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mentary extensions. Stronger results have been obtained more recently by
other methods. These are used to construct "small" elementary subsystems.
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This paper surveys some problems in the model theory of
uncountable first order languages. These problems were first raised in
Mal'cev [1959]. Their solutions involve the construction of infinite models
which are "small" relative to the cardinality of their language. The most
important of these problems concern extending the Upward Löwenheim-
Skolem Theorem for uncountable languages. The earliest results relevant to
this problem used the ultraproduct construction to obtain "small" ele-
mentary extensions. Stronger results have been obtained more recently by
other methods. These are used to construct "small" elementary subsystems.

Let К be a non-empty set of objects whose members are called non-

logical constants. LK denotes the first-order language with equality over K.

SK denotes the set of sentences in LK- Interpretations for L K are ordered

pairs 21 = (A,ßi) where A is a non-empty set (the domain of Щ and ./a is a

function defined on К taking values in the usual way. Тк denotes the

proper class of interpretations for LK. For any set B, |B| denotes the

cardinal number of B, and \Щ denotes |A|. In the following, the cardinality

o f L K wil lbe |S K | .

For НеТк, 21 is small provided |2l| < |SK| . Thus, all finite inter-

pretations are small; and, when К is uncountable, Тк contains small infinite

interpretations. In the following, attention is restricted to small infinite

interpretations, and so to uncountable languages. The "small model" termi-

nology is from Mal'cev [1959]. Mal'cev is credited with having initiated the

study of uncountable languages some twenty years earlier (cf. Mal'cev

[1936], [1941]). These papers represent a step toward viewing languages as

abstract mathematical objects intended to model either natural or artificial

languages (cf. Vaught [1974], p. 164). Even on this "abstract" view, un-

countable languages are "imaginary" in that there are no "real" languages

to which they correspond (cf. Vaught [1973], p. 7), and it has been argued

that using the term "language" in referring to such an uncountable collec-

tion is misleading (cf. Church [1956], p. 52).

Most of the results below have appeared in the literature. However,

some of the proofs have not. Some of the results concerning small models

have been discussed elsewhere in the literature. The discussions are usually

part of a survey of applications of the ultraproduct construction and focus
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on the work of Rabin rather than that of Mal'cev (e.g., Keisler [1965],

Chang [1967]). The majority of results are not widely known and there is

no single place in the literature where they have been assembled and

discussed.

For 21еТк, (J)€SK, 21 1= Ф indicates that 21 is a model of ф. For S s

SK, 21 N S indicates that 21 is a model of S. When (j)(jq ,..., xn) is a

formula in LK and a \,..., an are in A, <K*i ,—, Xn) [ai,..., an] indicates that

<Kxi,..., Xn) is satisfied by (a\,..., an) in 21. For 8 е Т к , 21 is a subsystem of

21 ( 8 is an extension o/2l) provided ( l ) A c ß and (2) for all ф(х\,..., xn)

atomic formulae in LK and all a\, ...,an in A, 211= ф(*ь—> *n) [яь—> an] iff

8 |= ф(дс1,..., xn)[a\,..., an]. 21 с В indicates that 21 is a subsystem of B. 21

is an elementary subsystem of 21 (B is an elementary extension of 21)

provided (1) Ac B; and (2) for all ф(х1,..., xn) formulae in LK and all a\,

..., an in A, 21 1= ф(х1,..., xn) [ûi,..., an] iff 8 N ф(х1,..., xn) [a\,..., an]. 21

¿ В indicates that 21 is an elementary subsystem of 8 . 21 is a proper

elementary subsystem of 8 ( 8 is a proper elementary extension of 21)

provided 21 < 8 and В * A.

The focus of the following is on two related subjects: (1) inter-

pretations with small elementary extensions and (2) theories with small

infinite models. The discussion of the first is centered on the following

relation on infinite cardinals. For a, ß, к infinite cardinals, а кН> ß iff (1)
a < ß ; and (2) for all К such that |SKI = к and 21еТк such that |2l| = a,

then there is а 8 е Т к such that 21 < 8 and | 8 | = ß. In the following a, ß,
and к will range over infinite cardinals.

THEOREM 1 [Tarski-Vaught (1957)]: Ifa<$ and к < ß, then а кн> ß.

Theorem 1 is just the Upward Löwenheim-Skolem Theorem. Notice
that when к is countable and a < ß, then a ^ ß . However, when a < ß, and
ß< к, as can happen when к is uncountable, Theorem 1 gives no informa-
tion. In this case, showing that а к в р involves the construction of small

elementary extensions. This construction is not entirely trivial in the sense

that it is easily obtained by some modification of any of the standard

arguments for Theorem 1. To see this, consider the compactness argument

for Theorem 1. Given а < ß, К such that |SKI = к and 8 е Т к where |A| =
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a, let K' = {ka '• a e A] be a set of individual constants disjoint from К and
let K" = {k®> : 0 < ß} be another set of individual constants disjoint from
KUK'. In LKUK-, form the complete diagram of 21 and let T be the
complete diagram of 21 together with {k@ * k& : 0 *• 0', 0, 0 ' < ß}. T is
a set of sentences in LKUK'UK" and |SKUK'UK"I = a + к + ß. When ß < к,
we have a + к + ß = ß. Every finite subset of T has a model. Hence, by the
com-pactness theorem for LKUKUK", T has a model of cardinality < ß; and
this model, when restricted to an interpretation for LK, is an elementary
extension of 21. But, since T contains к© * k&, the cardinality of this model
is exactly ß. When ß < к, the cardinality of LKUKUK" is к, hence 21 has an
elementary extension of cardinality at least ß and no greater than к, and the
above compactness argument fails.

LEMMA 1 [Rabin (1959)]: If a = Л and 2 U T K is such that \Щ = a, then
there is a S in Тк such that |23| = a and В is a proper elementary
extension of 21.

This lemma was proved by Rabin using an ultraproduct construction.
Lemma 1 and the elementary chain theorem yield the following:

THEOREM: If a = a^o, then for all к, а кь-> <х+.

PROOF: Let К be such that |SKI = к and let 2leTK- Suppose that |2l|

= a and a = a**0. Construct the elementary chain {2lx : X < oc+} where 2Lo =

21, 2lx+l is a proper elementary extension of 2lx , and for all X, |2lxl - a.

If ^a + is the union of this chain, then 21 ¿ 2la+ and ' 2la+ = a+.

The following is immediate from Theorem 2.

COROLLARY 1:

( ! ) 2 K h> (2 ) .and

(2) 3 e + 1 K [_> (̂ e+i)"1" ,for any ordinal 0.
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LEMMA 2 [Mal'cev (1959)]: IfU еТк and \Щ = a, then there is a 8 e T K

such that |B| = a^° and 8 is a proper elementary extension o

While Mal'cev stated the above, he proved only that |23| < a K o .

However, Lemma 2 is easily established (cf. Lemma 6). Notice that Lemma

2 implies Lemma 1. In addition, the following is immediate.

THEOREM 3: If a < a °, then a KH» « ° for all к.

Thus, &Q Kh>2 , so, assuming the Continuum Hypothesis, Ko Kh»

^ i An example of Mal'cev [1959] shows that the assumption of the
Continuum Hypothesis here is essential. In particular, K o # ß for all к
and ß where K > 2Ko and к i < ß < 2Ko. Let К = {fh'M ^°2} U {kg:h£ U
n2} (n > 1), where fh is a functional constant of degree 1 and kg is an
individual constant. Let T be the set of sentences in LK of the form

1 < ц < n

where h\n * h'\n. Then T has a countable model. Let A = U n2 (n > 1),
M(kg) = g and fiiikh) (g) = h\m iff g£m2. (A, fti) NT. Notice that no
countable model of T has a proper elementary extension of cardinality ß
where ^ i < ß < 2**o.

The following result was also noticed by Mal'cev.

THEOREM 4:

(1) If 2« = a+ , then а ф$ а+ for all к; and

(2) Assuming the Generalized Continuum Hypothesis, if a < ß, then
a yH>a+,for all к.
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PROOF: (2) is immediate from (1) and the elementary chain

theorem. (1) follows from Theorems 2 and 3 and a little cardinal

arithmetic. Suppose that 2« = oc+. Either oc**° = a or a < a * 4 If a^o = a,

apply Theorem 2. Suppose a < a**0. By Theorem 3, a Ki~» a^° and, by

supposition, 2 a = a+ . Thus a**0 = a + .

Theorem 4(2) is also immediate from the following lemma.

LEMMA 3: If for all cardinals X < a, 2^ < a, then а кН> fyfor all к.

Lemma 3 is established by an ultraproduct construction (cf.

Weaver {1992\). The following is also a consequence of Lemma 3.

THEOREM 5: 1Q KH> DQ+ 1 for all 0 and к, where 0 is a limit ordinal.

The following lemma is stronger than Lemma 3, and can be estab-

lished without the construction of an ultraproduct.

LEMMA 4:1/\Щ = a and ß > 2«, then there is а 8 such that 2 U 8 and | 8 |

PROOF: Given K, 21GTK and infinite cardinals a and ß, suppose that

= a and ß > 2 a . For n > 1 let x be jq ,..., xn, a sequence of n distinct

variables. Let ф(х) and ip(x) be formulas in LK whose free variables are

exactly JCI ,..., xn. Let ф(х) ~ ip(x) iff 21 t= Ух(ф(х) = ф(х))- ~ is an equi-

valence relation; and, for each n there are at most 2a-many equivalences

classes of formulas in free variables JCI ,..., xn- By Theorem 1, there is an

infinite cardinal X, and а £ е Т к such that ß < X, I <£I = X and U < £. If X

= ß, we are finished. Suppose ß < X. We claim that there is a 8 such that

21 s; 8 , 8 < &, and | 8 | = ß. Let B' be any subset of С such that A Œ B'

and IB'I = ß. Notice that ф(х) ~ \|/(x) iff Ê И Vx{(()(x) = ф(х)). Let/: С« ->

С, where/is a Skolem function for 3y$(x,y) in Ê iff for all d\, ...

if Ê 1= 3v0(x,j) [du ..., dn], then © N f f t j ) [di, ..., dnf(d\, ..

When ф^,}7) ~ V|/(x,j), there is a n / which is a Skolem function for both

Зуф(х,;у) and 3y\|/(x,>') in (£. Hence, there are at most 2a-many Skolem
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functions needed for formulas in LK- Let В be that subsystem of Ё
obtained by closing B1 under these Skolem functions in (£. 8 ¿ ©, 2L с 8,
and | 8 | = ß. Further, since 21 < &, then 21 ¿ В.

A stronger version of Lemma 4 can be found among the exercises
in Chang and Keisler [1974] (cf. exercise 6.4.6, p. 377). Notice that in the
proof of Lemma 4, @ is any elementary extension of 2L Thus, a similar
proof can be employed to yield results about small elementary subsystems,
in particular, the following lemma.

LEMMA 5: For ВеТк, if a < I ВI and there is an 21еТк such that Щ = a
and 21 < 8, then for all ß such that 2« < ß < | ВI, there is а ЭеТк such
that 21 * 2), S < 8 and |25| = ß.

If 2« = oc+ , then the above holds for all ß such that a < ß < |B|.
When a = Ko, the assumption of the Continuum Hypothesis is essential. To
see this, consider the theory T above. T has a countable model 21. Thus, E
has an elementary extension В such that |B| > 2^°- But В has no
elementary subsystem of cardinality ß where К i < ß < 2^°.

The following theorem is immediate from Lemma 4.

THEOREM 6: (1) If$ > 2«, then а кн» ß/or all к;

(2) If oc+= 2a, then if a < ß, then а кн» § for all к.

Note that Theorem 6(2) is stronger than Theorem 4(2), and that the
proof of Theorem 4(2) does not use the elementary chain theorem. Lemma
4 can be strengthened further.

LEMMA 6: If |2l| = a and ß > сс*Ч then there is a 8 G T K such that \ 81 =
ß and 8 is a proper elementary extension of 21.

PROOF: Let 2 U T K where |2l| = a. Let ß > a
K 0 . Let 21* be a

Skolem expansion of 21, in LKUK*- Let K' = {ka : a € A} where ka is an
individual constant and KOK'f) K* = A. Let T* be the complete diagram
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of 21* in LKUK*UK'- Let D be any countably infinite subset of A. For т{х\ ,
... , xn) any term in LKUK*UKS there is a function fr. ТУ1 -*• A such that
(21*, a)a£A t= {т(хи...^стд = xn+i}[űi,..., an,fx{a\, ..., яп)] for а ь ..., an e I>.
Equate T(jci,...,Jtn) and T'(xi,...,xn) iff A = /r'- F° r e a c n w» there are, at
most, a^O-many equivalence classes of n-ary terms. Let K" = {k% : 0 < ß}
be a set of individual constants disjoint from KUK*UK'. Let T*' be T*U
{he Фка-.а ел, e< ß} и {ке* ke1 : e, 6' < ß, e * 6'} и {т(£еь...Де„) =
T'(kQi,...,kQn), where/т = fr and к& e К"}. Every finite subset of T*' has
a model. Thus, by compactness, T*' has a model. Let &* denote that
model; let С = {fc*(ko) 6 < ß} and let £* be the Skolem hull of С in 8*.
|©*| = ß, and 21 á © where Ё is the reduct of &* to the interpretation for
LK.

Lemma 6 is formulated and proved in Morley [1968] where the
result is attributed to Keisler (cf. Chang and Keisler [1974], Corollary
6.5.12, p. 391). Notice that Lemma 6 implies both Lemma 1 and Lemma 2;
hence, neither of the results is an essential application of the ultraproduct
construction (cf. Keisler [1965] and Chang [1967]). Note the differences
between the proof of Lemma 4 and that of Lemma 6. In the second proof,
an elementary subsystem is constructed from a particular elementary
extension of 21. Thus, the argument for Lemma 6 does not yield an
analogue of Lemma 5, i.e., if 8 has a subsystem of cardinality a, then 8
has elementary subsystems of cardinality ß where oc**0 < ß < |8| . When 2 a

= a+, this later result is immediate from Lemma 4. Lemma 6 yields the
following.

THEOREM 7: (1) If a < ß and a
K o < ß, then а кн> ß/or all к;

(2) If a^o < a + and a < ß , then а кн» ß/or all к.

The example from Mal'cev [1959] discussed above shows that
Theorem 7(1) is the best result obtainable for all infinite cardinals a.
Results of Keisler [1963] show that 7(1) is the best result obtainable (with-
out assuming a + = 2a) for a not measurable. 21еТк is complete provided
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for all n > 1 and R Ç A", there is a PeK such that Д1(Р) = R. Note that
when 21 is complete, |SKI ^ 21^ I.

LEMMA 7 [Keisler (1963)]: IfU is complete and Щ is not measurable,
then if 23 is a proper elementary extension ofWL, | S | > a^o.

Keisler's proof of Lemma 7 used limit ultraproducts. Chang [1965]
contains a proof of Lemma 7 which does not mention ultraproducts. The
following theorem is immediate.

THEOREM S:Ifa is not measurable, к > 2« and ß is such that a < ß <
a^o, then a

Theorem 7 implies that any theory having a model of cardinality a
has a model of cardinality ß for ß > oc^o no matter what the cardinality of
the language. There is another result about models of theories which like-
wise is independent of the cardinality of the language.

THEOREM 9 [Mal'cev (1959)]: For all K,SQSK,

(1) if S has arbitrarily large finite models, S has a model of
cardinality 2^0; and

(2) if {\n:n£i£o} is a strictly increasing sequence of infinite cardi-
nals such that for all n, S has a model of cardinality Xn, then S has a model
of cardinality

Theorem 9(2) is a stronger version of a result of Mal'cev [1959].
Mal'cev showed that S has a model of cardinality ß such that JLXn ^ ß ^
HXn. Theorem 8 is obtainable by an ultraproduct construction (cf. Weaver
[1992]). Mal'cev [1959] contains an example of a theory with arbitrarily
large finite models which has no models of cardinality < 2^o. Notice that it
follows from Theorem 7 that if S has arbitrarily large finite models, then S
has models of cardinality ß for all ß > 2^«- This later result can be proved
directly without the construction of an ultraproduct.
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LEMMA 8: For all K, S £ S к, if S has arbitrarily large finite models, then
for all ß > 2**o, S has a model of cardinality ß.

PROOF: For each n, let $ln N S where 21« is finite and |2ln| ^ |
For 4Kxi,..., xm) a formula in free variables x\ ,..., xm, there is a function

m
/ф : Ko - U {P(An) : « € Ко} such that^/z) = {ц,..., а т ) : а и N ФЦ

>•••, * т ) [ûp •••> am]}- Note that there are, at most, 2^o-many s u c h
functions. Let S' = S U {V*b ..., * т(ф(*1, ..., xm) * гр(д:ь ..., лгт)):/ф =
/гр m > 1}. Notice that 21 1= S' for ail /г. Thus, S' has arbitrarily large finite
models. Let ß > 2^o- There is a X > ß such that S' has a model of
cardinality Л. If X = ß, we are finished. Suppose X > ß. Let В N S' and |33|
= Л. Let С Q В such that |C| = X. Using the argument of the proof of
Lemma 6, there is an ©еТк such that ©<B and |©| = X.

The above argument also yields an extension of Theorem 9(2).

LEMMA 9: For all K, S £ Sjg, if {Xn: we Kol is a strictly increasing
sequence of infinite cardinals such that for all n, S has a model of
cardinality Xn and 2,n < Xm for some m > n, then for all ß > HXn, S has a
model of cardinality ß.

Whether or not Theorem 9(2) essentially depends on the ultra-
product construction appears to be an open question. Assuming that 2^n =
X+ for each и, Theorem 9(2) follows immediately from Lemma 9. Without
this assumption, it can be shown (without an ultraproduct construction) that
for ß > ПХп, S has a model of cardinality ß.

There is another three-place relation on infinite cardinals suggested
by Lemma 5. For a, ß, к infinite cardinals, a Kl=> ß iff oc< ß for all К
such that iKl = K, and all E, 8 G T K with I2ll = a, I8l > ß, and 8U8, then
there is a © G T K such that tUSD, SDs8, and \Ш = ß. The following is
immediate from Lemma 5.

THEOREM 10: (1) / / ß > 2«, then а к^ ß, for all к.
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(2) If 2a = a+, then for all ß > ос, а кН ß , / o r all к.

Note that the assumption that 2a = a+ is essential. The example from

Mal'cev discussed above implies that if к > 2^о and î o к ^ ß, then ß >
2^0. Further, it is immediate from the Downward Löwenheim-Skolem

Theorem that if ß > a and к < ß, then а к И ß. Finally, it follows from

Lemma 7, that if к > 2 a, then ос кIs"* ß and a is not measurable, then ß >
oc^o.

Is Theorem 10(1) the strongest result obtainable? In particular, are
there cardinals а, к such that if а кН ß, then ß > a^o? Ко and 2^0
provide one such pair of cardinals. Other pairs are provided by the
following:

THEOREM 11: If, for all cardinals X < a, 2^ < a, a is not measurable and

a is ofcofinality w, then if к > 2a and а кН ß, then ß > 2a.

PROOF: Let a be such that for all cardinals X < a, 2^ < a and a is
of cofinality w. Then, 2 a = a^o. The theorem is then immediate from
Lemma 7.

In each of the above examples 2 a = a^o. Are there examples where
a^o < 2a ? It is shown below that this question has an affirmative answer
under the assumption that there is an uncountable measurable cardinal.
Whether or not this assumption is essential appears to be an open question.
In particular, the question of whether or not an affirmative answer can be
obtained under the weaker assumption that there is an uncountable
inaccessible cardinal appears to be open.

THEOREM 12: If ais a measurable cardinal, к > 2 a and а кИ ß, then ß >
2«.

PROOF: Suppose that a is a measurable cardinal, к > 2a and а к ^ ß.
We want to show that ß > 2a. Since a is measurable, there is an a-
complete, nonprincipal ultrafilter U on a. Let К be a set of non-logical
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constants of cardinality к. К contains at least a-many individual constants,
at least 2a-many unary functional constants, and at least one binary
relational constant.

Let 21еТк be such that a is the domain of 21, each member of a is
named in 2L by an individual constant, each unary function is the extension
in E of a unary functional constant and the natural well ordering on a, < is
the extension in 21 of the binary functional constant <. When a is a member
of a, a is that individual constant which names a in 21; and when Л is a
unary function on а Д is that unary functional constant whose extension in
21 is A.

Since a is inaccessible, there is a A Q a such that |A| = 2a, and for
all h, Ы different members of Л, there is а À < a s.t for all 0 >X, h(d) *
h'(Q). Let X(h, Ы ) be the least such member of a. For h, h' different
members of A, the sentence

, h') < x 3 h(x) * h\x))

is true on 21.

Consider В = 2la/U. Let d be the canonical elementary embedding
of 21 into 8. 8 is well ordered Ьу^в(^)- And, since U is non-principal, d
is not onto B. Further, for any member b of В not in the image of a under
d, (d(a), b)e Ув(^) for all a in a (cf. Chang and Keisler [1973], Lemma
4.2.15, p. 185). Thus, for b £ В - d [a],

Thus, 21 has an elementary extension of cardinality at least 2a such that no
elementary subsystem properly containing 21 is of cardinality < 2 a .
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