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Abstract. In this paper we survey a set of Brouwer fixed point theo-
rem equivalents. These equivalents are divided into four loops related to
(1) the Borsuk retraction theorem, (2) the Himmelberg fixed point theorem,
(3) the Gale lemma and (4) the Nash equilibrium theorem.

1. Introduction

In this paper we show the equivalence of many forms (some of them are
classic) of the following Brouwer fixed point theorem

Theorem 1.1 [4]. For the unit ball Bn := {x ∈ Rn : ‖x‖ ≤ 1} and a contin-
uous function f : Bn → Bn there exists x ∈ Bn such that x = f(x).

The motivation for writing the paper is as follows: the first reason is that
– as we believe – some of these equivalents and/or connections between these
equivalents are new and the second reason is gathering in one paper different
approaches of applications of the Brouwer theorem.

In the next section we present notation, necessary definitions and auxiliary
results to be used later. The third section contains the before mentioned equiv-
alents. The first set of equivalent forms covers some classic results connected to
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surjectivity property of continuous functions under proper assumptions on their
boundary behavior. Then we show some results for multifunctions which are
related to the Himmelberg fixed point theorem. The third loop involves equiv-
alence of the existence of economic equilibrium and the Brouwer theorem. The
last loop studies relations among simplex coverings, Maynard Smith equilibrium
and Nash equilibrium.

2. Preliminaries

Let N denote the set of positive integers, N0 = N ∪ {0}, Rn denote the
n-dimensional Euclidean space, and [n] := {1, . . . , n}, n ∈ N.

For vectors x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn we write x ≥ y, if
xi ≥ yi, i ∈ [n]; x > y is for strict component-wise inequalities xi > yi, i ∈ [n].
We write x ∈ Rn

+ for x ≥ 0 and x ∈ Rn
++ for x > 0. By ei we denote the ith unit

vector of the standard basis for Rn, n ∈ N.
In what follows, for n ∈ N0 the set

∆n =

{
x ∈ Rn+1

++ :

n+1∑
i=1

xi = 1

}
is the standard n-dimensional open unit simplex.

If A ⊂ Rn, then the closure of A and the interior of A are denoted by A and

intA, respectively. For vectors x, y ∈ Rn their scalar product is xy =
n∑

i=1

xiyi.

If A ⊂ Rn and x ∈ Rn, then xA := {xa ∈ R : a ∈ A}. If A,B ⊂ Rn, then
A + B := {a + b ∈ Rn : a ∈ A, b ∈ B}. |a| is the Euclidean norm of a ∈ Rn.
For any number n ∈ N, Bn ⊂ Rn denotes the closed n-dimensional unit ball and
∂(Bn) denotes its boundary. For a set X ⊂ Rn, conv(X) is its convex hull.

We now introduce some definitions:

• [9] Let X ⊂ Rn, n ∈ N. X is said to be almost convex if for any
neighbourhood V of 0 ∈ Rn and any finite set x1, . . . , xk ∈ X there exist
points v1, . . . , vk ∈ V such that conv({x1 + v1, . . . , xk + vk}) ⊂ X.
• A function f : X → Rn, X ⊂ Rn, n ∈ N, satisfies the Walras law if, for
x ∈ X, xf(x) = 0.
• A function f : X → Rn, X ⊂ Rn, n ∈ N, is bounded from below if

inf
x∈X

fi(x) > −∞ for all coordinates fi of f , i ∈ [n].

• A function f : X → R, where X is a convex subset of Rn, n ∈ N, is
concave if, for x, x′ ∈ X, α ∈ [0, 1],

f(αx+ (1− α)x′) ≥ αf(x) + (1− α)f(x′).

• A function f : X → R, where X is a convex subset of Rn, n ∈ N, is quasi
concave (q.c.) if, for x, x′ ∈ X, α ∈ [0, 1],

f(αx+ (1− α)x′) ≥ min{f(x), f(x′)}.
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• A function f : X → R, where X is a convex subset of Rn, n ∈ N, is
strictly quasi concave (s.q.c.) if for x, x′ ∈ X, x 6= x′, α ∈ (0, 1),

f(αx+ (1− α)x′) > min{f(x), f(x′)}.

• [10] For a nonempty convex and closed set X ⊂ Rn, n ∈ N, a nonempty
proper subset D of X is called a face of X if there exists a vector 0 6=
p ∈ Rn and a number α ∈ R such that D = X ∩ {x ∈ Rn : px = α} and
px > α for x ∈ X \D.
• A function f : X → X, where ∅ 6= X ⊂ Rn, n ∈ N, is a convex and

closed set, preserves faces if, for any face D of X, f(D) ⊂ D.
• Let f = (f1, . . . , fn) : X1 × . . . × Xn → Rn, Xi ⊂ Rni , ni ∈ N, i ∈ [n],
n ∈ N, be given. A point x = (x1, . . . , xn) ∈ X1 × . . . × Xn is Nash
equilibrium for f if fi(x) ≥ fi(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn) for all x′i ∈

Xi, i ∈ [n].
• [1, p. 109] A multifunction f : X ( Y , where X,Y ⊂ Rn are nonempty

sets, is upper semicontinuous at x ∈ X if for each open set W ⊂ Y such
that f(x) ⊂ W there exists an open neighbourhood U ⊂ X of x with
f(u) ⊂ W for all u ∈ U . The multifunction f is upper semicontinuous
(u.s.c.) if it is upper semicontinuous at each x ∈ X.

• [1, p. 109] A multifunction f : X ( Y , where X,Y ⊂ Rn are nonempty
sets, is lower semicontinuous at x ∈ X if for each open set W ⊂ Y such
that f(x)∩W 6= ∅ there exists an open neighbourhood U ⊂ X of x with
f(u)∩W 6= ∅ for all u ∈ U . The multifunction f is lower semicontinuous
(l.s.c.) if it is lower semicontinuous at each x ∈ X.

We need the following lemmata:

Lemma 2.1 [1, Corollary, p. 112]. Suppose that f is a multifunction from
X ⊂ Rn to Y ⊂ Rm (m,n ∈ N), with nonempty closed values, and Y is compact.
Multifunction f : X ( Y is u.s.c. if and only if the graph of f , {(x, y) ∈ X×Y :

y ∈ f(x)}, is closed in Rn × Rm.

Lemma 2.2. Suppose that A is an almost convex dense subset of B ⊂ Rn,
n ∈ N. Then A is convex and A = B.

Proof. The equality A = B is obvious. For convexity of A, see [11, Corol-
lary 2.6]. �

Lemma 2.3 [1, Maximum theorem, p. 115–117]. Let g : X ( Y , ∅ 6= X ⊂ Rn,
∅ 6= Y ⊂ Rm (m,n ∈ N) be a continuous multifunction, i.e. u.s.c. and l.s.c.,
with nonempty compact values, and let f be a continuous real valued function
defined on the graph of g. Then the multifunction X 3 x( argmax

y∈g(x)
f(x, y) ⊂ Y

is u.s.c. with nonempty compact values. If for each x ∈ X the set argmax
y∈g(x)

f(x, y)
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is a one-element set, then the just mentioned mapping is the continuous function
from X to Y .

Lemma 2.4. Let ∅ 6= X ⊂ Rn, n ∈ N, be a compact and convex set with
intX 6= ∅. There exists a homeomorphism h : X → Bn satisfying h(∂(X)) =

∂(Bn) and h(x) 6= −h(x′), for x, x′ ∈ D, where D is a face of X.

Proof. Without loss of generality assume that 0 ∈ intX. For x ∈ X \ {0}
we define t(x) := max{t ≥ 0 : tx ∈ X} and let h : X → Bn be defined for
x ∈ X by

h(x) :=


1

t(x)|x|
x, x 6= 0,

0, x = 0.

It is obvious that h is a homeomorphism with h(∂(X)) = ∂(Bn).
Now, let D be a face of X and let x, x′ ∈ D. Suppose that p and α are the

vector and the number defining D, respectively. Thus px = px′ = α and since 0

is in the interior of X, α 6= 0. Assuming h(x) = −h(x′) we get a contradiction.�

3. The equivalents

3.1. The first loop. The following theorems are equivalent:

(1) If f : ∂(Bn+1) → ∂(Bn+1), n ∈ N0, is a continuous function such that
for x ∈ ∂(Bn+1) : x 6= f(x), then f is surjective.

(2) If f : ∂(Bn+1) → ∂(Bn) × {0}, n ∈ N, is continuous, then, for some
x ∈ ∂(Bn+1), x = f(x).

(3) There is no continuous function f : Bn → ∂(Bn), n ∈ N, such that
x 6= f(x) for x ∈ ∂(Bn).

(4) [18] If f : Bn → Bn, n ∈ N, is a continuous function with f(∂(Bn)) ⊂
∂(Bn) and for x ∈ ∂(Bn) we have x 6= f(x), then f(Bn) = Bn.

(5) If f : X → X is a continuous function, where X is a compact and convex
subset of Rn, n ∈ N, int (X) 6= ∅, and f preserves faces, then f is
surjective.

(6) [3] If f : ∆n → ∆n, n ∈ N0, is continuous and preserves faces, then f is
surjective.

(7) [5, p. 95, Theorem 7.2 (Borsuk)] There exists no retraction r : Bn →
∂(Bn), n ∈ N.

Proof. (1)⇒(2) Since ∂(Bn) × {0} ( ∂(Bn+1) and f is continuous, the
claim follows.

(2)⇒(3) Let g : ∂(Bn+1) → Bn, g(x1, . . . , xn, xn+1) := (x1, . . . , xn) and de-
fine h : ∂(Bn) → ∂(Bn) × {0} by h(x) := (x, 0). For a continuous function
f : Bn → ∂(Bn), consider the composition

h ◦ f ◦ g : ∂(Bn+1)→ ∂(Bn)× {0}.
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The function h ◦ f ◦ g satisfies assumptions of (2), so there exists x′ ∈ ∂(Bn+1)

such that h(f(g(x′))) = x′. But x′ ∈ ∂(Bn)× {0} so x′ = (x, 0) ∈ ∂(Bn)× {0}.
Therefore f(g(x, 0)) = x and f(x) = x ∈ ∂(Bn). This proves (3).

(3)⇒(4) If f(Bn) ( Bn then there exists y ∈ Bn \ f(Bn). Define g : Bn →
∂(Bn) by g(x) = y + t(x)(f(x)− y), where t(x) = max{t ≥ 0 : y + t(f(x)− y) ∈
Bn}. The function g(x) is continuous and (3) implies that there exists x ∈ ∂(Bn)

such that x = g(x) (1). Since x ∈ ∂(Bn) then by assumptions of (4) f(x) ∈ ∂(Bn)

and g(x) = f(x), so f(x) = x ∈ ∂(Bn), but this is impossible.

(4)⇒(5) Suppose that y ∈ X \ f(X). Since f is continuous and X is com-
pact and convex we can assume that y ∈ int (X), and y = 0 ∈ int (X) (after
a translation if needed). Let h be the homeomorphism existing by Lemma 2.4.
Define g : Bn → Bn by g(x) := (h ◦ f ◦ h−1)(−x) for x ∈ Bn. Since faces of X
are contained in the boundary of X, f preserves faces and h maps ∂(X) onto
∂(Bn), then it follows that g(x) ∈ ∂(Bn) for x ∈ ∂(Bn). Observe that g(x) = x,
or equivalently f(h−1(−x)) = h−1(x), implies h−1(−x) and h−1(x) belong to
the same face of X and consequently, by Lemma 2.4, −x = −h(h−1(x)) 6=
h(h−1(−x)) = −x, which is not possible. Thus for x ∈ ∂(Bn) g(x) 6= x, g satis-
fies assumptions of Theorem (4) and g is surjective. By the definition of g, the
function f is also surjective.

(5)⇒(6) Obvious.

(6)⇒(7) Suppose that r : Bn → ∂(Bn) is a retraction. For x = (x1, . . . , xn+1)

in ∆n let p(x) := (x1, . . . , xn). The function p is a homeomorphism between ∆n

and X =
{
x ∈ Rn

+ :
n∑

i=1

xi ≤ 1
}
. Let h : X → Bn be the homeomorphism in

Lemma 2.4. Define g : ∆n → ∆n by g(x) := ((p−1 ◦h−1)◦r◦ (h◦p))(x), x ∈ ∆n.
The function g is the identity on ∂(∆n) and satisfies assumptions of (6). Thus
g is surjective and by definition of g, g(∆n) ⊂ ∂(∆n). But this is impossible.

(7)⇒(1) Suppose f satisfies assumptions in (1) but is not surjective. Let
y ∈ ∂(Bn+1) \ f(∂(Bn+1)). Since f is continuous, then there exists ε > 0, such
that Bε(y) := {x ∈ ∂(Bn+1) : |x − y| < ε} is disjoint from the image of f .
Obviously, ∂(Bn+1) \Bε(y) is homeomorphic to Bn.

Let h : Bn → ∂(Bn+1) \ Bε(y) be a homeomorphism. Define g : Bn → Bn

by g(x) := (h−1 ◦ f ◦ h)(x) for x ∈ Bn. Observe that g(x) = x for some x ∈ Bn

implies x = (h−1 ◦ f ◦ h)(x) and h(x) = (f ◦ h)(x). The last fact contradicts
assumptions on f . Thus g(x) 6= x for all x ∈ Bn.

Let r : Bn → ∂(Bn) be defined by r(x) := g(x) + t(x)(x − g(x)), where
t(x) := max{t ≥ 0 : g(x) + t(x− g(x)) ∈ Bn}, x ∈ Bn. One can check that r is
a retraction from Bn to ∂(Bn). �

(1) One can find a proof of continuity of the function t( · ) in [15, pp. 413, 416].



268 A. Idzik — W. Kulpa — P. Maćkowiak

3.2. The second loop. The following theorems are equivalent:

(1) [13, Kakutani] If f : Bn ( Bn, n ∈ N, is an u.s.c. multifunction with
nonempty convex and closed values, then f has a fixed point: x ∈ f(x)

for some x ∈ Bn.
(2) [9, Theorem 1] If D is a nonempty convex and compact subset of Rn,

n ∈ N, and f : D( D is an u.s.c. multifunction such that f(x) is closed
for x ∈ D and convex for x ∈ C, where C is an almost convex dense
subset of D, then f has a fixed point.

(3) [12, Theorem 3.2] Suppose that C, D are nonempty and almost convex
subsets of Rn, n ∈ N, and C is a dense subset of D. Let f : D ( D be
an u.s.c. multifunction with nonempty closed values and such that f(x)

is convex for x ∈ C. If f(D) is a bounded subset of D, then f has a
fixed point.

(4) [9, Theorem 2] If D is a nonempty and convex subset of Rn, n ∈ N,
f : D ( D is an u.s.c. multifunction such that f(x) is a nonempty
convex and closed set for x ∈ D, f(D) ⊂ D and f(D) is bounded, then
f has a fixed point.

(5) If f : ∆n ( ∆n, n ∈ N0, is an u.s.c. multifunction with nonempty
convex and closed values, then there exist sequences xq, yq ∈ ∆n with
yq ∈ f(xq), q ∈ N, satisfying limq→∞(yq − xq) = 0.

(6) [25, Nash-2], [27] Let f = (f1, . . . , fn) : X1 × . . .×Xn︸ ︷︷ ︸
X

→ Rn, where

Xi ⊂ Rni , ni ∈ N, is a nonempty convex and compact set, i ∈ [n],
n ∈ N, be a continuous function. Suppose that each coordinate function
fi is quasiconcave in xi, for fixed x1, . . . , xi−1, xi+1, . . . , xn, i ∈ [n]. Then
there exists Nash equilibrium for f .

Proof. (1)⇒(2) For a proof, see [9, Theorem 1].

(2)⇒(3) Let E := conv(f(D)). E is a compact convex subset of D (Lemma
2.2) and since C = D, then for a set C ′ := C ∩E′, where E′ := (E+ intBn)∩D
and intBn denotes the interior of Bn, it holds C ′ = E′ and C ′, E′ are nonempty
almost convex and bounded sets with C ′ ⊂ E′.

Now, let G := {(x, y) ∈ E′ × E′ : y ∈ f(x)} and define a multifunction
g : E′ ( E′ by g(x) := {y ∈ E′ : (x, y) ∈ G}. By Lemma 2.1, the multifunction
g is u.s.c. and since E′ is compact and convex, then g satisfies assumptions of (2)
(with C ′ being the dense subset). So there exists x ∈ E′ such that x ∈ g(x).
Observe that f(E′) ⊂ f(D) ⊂ D and f(E′) ⊂ f(D) ⊂ E ⊂ E + Bn, hence
f(E′) ⊂ E′ and f(E′) ⊂ E′. Furthermore, G ⊂ E′ × f(E′). By definition of g,
g(E′) ⊂ f(E′) ⊂ f(D). Thus, for the fixed point x ∈ E′, x ∈ g(x) ⊂ f(D) ⊂ D.
Therefore (x, x) ∈ G and there exists a sequence (xq, yq) ∈ G, yq ∈ f(xq), q ∈ N
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with lim
q→∞

(xq, yq) = (x, x). By u.s.c. of the multifunction f and because x ∈ D,

x ∈ f(x).

(3)⇒(4) Obvious.

(4)⇒(5) Let us fix q ∈ N and define

eiq :=

(
1

nq
, . . . ,

1

nq
, 1− 1

q
,

1

nq
, . . . ,

1

nq

)
∈ Rn+1,

where 1 − 1/q occurs on the ith coordinate, i ∈ [n + 1]. Observe that eiq ∈ ∆n

for q > 1 and lim
q→∞

eiq = ei, i ∈ [n + 1]. Let us also define αq(x) =
n+1∑
i=1

xie
i
q

for x ∈ ∆n and Dq = αq(∆n). It is clear that Dq is a nonempty convex and
compact subset of ∆n and αq is a continuous function on ∆n, mapping convex
compact subsets of ∆n onto convex compact subsets of Dq. Furthermore, let
fq : ∆n ( ∆n be defined by fq(x) := αq(f(x)), x ∈ ∆n. As the composition of
a continuous function and an u.s.c. mapping the mapping fq is u.s.c. Moreover,
fq(x) is a convex and compact subset of a compact set Dq ⊂ ∆n for x ∈ ∆n and
fq(∆n) ⊂ Dq. Theorem (4) now guarantees that there exists xq ∈ Dq such that
xq ∈ fq(xq). Assume that xq ∈ fq(xq) for each q ∈ N. It holds xq = αq(yq) for
some yq ∈ f(xq) and therefore (for convergent subsequences if necessary)

0 = lim
q→∞

(αq(yq)− xq) = lim
q→∞

(( n+1∑
i=1

yqi e
i
q

)
− xq

)

= lim
q→∞

(( n+1∑
i=1

yqi e
i

)
− xq

)
= lim

q→∞
(yq − xq),

which completes the proof.

(5)⇒(6) Suppose that f = (f1, . . . , fn) satisfies the assumptions of Theo-
rem (6). Since function fi is continuous on X and q.c. with respect to the ith
variable, then Lemma 2.3 implies that

gi(x) := argmax
x′
i∈Xi

fi(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

is an u.s.c. multifunction from X to Xi with nonempty, convex and compact
values, i ∈ [n]. Let g(x) := g1(x)× . . .× gn(x), x ∈ X. Notice that g(x) ⊂ X for
x ∈ X. Without loss of generality we assume that X is a retract of ∆n′

for some
n′ ∈ N. Theorem (5) now implies the existence of points xq ∈ X, yq ∈ g(xq),
q ∈ N, such that lim

q→∞
(xq− yq) = 0. The compactness of X and u.s.c. of g imply

that we may assume lim
q→∞

xq = x ∈ X and lim
q→∞

yq = x ∈ g(x). The point x is

Nash equilibrium for f .

(6)⇒(1) For the implication [Nash-2]⇒[Kakutani], see [25]. �



270 A. Idzik — W. Kulpa — P. Maćkowiak

3.3. The third loop. The following theorems are equivalent:

(1) [15, p. 137] Let f : ∆n → Rn+1, n ∈ N0, be a continuous function. Then
there exists x ∈ ∆n such that either f(x) ≤ 0 or for i ∈ [n + 1]: xi > 0

if and only if fi(x) > 0.
(2) Let f : ∆n → Rn+1, n ∈ N0, be a bounded from below and continuous

function satisfying the Walras law and the following boundary condition:
x = lim

q→∞
xq, xq ∈ ∆n, q ∈ N and xi = 0, imply lim inf

q→∞
fi(x

q) > 0,

i ∈ [n+ 1]. Then there exists x ∈ ∆n such that f(x) = 0.
(3) Let f : ∆n → Rn+1, n ∈ N0, be a bounded from below and continuous

function satisfying the Walras law and the following boundary condition:
x = lim

q→∞
xq, xq ∈ ∆n, q ∈ N and xi = 0, imply lim

q→∞
fi(x

q) = +∞,

i ∈ [n+ 1]. Then there exists x ∈ ∆n such that f(x) = 0.
(4) [19, Theorem 3] Let f : ∆n → Rn+1, n ∈ N0, be a bounded from below

continuous function satisfying the Walras law. There exists a sequence
xq ∈ ∆n, q ∈ N, satisfying lim

q→∞
fi(x

q) ≤ 0, i ∈ [n+ 1].

(5) Let f : ∆n → Rn+1, n ∈ N0, be a continuous function and suppose that
g : ∆n → ∆n is a homeomorphism satisfying g(x)f(x) = 0 for x ∈ ∆n.
There exists x ∈ ∆n satisfying f(x) ≤ 0.

(6) [8, Principal Lemma, p. 159] Let f : ∆n → Rn+1 for n ∈ N0, be a contin-
uous function satisfying the Walras law. There exists x ∈ ∆n satisfying
f(x) ≤ 0.

Proof. (1)⇒(2) Suppose that assumptions of (2) are satisfied. For q ∈ N,
let eiq ∈ Rn+1 be defined as in the proof of the implication (4)⇒(5) in the second

loop, Section 3.2, i ∈ [n+ 1], and let αq(x) :=
n+1∑
i=1

xie
i
q for x ∈ ∆n. Notice that

αq(x) ∈ ∆n, x ∈ ∆n, for q > 1. The composition f ◦αq is a continuous function
from ∆n to Rn+1, q ∈ N, q > 1. By Theorem 1 for each q there exists xq ∈ ∆n

such that either f ◦ αq(xq) ≤ 0 or for i ∈ [n+ 1]: fi(αq(xq)) > 0 is equivalent to
xqi > 0.

Suppose that for infinitely many q: fi(αq(xq)) > 0 if and only if xqi > 0,
i ∈ [n + 1]. We may assume that lim

q→∞
αq(xq) = x ∈ ∆n. If xi = 0 for some

i ∈ [n + 1], then by the boundary condition it holds fi(αq(xq)) > 0 for large q
and we conclude that our assumption implies f(αq(xq)) > 0 for large q. But this
is impossible in view of the fact that αq(xq) > 0 and αq(xq)f(αq(xq)) = 0 (the
Walras law) for all q ∈ N. Therefore there exists q ∈ N such that f(αq(xq)) ≤ 0.
Thus, the Walras law and the inequality αq(xq) > 0 imply f(αq(xq)) = 0.

(2)⇒(3) Obvious.
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(3)⇒(4) Suppose that the function f satisfies assumptions of (4). For every
q ∈ N define fq: ∆n → Rn+1 by fq(x) := f(x) + q−1g(x), where

g(x) :=

(
1

(n+ 1)x1
− 1, . . . ,

1

(n+ 1)xn+1
− 1

)
.

It can be easily checked that fq satisfies assumptions of Theorem (3). So that
for q ∈ N there is xq ∈ ∆n such that fq(xq) = 0. Suppose we have chosen a
sequence xq ∈ ∆n with lim

q→∞
xq = x ∈ ∆n and fq(xq) = 0. For i ∈ [n + 1] it

holds:

(∗) fi(x
q) = −q−1

(
1

(n+ 1)xqi
− 1

)
.

If xi = 0, then for large values of q the right-hand side term of the equation (∗)
is negative so that in the limit the left-hand side term must be non positive (and
can not be divergent to −∞ since F is bounded from below). If xi > 0, then the
limit of the left-hand side of the equation (∗) is 0.

(4)⇒(5) Suppose that f and g meet the assumptions of Theorem (5). Let
g−1 denote the inverse of the function g. Notice that g(x)f(x) = g(x)(f ◦
g−1)(g(x)) = 0, hence x(f ◦ g−1)(x) = 0 for x ∈ ∆n, because g is a homeomor-
phism. Theorem (4) applied to f ◦ g−1 and the continuity of f ◦ g−1 defined on
the compact set ∆n, imply that there exists x ∈ ∆n satisfying f(g−1(x)) ≤ 0.
Obviously, g−1(x) ∈ ∆n.

(5)⇒(6) Obvious.

(6)⇒(1) Suppose that there is no x satisfying f(x) ≤ 0. Define h : ∆n →
Rn+1 by h(x) := f(x) − xf(x)/(xx)x. Observe h satisfies assumptions of (6)
and there exists x ∈ ∆n such that h(x) ≤ 0. We have f(x) ≤ xf(x)/(xx)x,
or equivalently fi(x) ≤ xf(x)/(xx)xi, i ∈ [n + 1]. So xf(x) > 0, since x ≥ 0.
Obviously, if fi(x) > 0 then xi > 0. If for some j, xj > 0 but fj(x) ≤ 0,
then fj(x)xj < xf(x)/(xx)(xj)

2. But for i ∈ [n+ 1] fi(x)xi ≤ xf(x)/(xx)(xi)
2.

Adding the inequalities and using the strict inequality for j we get

f(x)x =

n+1∑
i=1

fi(x)xi <
xf(x)

xx

n+1∑
i=1

(xi)
2 =

xf(x)

xx
xx = xf(x),

which is impossible. �

3.4. The fourth loop. The following theorems are equivalent:

(1) [7, Theorem 1] Let X ⊂ Rn, n ∈ N, be a nonempty convex compact set
and suppose that {Ai}i∈I is a locally finite family of closed subsets of X
such that X =

⋃
i∈I

Ai. Then for any family {xi}i∈I of points of X, there
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exists a non-empty finite subset J of I such that

conv({xj : j ∈ J}) ∩
( ⋂

j∈J
Aj

)
6= ∅.

(2) [15, p. 185] Let A1, . . . , An+1 ⊂ Rn+1, n ∈ N0, be an open (a closed)
covering of ∆n. Then there exists a subset of indices {i1, . . . , ik} ⊂ [n+1],
i1 < . . . < ik, such that

conv({ei1 , . . . , eik}) ∩Ai1 ∩ . . . ∩Aik 6= ∅.

(3) [14, KKM Lemma] If a family of open (closed) sets A1, . . . , An+1 ⊂ Rn+1,
n ∈ N0, admits conv({ei1 , . . . , eik}) ⊂ Ai1 ∪ . . . ∪ Aik for any subset of
indices {i1, . . . , ik} ⊂ [n+ 1], then A1 ∩ . . . ∩An+1 6= ∅.

(4) [16, Theorem on Indexed Families] Let f : ∆n → X, n ∈ N0, where
X 6= ∅ is a topological Hausdorff space, be a continuous function. Then
for any open cover A1, . . . , An+1 of X there exists a subset of indices
{i1, . . . , ik} ⊂ [n+ 1] satisfying

f(conv({ei1 , . . . , eik})) ∩Ai1 ∩ . . . ∩Aik 6= ∅.

(5) [6, Corollary 1], [17, Maynard Smith Theorem] Let X ⊂ Rn, n ∈ N,
be a nonempty convex compact set and suppose that f : X ×X → R is
a continuous function such that f( · , y) is q.c. for any fixed y ∈ X. Then
there exists y ∈ X such that f(x, y) ≤ f(y, y), x ∈ X.

(6) Let f = (f1, . . . , fn) : X1 × . . .×Xn︸ ︷︷ ︸
X

→ Rn, where ∅ 6= Xi ⊂ Rni and

ni ∈ N, is a nonempty convex and compact set, i ∈ [n], n ∈ N, be
a continuous function. Suppose further that each coordinate function fi
is concave in xi given any x1, . . . , xi−1, xi+1, . . . , xn fixed. Then there
exists x ∈ X such that∑

i∈I
fi(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤

∑
i∈I

fi(x)

for any subset I ⊂ [n], xi ∈ Xi, i ∈ I (2).
(7) [15, p. 141] Suppose that f is as in (6). Then there exists Nash equilib-

rium for f .
(8) [25, Nash-1] Suppose that f is as in (6), with ’concave’ changed to

’strictly quasi concave’. Then there exists Nash equilibrium for f .

Proof. (1)⇒(2) If the sets A1, . . . , An+1 in the formulation of (2) are closed,
then (2) is obviously implied by (1). If the sets A1, . . . , An+1 are open it suffices
to consider the case where

⋂
i∈[n+1]

Ai = ∅. Let Aε
i := {x ∈ Ai : dist(x, ∂Ai) ≥ ε},

where dist(x, ∂Ai) denotes the distance of x ∈ ∆n from the boundary of Ai,

(2) This statement is motivated by the results contained in [21].
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i ∈ [n+ 1] (3). It is easy to see that there exists ε > 0 for which the closed sets
Aε

i , i ∈ [n+ 1], cover ∆n and since for i ∈ [n+ 1] Aε
i ⊂ Ai, claim (2) is true for

open sets, too.

(2)⇒(3) Suppose that Theorem (3) is false. For a family of sets Ai satisfying

assumptions of Theorem (3) with
n+1⋂
i=1

Ai = ∅ define Bi := ∆n \ Ai, i ∈ [n + 1],

and apply Theorem (2) with Bi in place of Ai to get a contradiction.

(3)⇒(4) Let Bi := f−1(Ai), i ∈ [n + 1]. By continuity of f , the family Bi,
i ∈ [n+ 1], is an open cover for ∆n. Suppose that there is no nonempty subset
I ⊂ [n + 1] for which conv({ei : i ∈ I}) ∩

⋂
i∈I

Bi 6= ∅. This implies that for any

subset I ⊂ [n + 1] it holds conv({ei : i ∈ I}) ⊂
⋃

i∈I ∆n \ Bi. Therefore the
family of closed sets ∆n\Bi, i ∈ [n+ 1], satisfies assumptions of (3) and we get

n+1⋂
i=1

∆n \Bi 6= ∅.

Moreover,

n+1⋂
i=1

∆n \Bi = ∆n \
( n+1⋃

i=1

Bi

)
= ∆n \

( n+1⋃
i=1

f−1(Ai)

)
= ∆n \∆n = ∅

which is not possible.

(4)⇒(5) Just apply the proof of the Maynard Smith theorem in [15, p. 140] (4).

(5)⇒(6) Suppose that f = (f1, . . . , fn) satisfies the assumptions of Theo-
rem (6). Define g : X ×X → R by

g(x, x′) :=
∑
i∈[n]

fi(x
′
1, . . . , x

′
i−1, xi, x

′
i+1, . . . , x

′
n).

One can easily check that g is continuous in its domain and concave in its first
variable for any fixed x′ ∈ X. Theorem (5) implies the existence of x ∈ X such
that g(x, x) ≤ g(x, x) for x ∈ X. Let ∅ 6= I ⊂ [n] and take any vector x ∈ X
such that xi = xi, i ∈ I. It holds

g(x, x) =
∑

i∈[n]\I

fi(x) +
∑
i∈I

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn)

≤ g(x, x) =
∑

i∈[n]\I

fi(x) +
∑
i∈I

fi(x)

(3) The standard simplex ∆n is treated here as a topological subspace of Rn endowed with
the natural topology.

(4) The proof in [15] is carried out under the assumption of concavity, but it is also valid
in the case of quasiconcavity.
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and canceling the same terms on both sides we get∑
i∈I

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤
∑
i∈I

fi(x).

(6)⇒(7) It suffices to consider all one element subsets of [n].

(7)⇒(8) Suppose that f = (f1, . . . , fn) satisfies the assumptions of Theo-
rem (8). Functions fi are continuous and s.q.c. in variable xi for any fixed
x1, . . . , xi−1, xi+1, . . . , xn, which in view of convexity and compactness of the
domain of f and Lemma 2.3 implies that multifunctions

gi(x) := argmax
x′
i∈Xi

fi(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn), i ∈ [n],

are continuous functions from X to Xi. Let f i : X → Rn be defined by f i(x) :=

fi(x1, . . . , xi−1, gi(x), xi+1, . . . , xn) for x ∈ X and i ∈ [n]. The functions f i are
continuous and each f i is constant with respect to the ith variable, while all
other variables are fixed, so in particular it is concave with respect to the ith
variable. Thus, the function f = (f1, . . . , fn) : X → Rn satisfies assumptions
of Theorem (7) and there exists Nash equilibrium x ∈ X for f . Therefore
f i(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ f i(x) and

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn)

≤ fi(x1, . . . , xi−1, gi(x), xi+1, . . . , xn) = f i(x)

for xi ∈ Xi, i ∈ [n]. We obtain:

xi = argmax
xi∈Xi

fi(x1, . . . , xi−1, xi, xi+1, . . . , xn),

i ∈ [n], so x is Nash equilibrium for f .

(8)⇒(1) If (8) is true, then the Brouwer fixed point theorem follows from [25].
From the second loop we know that the Brouwer fixed point theorem implies the
Kakutani fixed point theorem. And from the Kakutani fixed point theorem we
can derive (1) – see [7] for a simple proof. �

4. Final comments

Equivalence of the first loop and the Brouwer fixed point theorem comes
easily from equivalence of the Borsuk theorem and the Brouwer theorem – see
[5, p. 95]. It is clear that the Kakutani fixed point theorem (Theorem (1) in the
second loop) implies the Brouwer theorem; the implication in reverse direction
is also well-known (e.g. see [22, p. 67]). For equivalence of Theorem (6) in the
third loop and the Brouwer theorem see [2, p. 47], and [26]. It is also known
that the KKM lemma (Theorem (3) in the last loop) is equivalent to the Brouwer
theorem [2, p. 28, p. 44]. A recent non-constructive proof of the Brouwer theorem
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is presented in [24]. In [20] a new constructive proof of Theorem (3) from the
third loop is given.

Finally, in the paper [23] many equivalent formulations and a historical back-
ground of the Brouwer fixed point theorem can be found.
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