−L/λ0)v �K 0, hence v �K 0
so that v = 0. This contradiction shows that r(L) ≥ λ0. �

Remark 2.8. In a personal communication, Professor R.D. Nussbaum re-
marked to this author that the argument actually gives the somewhat more
precise statement that rK(L), the ‘cone spectral radius’ of L : K → K satisfies
rK(L) ≥ λ0. We refer to the papers [21], [28], [27], [29] for more information
and some deep results concerning the ‘cone spectral radius’.

Theorem 2.7 does not prove that L has an eigenvalue λ ≥ λ0 with eigenfunc-
tion in K, see Example 2.6, but if K is a total cone and ress(L) < r(L), then, by
the extension of the Krein–Rutman theorem due to R.D. Nussbaum, [21], [27],
r(L) is an eigenvalue of L.

As may have been anticipated there is a similar result to Theorem 2.4 where
we assume conditions on a power of L, Lp for some positive integer p. This
could be applicable when the previous result is not, since, for example, there
exist linear operators which are not compact but whose square is compact. For
the original closely related results see [12] Theorem 2.5 for compact operators,
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and [5] Theorem 3 for k-set contractive operators and Theorem 4 of [5] for P -
compact operators. Our proof is much shorter but we require a u0-positivity
condition.

Theorem 2.9. Let K0 ⊂ K1 be cones in a Banach space X, and let � denote
the partial order of K1. Let p ∈ N, and let L be a bounded linear operator such
that Lp is u0-positive relative to (K0,K1). Suppose also that Lp(K1\{0}) ⊂ K0\
{0} and that there exist λ0 > 0 and v ∈ X such that Lpv � λ0v where −v /∈ K1

and v has the form v = v1 − v2 where vj ∈ K1. Suppose that 1
λ0

Lp:X → X

is condensing. Then there exist a unique λ ≥ λ
1/p
0 and u ∈ K0 \ {0} such that

Lu = λu.

Proof. By Theorem 2.4 there exist a unique ν ≥ λ0 and u ∈ K0 \ {0} such
that Lpu = νu. Then we have

Lp(Lu) = L(Lpu) = ν(Lu),

that is, Lu is also an eigenvector of Lp in K0 with eigenvalue ν > 0. By The-
orem 2.2 Lu is a positive scalar multiple of u, that is, Lu = λu and we have
λp = ν ≥ λ0. �

3. Some u0-positive operators

We now investigate a situation that occurs frequently in the study of bound-
ary value problems (BVPs) for ordinary differential equations, such as, for ex-
ample,

u′′(t) + g(t)f(t, u(t)) = 0 or u(4)(t) = g(t)f(t, u(t)), t ∈ (0, 1),

or more complicated ones, with various kinds of boundary conditions (BCs) of
local or nonlocal type, see for example, [38], [39].

Studying positive solutions of a BVP can be done by finding fixed points, in
a suitable cone, of the nonlinear integral operator

(3.1) Nu(t) =
∫ 1

0

G(t, s)g(s)f(s, u(s)) ds,

where the kernel G is the Green’s function for the problem. Under mild condi-
tions this defines a compact map N in the space C[0, 1] and, when G ≥ 0, g ≥ 0
and f ≥ 0, the theory of fixed point index in a cone of non-negative functions
can be applied to N .

The rather weak conditions that we now impose on G, f , g are similar to
ones in the papers [36], [37], [38].

(C1) The kernel G ≥ 0 is measurable, and for every τ ∈ [0, 1] we have

lim
t→τ

|G(t, s)−G(τ, s)| = 0 for almost every (a.e.) s ∈ [0, 1].
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(C2) Suppose that there exist a non-negative measurable function Φ with
Φ(s) > 0 for almost every s ∈ (0, 1) and c ∈ P \ {0} such that

(3.2) c(t)Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 ≤ t, s ≤ 1.

For a subinterval J = [t0, t1] of [0, 1] let cJ := min{c(t) : t ∈ J}; since
c ∈ P \ {0}, there exists some interval J with cJ > 0.

(C3) The function g is non-negative, g(s) > 0 for almost every s ∈ (0, 1), and
satisfies g Φ ∈ L1[0, 1].

(C4) The nonlinearity f : [0, 1]× [0,∞) → [0,∞) satisfies Carathéodory con-
ditions, that is, f( · , u) is measurable for each fixed u ≥ 0 and f(t, · )
is continuous for almost every t ∈ [0, 1] and for each r > 0, there exists
φr ∈ L∞[0, 1] such that

f(t, u) ≤ φr(t) for all u ∈ [0, r] and a.e. t ∈ [0, 1].

Clearly, (C1) is satisfied if G is continuous. A precursor of condition (C2) was
used in [19]. The function g allows possible pointwise singularities in the non-
linearity at arbitrary points of [0, 1] but it is then convenient to regard g as part
of the kernel of the integral operator. The condition (C2) is frequently satis-
fied by ordinary differential equations with both local and nonlocal boundary
conditions, see, for example, [38] for a quite general situation.

Some fixed point index results, which can be used to prove existence of
positive fixed points of N , have been obtained by using the linear operator

(3.3) Lu(t) :=
∫ 1

0

G(t, s)g(s)u(s) ds,

and comparing the behaviour of f(t,u)
u for u near 0 and near ∞ with the princi-

pal characteristic value µ(L) := 1/r(L) of L. It is known that N,L are compact
under the above conditions, see, for example, [23] Proposition V.3.1. An ex-
ample of an existence theorem is: there is at least one positive solution if “the
nonlinearity crosses the eigenvalue”, that is,

either lim sup
u→0+

f(u)
u

< µ(L) and lim inf
u→∞

f(u)
u

> µ(L),

or lim inf
u→0+

f(u)
u

> µ(L) and lim sup
u→∞

f(u)
u

< µ(L).

Here, for simplicity of exposition, we supposed that f does not depend explicitly
on t. For separated boundary conditions see, for example, [6], for some multipoint
problems see [41], [36] and for some quite general situations see [37], [38].

Let P := {u ∈ C[0, 1] : u(t) ≥ 0} be the standard cone of non-negative
continuous functions and let � denote the ordering induced by P .
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For an interval J := [t0, t1] ⊂ [0, 1] with cJ > 0 we consider the following
cones

(3.4)
Kc := {u ∈ P : u(t) ≥ c(t)‖u‖, for all t ∈ [0, 1]},
KJ := {u ∈ P : u(t) ≥ cJ‖u‖, for all t ∈ J}.

These cones, especially the second, have been studied by many authors in the
study of existence of multiple positive solutions of boundary value problems.
For the first cone we mention [2], [17], [18], for the second see, for example, [7],
[36]–[38].

Proposition 3.1. For every sub-interval J = [t0, t1] of [0, 1] with cJ > 0,
we have L:P → Kc ⊂ KJ .

This is essentially known but we give the simple proof for completeness.

Proof. For u ∈ P ,

‖Lu‖ = max
t∈[0,1]

Lu(t) ≤
∫ 1

0

Φ(s)g(s)u(s) ds,

and Lu(t) ≥
∫ 1

0

c(t)Φ(s)g(s)u(s) ds,

which proves Lu(t) ≥ c(t)‖Lu‖. It is easily shown that Kc ⊂ KJ . �

Some sufficient conditions for L to be u0-positive on P have been given in [12],
and in [33], [38] where hypotheses are given which always hold for second order
equations with separated BCs. One result is often applicable.

Theorem 3.2 ([38, Corollary 7.5]). Suppose that G satisfies (C1)–(C3) with
c(t) > 0 for t ∈ (0, 1) and suppose that Φ continuous and g ∈ L1. Let at least
one of the symmetry properties (a) or (b) that follow be satisfied.

(a) G(t, s) = G(s, t), for all t, s ∈ [0, 1],
(b) G(t, s) = G(1− s, 1− t), for all t, s ∈ [0, 1].

Then L is u0-positive on P .

It is not clear whether L can be shown to be u0-positive solely under the
conditions (C1)–(C3). However, there is a closely related operator defined by

(3.5) LJu(t) :=
∫ t1

t0

G(t, s)g(s)u(s) ds,

where J = [t0, t1] is any sub-interval of [0, 1] for which cJ > 0, which played
a useful role in [36]. Clearly LJu � Lu for every u ∈ P , that is, LJ is a minorant
of L. Also LJ is compact. In the recent paper [35] we showed that (C1)–(C3)
imply that LJ is u0-positive relative to (KJ , P ).

This result and some of its consequences were the motivation for our defini-
tion of u0-positive operator relative to two cones. We prove a small extension of
that result.
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Theorem 3.3. Let J = [t0, t1] be a sub-interval of [0, 1] for which cJ > 0
and let LJ be defined on C[0, 1] by (3.5). Suppose that (C1)–(C3) hold. Then
LJ is u0-positive relative to (Kc, P ) for u0(t) :=

∫ t1
t0

G(t, s)g(s) ds.

The proof is practically the same as that in [35], for completeness we give
the details here.

Proof. Let u ∈ Kc \ {0}. Then also u ∈ KJ and we have

LJu(t) =
∫ t1

t0

G(t, s)g(s)u(s) ds ≤
( ∫ t1

t0

G(t, s)g(s) ds

)
‖u‖,

and

LJu(t) =
∫ t1

t0

G(t, s)g(s)u(s) ds ≥
( ∫ t1

t0

G(t, s)g(s) ds

)
cJ‖u‖.

We note that, for t ∈ J , u0(t) ≥
∫ t1

t0
cJΦ(s)g(s) ds > 0, so u0 6= 0. Also (C1)–

(C3) imply that u0 is continuous. �

The advantage of this result over the one in [35] is that we can vary J but
always use the fixed cone Kc.

In the following theorem we shall use a result of R.D. Nussbaum, Lemma 2
on page 226 of [28], which says that if Ln are compact linear operators and
Ln → L in the operator norm then r(Ln) → r(L).

Theorem 3.4. Let (C1)–(C3) be satisfied with c(t) > 0 for t ∈ (0, 1), and
let L be defined by (3.3).

(a) Suppose there exist u1 ∈ P \ {0} and λ1 > 0 such that λ1u1 � Lu1 then
r(L) ≥ λ1.

(b) Suppose there exist u2 ∈ P \ {0} and λ2 > 0 such that λ2u2 � Lu2 then
r(L) ≤ λ2.

Proof. (a) This is Theorem 2.7, and is also a consequence of Theorem 2.4.
(b) Since L:P → Kc, by replacing u2 by Lu2 we can, and do, assume that

u2 ∈ Kc \ {0}.
Let J = [t0, t1] be an arbitrary subset of (0, 1) and let LJ be defined by (3.5).

Then we have

LJc(t) =
∫ t1

t0

G(t, s)g(s)c(s) ds ≥ c(t)
∫ t1

t0

Φ(s)g(s)c(s) ds.

This shows that LJ c �
(∫ t1

t0
Φ(s)g(s)c(s) ds

)
c, hence by Theorem 2.4 there exists

an eigenvalue λJ of LJ with λJ ≥
(∫ t1

t0
Φ(s)g(s)c(s) ds

)
> 0. Therefore, by the

Krein–Rutman theorem, r(LJ) is an eigenvalue of LJ with an eigenfunction
ϕJ ∈ P , hence also ϕJ ∈ Kc since LJ :P → Kc.
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Now we have LJu � Lu, r(LJ)ϕJ = LJϕJ , and λ2u2 � Lu2. By Theorem 3.3
we may apply the comparison theorem to obtain r(LJ) ≤ λ2. We now let
t0 → 0+, t1 → 1− and apply the result of Nussbaum to deduce that r(L) ≤ λ2.�

We give two simple examples of Theorem 3.4, one with a singular term.

Example 3.5. Consider the second order BVP

u′′(t) + g(t)f(u(t)) = 0, u(0) = 0, u(1) = 0.

It is well-known that the Green’s function is given by

G(t, s) :=

{
s(1− t) if s ≤ t,

t(1− s) if s > t.

First, take g(t) ≡ 1. It is well-known that the principal characteristic value of
L is µ = π2 ≈ 9.8696. Let v(t) = t(1 − t). By a direct computation we find
constants λ1 = 1/12, λ2 = 5/48 such that λ1v(t) ≤ Lv(t) ≤ λ2v(t) so we get
both upper and lower bounds and these give

9.6 ≤ µ ≤ 12.

We can now take v2(t) = Lv(t) = t/12− t3/6+ t4/12, using Maple we find upper
and lower bounds which give (the numbers are rounded to 3 decimal places if
not exact)

9.836 ≤ µ ≤ 10.

Similarly, taking v3 = Lv2 = t/120 − t3/72 + t5/120 − t6/360, we obtain the
reasonable approximations

9.865 ≤ µ ≤ 9.883.

If we begin with the ‘lucky’ choice of v(t) = sin(πt) then, of course, we find
immediately that µ = π2.

Secondly, consider a weakly singular case with g(t) = 1/
√

t(1− t). In this
case, as far as I am aware, µ is not well-known. Again taking v(t) = t(1− t), by
a computation using Maple, we find both upper and lower bounds (the numbers
are rounded to 3 decimal places)

4.424 ≤ µ ≤ 5.093.

The method of the previous example fails, Lv is not simple enough for continuing
integration, and there does not appear to be any other simple choice of v to
improve these estimates. For better accuracy some numerical method would be
superior, usually one needs a method that can handle the singularity in g. For
nonsingular problems I use a desktop pc program written in C by my colleague
Prof. K.A. Lindsay. In this particular example, it is well known and easy to show
that c(t)s(1−s) ≤ G(t, s) ≤ s(1−s) for c(t) = min{t, 1−t}. Therefore the kernel
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of the linear integral operator G(t, s)g(s) does not in fact have singularities. The
numerical program gives µ ≈ 4.506.

Obviously it is optimal to use the exact value of µ or a good numerical approx-
imation, but, if µ cannot be easily calculated, then upper and lower estimates of
the above type may be useful.

4. A new multiple ‘eigenvalue crossing’ existence result

The theory of fixed point index has been used to prove existence of multiple
positive solutions for the integral equation

u(t) =
∫ 1

0

G(t, s)g(s)f(s, u(s)) ds,

when G, g, f are (at least) non-negative. Conditions are known which give an
arbitrary finite number of positive solutions under suitable conditions on f , see
for example [15], [37], [38]. We intend to prove that, under a more restrictive
version of the set-up of Section 3, there is a multiple existence result involving
µ(L) alone, with the nonlinearity ‘crossing the eigenvalue’ many times.

The stronger positivity requirement on G is the following condition.

(C2)0 Suppose that there exist a non-negative measurable function Φ with
Φ(s) > 0 for almost every s ∈ (0, 1), and a constant 0 < c0 ≤ 1 such
that

(4.1) c0Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 ≤ t, s ≤ 1.

This condition is satisfied by many problems. For example, for second order
equations of the form

(4.2) −u′′(t) = g(t)f(t, u(t)),

with separated boundary conditions

αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0,

when αγ +αδ+βγ > 0 and additionally β > 0, δ > 0, the condition holds. Some
other second order equations with periodic or Neumann BCs can also satisfy this
condition, see [16]. It is not satisfied by (4.2) when one of the BCs is u(0) = 0
or u(1) = 0 but can, for example, be satisfied by nonlocal BCs of the form
u(0) = β1[u], u(1) = β2[u], where βj are positive linear functionals on C[0, 1].
It can also be satisfied by equations of higher order. We shall give some simple
specific examples later in the paper.
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We now assume that (C1), (C2)0, (C3) and (C4) hold. When (C2)0 holds the
relevant cones are

(4.3)
P := {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]},

Kc0 := {u ∈ P : u(t) ≥ c0‖u‖, t ∈ [0, 1]}.
Clearly all non-negative constant functions belong to Kc0 . An important point
is that nonzero functions in Kc0 are positive on [0, 1]. We consider the operators

Nu(t) :=
∫ 1

0

G(t, s)g(s)f(s, u(s)) ds, Lu(t) :=
∫ 1

0

G(t, s)g(s)u(s) ds.

We may now choose J = [0, 1] and the earlier results apply, in particular

(4.4) L = LJ is u0-positive relative to (Kc0 , P ).

For r > 0 let Br be the open ball in C[0, 1] with centre 0 and radius r and
write Kr = Br ∩Kc0 . If u ∈ ∂Kr (the boundary relative to Kc0) then ‖u‖ = r

and c0r ≤ u(t) ≤ r for t ∈ [0, 1].

Theorem 4.1. Let r > 0 and suppose that f(s, u) < µ(L)u for all u ∈ [c0r, r]
and almost all s ∈ [0, 1]. Then iKc0

(N,Kr) = 1.

Proof. We will show that Nu 6= σu for all σ ≥ 1 and all u ∈ ∂Kr which
will prove the result by properties of fixed point index. In fact, if not, there exist
σ ≥ 1 and u ∈ ∂Kr such that σu = Nu. Then c0r ≤ u(s) ≤ r for s ∈ [0, 1] so we
have

σu(t) = Nu(t) ≤
∫ 1

0

G(t, s)g(s)µ(L)u(s) ds = µ(L)Lu(t),

that is σr(L)u � Lu. By the comparison theorem, Theorem 2.4, this can only
happen if σ = 1 and u is a multiple of the eigenfunction ϕ so u = µ(L)Lu. Then
we must have equality above, that is,

u(t) =
∫ 1

0

G(t, s)g(s)f(s, u(s)) ds =
∫ 1

0

G(t, s)g(s)µ(L)u(s) ds,

which is impossible when f(s, u(s)) < µ(L)u(s) for all s ∈ [0, 1], since for each t,
G(t, s)g(s) > 0 for almost every s by (C2)0 and (C3). �

Remark 4.2. The standard result of this type assumes that f(s, u) < µ(L)u
for all u ∈ (0, r]; we can assume less because condition (C2)0 holds. Taking r

small, Theorem 4.1 proves a known result that the index equals one when, for
example,

lim sup
u→0+

f(u)
u

< µ(L).

By choosing r large, Theorem 4.1 proves a result when it is assumed that f(t, u) <

µ(L)u for all sufficiently large u, for example, if

lim sup
u→∞

f(u)
u

< µ(L).
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Previously the index equals one result for r large has been proved using the fact
that the cone P is a normal cone, as for example in [36], which property is not
needed in the above proof.

The corresponding index zero result is as follows.

Theorem 4.3. Let r > 0 and suppose that f(s, u) > µ(L)u for all u ∈ [c0r, r]
and almost all s ∈ [0, 1]. Then iKc0

(N,Kr) = 0.

Proof. Let e ∈ Kc0 \{0}. We will show that u 6= Nu+σe for all σ ≥ 0 and
all u ∈ ∂Kr. Indeed, if not there exist σ ≥ 1 and u ∈ ∂Kr such that u = Nu+σe,
hence u � Nu and, similarly to the proof of Theorem 4.1, Nu � µ(L)Lu.
Thus r(L)u � Lu and, by Theorem 2.4, this implies that u is a multiple of the
eigenfunction ϕ so r(L)u = Lu. Then we get u = Nu + σe � µ(L)Lu + σe =
u + σe, thus we must have σ = 0 and u = Nu = Lu. As in Theorem 4.1, this is
impossible. �

We now show that very similar arguments prove non-existence results if there
is no ‘crossing of the eigenvalue’. This is similar to Theorem 4.9 of [35] where
a more abstract result is proved.

Theorem 4.4. Let D be a subset of C[0, 1] with D ∩ P 6= ∅.
(a) The operator N has no nonzero fixed points in D ∩ P if

f(t, u) < µ(L)u for all 0 ≤ t ≤ 1, u ∈ D ∩ P.

(b) The operator N has no nonzero fixed points in D ∩ P if

f(t, u) > µ(L)u for all 0 ≤ t ≤ 1, u ∈ D ∩ P.

Proof. (a) If N has a nonzero fixed point u ∈ D∩P then u = Nu � µ(L)Lu

and ϕ = µ(L)Lϕ for an eigenfunction ϕ. By the comparison theorem, u is
a positive multiple of ϕ and so µ(L)Lu = u, hence Nu = µ(L)Lu. As in the
proof of Theorem 4.1 this is impossible.

The proof of (b) is almost identical hence omitted. �

A short proof of part (a) is essentially given by R.D. Nussbaum in Proposi-
tion 2 of [26] with a simple argument that does not use any u0-positivity concept.

We now state and prove the new results on existence of an arbitrary finite
number of positive solutions involving ‘eigenvalue crossings’. We are also able to
give more precise localization of the solutions than is usually possible.

Theorem 4.5. For n ∈ N and n ≥ 2, let 0 < r1 < c0r2 < r2 < c0r3 < r3 <

c0r4 < . . . < rn. Suppose that

(4.5)
f(t, u) < µ(L)u for 0 ≤ t ≤ 1, c0r2j−1 ≤ u ≤ r2j−1, j = 1, 2, . . . ,

f(t, u) > µ(L)u for 0 ≤ t ≤ 1, c0r2j ≤ u ≤ r2j , j = 1, 2, . . . .
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Then N has at least n− 1 fixed points ui in Kc0 , and for each i = 1, . . . , n− 1,
ri ≤ ‖ui‖ < ri+1 and c0ri ≤ ui(t) < ri+1 for all t ∈ [0, 1], and there exist
τi1, τi2 ∈ [0, 1] such that ri < ui(τi1) and ui(τi2) < c0ri+1.

Proof. Theorems 4.1 shows that iKc0
(N,Kr2j−1) = 1 and Theorem 4.3

shows that iKc0
(N,Kr2j ) = 0. By the additivity property of fixed point index

we have
iKc0

(N,Kr2j
\Kr2j−1) = 0− 1 = −1,

so by the existence property there is a fixed point u2j−1 ∈ Kr2j
\ Kr2j−1 , and

r2j−1 ≤ ‖u2j−1‖ < r2j . Since we are in the cone Kc0 this gives c0r2j−1 ≤
u2j−1(t) < r2j for all t in [0, 1]. But, by the nonexistence result, Theorem 4.4,
there is no positive solution satisfying c0r2j−1 ≤ u(t) ≤ r2j−1 for all t in [0, 1],
and no positive solution satisfying c0r2j ≤ u(t) ≤ r2j , for all t, thus there exist
τi1, τi2 such that r2j−1 < u2j−1(τi1) and u2j−1(τi2) < c0r2j .

Similarly we have

iKc0
(N,Kr2j+1 \Kr2j

) = 1− 0 = 1,

hence there is a fixed point u2j ∈ Kr2j+1 \Kr2j
, and r2j ≤ ‖u2j‖ < r2j+1. The

same localization argument as before applies. There is also a fixed point in Kr1

but this may be zero. �

We can also start the process with index equals zero. The result is as follows.

Theorem 4.6. For n ∈ N and n ≥ 2, let 0 < r1 < c0r2 < r2 < c0r3 < r3 <

c0r4 < · · · < rn. Suppose that

f(t, u) > µ(L)u for 0 ≤ t ≤ 1, c0r2j−1 ≤ u ≤ r2j−1, j = 1, 2, . . . ,

f(t, u) < µ(L)u for 0 ≤ t ≤ 1, c0r2j ≤ u ≤ r2j , j = 1, 2, . . . .

Then N has at least n− 1 fixed points ui in Kc0 , and for each i = 1, . . . , n− 1,
c0ri ≤ ui(t) < ri+1 for all t ∈ [0, 1] and there exists τ ∈ [0, 1] such that either
ri < ui(τ) or ui(τ) < c0ri+1.

The proof is very similar to the above one and is therefore omitted.

Remark 4.7. As far as I am aware these are the first results on existence of
multiple solutions that use only ‘crossing of the eigenvalue’. These rely on the
fact that such hypotheses on f can be made on disjoint intervals which depends
on being able to use the cone Kc0 .

Since we can let ri = c0Ri the conditions in Theorem 4.5 can read

(4.6)
f(t, u) < µ(L)u for 0 ≤ t ≤ 1, R2j−1 ≤ u ≤ R2j−1/c0, j = 1, 2, . . . ,

f(t, u) > µ(L)u for 0 ≤ t ≤ 1, R2j ≤ u ≤ R2j/c0, j = 1, 2, . . . .

A similar remark applies to Theorem 4.6.
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For comparison purposes we state the multiple existence result which applies
when (C2) holds, that is,

c(t)Φ(s) ≤ G(t, s) ≤ Φ(s), for 0 ≤ t, s ≤ 1,

where c(t) > 0 for t ∈ (0, 1). Let J = [t0, t1] be a sub-interval of (0, 1). Define
constants cJ , m,MJ by

(4.7)

cJ := min{c(t) : t ∈ J},

m : =
(

sup
t∈[0,1]

∫ 1

0

G(t, s)g(s) ds

)−1

,

MJ :=
(

inf
t∈J

∫ t1

t0

G(t, s)g(s) ds

)−1

.

It is known that m ≤ µ(L) ≤ MJ , this was shown by a direct argument in [36]
and by using the comparison theorem in [35].

Theorem 4.8. For n ∈ N and n ≥ 2, suppose that 0 < r1 < cJr2 < r2 <

cJr3 < r3 < cJr4 < · · · < rn and that

(4.7)
f(t, u) < r2j−1m for 0 ≤ t ≤ 1, 0 ≤ u ≤ r2j−1, j = 1, 2, . . . ,

f(t, u) > cJr2jMJ for t ∈ J, cJr2j ≤ u ≤ r2j , j = 1, 2, . . .

Then N has at least n − 1 fixed points ui in Kc, and ri ≤ ‖ui‖ ≤ ri+1 for
1 ≤ i ≤ n− 1.

This result can be found in a number of papers, for example, [15], [36]–[38].
There is a version, starting with the index 0 case, similar to Theorem 4.6, we omit
the statement of this. Theorem 4.8 can be modified by assuming f(t, u) < µ(L)u
in place of f(t, u) < mr1 for u ≤ r1 and with f(t, u) > µ(L)u for all u sufficiently
large. These give weaker conditions when these are obtained from assumptions
on the existence of limits as u → 0 and as u →∞.

Remark 4.9. It is implicit in Theorem 4.8, for consistency, that the con-
stants are restricted by the requirements Mjr2j ≤ mr2j+1.

When we have the stronger positivity condition and can use the cone Kc0

the conditions in Theorem 4.8 can be modified to read

f(t, u) < r2j−1m for 0 ≤ t ≤ 1, c0r2j−1 ≤ u ≤ r2j−1, j = 1, 2, . . . ,

f(t, u) > c0r2jMJ for t ∈ J, c0r2j ≤ u ≤ r2j , j = 1, 2, . . . .

The proofs are essentially the known ones, for example, [15], [36]–[38], the second
uses fixed point index on the open set Ωr := {u ∈ P : mint∈J u(t) < c0r}, which
was introduced by Lan [15].

We give some examples to illustrate the new results.
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Example 4.10. Consider the BVP of second order

(4.8) u′′(t) + f(u(t)) = 0, u′(0) = 0, u(1) + u′(1) = 0.

It is easy to check that the Green’s function for this problem is

G(t, s) :=

{
2− t if s ≤ t,

2− s if s > t.

Therefore Φ(s) = 2 − s, c(t) = 1 − t/2, that is (C2)0 holds with c0 = 1/2.
By direct calculation m = 2/3, M(0,1) = 1 and M(0,1) is the smallest MJ for
J a sub-interval of [0, 1] in this example. From the differential equation, the
eigenfunction is of the form cos(ωt), hence µ(L) = ω2 where ω is the smallest
positive solution of the equation cos(ω) = ω sin(ω), so that µ(L) ≈ 0.740174.

Now take f(u) as follows.

f(u) :=


0 for 0 ≤ u ≤ 1/4,

(3/2)(u− 1/4) for 1/4 ≤ u ≤ 1/2,

(3/4)u for 1/2 ≤ u ≤ 1,

3/4 for u ≥ 1.

Then, taking r1 = 1/4, r2 = 1, r3 = 5/2, by Theorem 4.5, the BVP has at least
two positive solutions, say u1, u2. These satisfy the bounds 1/4 ≤ ‖u1‖ < 1 and
1/8 ≤ u1(t) < 1 for all t ∈ [0, 1], and 1 ≤ ‖u2‖ < 5/2 and 1/2 ≤ u2(t) < 5/2 for
all t ∈ [0, 1].

Theorem 4.8 can only give the zero solution here since the graph of f lies
completely below the line of slope M(0,1) = 1. However, an important point of
Theorem 4.8 is that it can be applied in cases where (C2)0 does not hold.

Example 4.11. For the BVP u′′(t) + f(u(t)) = 0, u′(0) = 0, u(1) = 0,
condition (C2) holds but not (C2)0. However condition (C2)0 is satisfied when we
have a nonlocal BC at 1 such as u(1) = β[u] where β is a positive linear functional
on C[0, 1], thus given by a Riemann–Stieltjes integral β[u] =

∫ 1

0
u(t) dB(t) where

dB is a (positive) measure. As a simple example we consider the well studied
3-point boundary condition

(4.9) u′(0) = 0, u(1) = βu(η), η ∈ (0, 1), 0 < β < 1.

The Green’s function and its properties are known for this problem; it was
studied in detail in [32]. We have

G(t, s) =
1

1− β
((1− s)− β(η − s)H(η − s))− (t− s)H(t− s),

where H denotes the Heaviside function

H(x) :=

{
1 if x ≥ 0,

0 if x < 0.
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Then the constants are given by m = 2(1− β)/(1− βη2), c(t) = 1 − (1− β)t/
(1− βη), therefore (C2)0 is satisfied with c0 = β(1− η)/(1− βη). Formulae for
the smallest M are also given in [32].

We take a specific example, let η = 1/2, β = 1/4. Then c0 = 1/7, m = 8/5,
the smallest possible M is M(0,4/7) = 56/19 ≈ 2.947, whereas M(0,1) = 8. The
‘eigenvalue’ µ(L) = ω2 where ω is the smallest positive root of the equation
cos(ω) = β cos(ωη) which in this case gives µ(L) ≈ 1.89471.

It would now be routine to give examples similar to that above to show there
are two (or more) positive solutions for suitable f , and for which known results
using the constants m, M can not give existence of positive solutions.

Similarly, the problem with BCs u(0) = 0, u(1) = 0 does not satisfy the
condition (C2)0 but the condition is satisfied with the nonlocal BCs u(0) =
β1[u], u(1) = β2[u] when βi are suitable positive linear functionals on C[0, 1].
Higher order problems, especially with positive non-local BCs can also fit this
framework, see [39] for some fourth order problems and [38] for a general situa-
tion.

5. Singular problems

We assume that we have a BVP with a nonlinearity of the form g(t)f(t, u(t))
that can be studied in the space C[0, 1] with a Green’s function satisfying (C1),
(C2)0 and g satisfying (C3). When f is continuous on [0, 1]× [0,∞) solutions of
the problem are equivalent to fixed points of the nonlinear integral operator

(5.1) Nu(t) =
∫ 1

0

G(t, s)g(s)f(s, u(s)) ds.

We consider problems where the nonlinearity is allowed to be singular at u = 0;
many possible singularities in t are taken care of by the term g(t). In place of
(C4) we suppose that f(t, u) is continuous on [0, 1]× (0,∞) and f is allowed to
‘blow-up’ as u → 0+.

Our observation is that when (C2)0 holds the singularity at u = 0 is not
a serious problem. Under the above assumptions we have the following result,
thus Theorem 4.6 is practically unchanged.

Theorem 5.1. For n ∈ N and n ≥ 2, let 0 < r1 < c0r2 < r2 < c0r3 < r3 <

c0r4 < . . . < rn. Suppose that

f(t, u) > µ(L)u for c0r2j−1 ≤ u ≤ r2j−1, j = 1, 2, . . . ,

f(t, u) < µ(L)u for c0r2j ≤ u ≤ r2j , j = 1, 2, . . . .

Then the singular BVP has at least n− 1 positive solutions ui in Kc0 , and they
satisfy ri ≤ ‖ui‖ ≤ ri+1 and c0ri ≤ ui(t) < ri+1 for all t ∈ [0, 1].
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Remark 5.2. When f is singular at u = 0 only the analogue of Theorem 4.6
is appropriate. There is a similar result using m, MJ , as in the comments
following Theorem 4.8.

Proof. Define a modification of f by

f̃(t, u) := f(t, c0r1 + (u− c0r1)+) where v+ :=

{
v if v ≥ 0,

0 otherwise.

Then f̃ is continuous on [0, 1] × [0,∞) and f̃(t, u) = f(t, u) for t ∈ [0, 1] and
u ≥ c0r1. Thus f̃ satisfies the conditions of Theorem 4.6 and so the integral
operator Ñu(t) :=

∫ 1

0
G(t, s)g(s)f̃(s, u(s)) ds has fixed points ui with ‖ui‖ ≥ r1

and these are solutions of the modified BVP (with f replaced by f̃). Since we are
in the cone Kc0 , we have ui(t) ≥ c0‖ui‖ ≥ c0r1 so that f̃(t, ui(t)) = f(t, ui(t))
and the solutions are solutions of the original BVP. �

Remark 5.3. The reason why the singularity is practically irrelevant is sim-
ple: nonzero solutions in Kc0 are (strictly) positive on [0, 1] so do not interact
with the singularity.

In [16], Lan also discusses singular problems when the cone Kc0 can be used
with a similar method. Lan has results related to Theorem 4.8 with n = 3 but
does not have results on ‘eigenvalue crossings’. He gives applications to some
second order equations with periodic BCs and with Neumann BCs. Infante
[8], [9] uses similar ideas, related to Theorem 4.8, and treats some problems that
arise from a thermostat model, with a nonlocal BC involving a Riemann–Stieltjes
integral.

In [31], the equation u′′(t) + µa(t)f(t, u(t)) = 0 (µ > 0 is a parameter) with
the BCs u(0) − βu′(0) = 0, u(1) = αu(η) is studied when f is singular in u

as u → 0 and α > 0, β > 0. The authors impose an integrability condition
that has been employed in a number of papers, see some references in [10], [31].
One or two positive solutions are found in [31] using results similar to the case
n = 3 of Theorem 4.8. We remark that this is similar to Example 4.2, in fact the
Green’s function is strictly positive, so the integrability condition is not needed
and our Theorem 4.1 (also see Remark 5.2) can give stronger results on that
problem. The integrability condition is useful for other problems such as when
one BC is u(0) = 0. For example, singular problems are studied in [10] using the
integrability condition when the BCs are

αu(0)− βu′(0) =
∫ 1

0

a(s)u(s) ds, γu(1) + δu′(1) =
∫ 1

0

b(s)u(s) ds,

with αγ + αδ + βγ > 0 (but not necessarily β > 0, δ > 0), but, as we remarked
earlier, if the nonlocal parts are (strictly) positive then we may well be able to
use the cone Kc0 .
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