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§0. INTRODUCTION

Heyting's formalization of intuitionistic mathematics started many discussions
about the meaning of the logical connectives in terms of proof and construction.
We focus on the ideas and results related to the interpretation of implication and
on formal systems that have different rules for implication. Some of these systems
are not intended to contribute to the discussions mentioned above, but are related
to the Basic Calculus introduced in §§3 and 4.

The set-theoretic paradoxes of the turn of the century shocked many math-
ematicians into realizing that their simple intuitions about sets and logic were
inconsistent. Constructive mathematics along the lines of Brouwer, Markov, and
Bishop is not intended to resolve this issue, and doesn't. The most common solu-
tions favored by mathematicians involve reducing one's attention to a hierarchical
class of sets, thereby excluding the paradoxical ones. A few mathematicians and
logicians kept searching for the Holy Grail of set theory with full comprehension
by changing the rules of equality or logic. Of special interest to the Basic Calcu-
lus and the set theory F of §5 is Fitch's system with the additional implication
hierarchy introduced by Myhill. It seems that this approach replaces a hierarchy
of sets by a (simpler) hierarchy of implications.

In an attempt to find a non-circular proof interpretation for the logical con-
nectives, we change from Heyting's axiomatization to a subsystem of intuitionistic
logic with a limited modus ponens: Basic Calculus. In set theory with full compre-
hension over this subsystem, Russell's Paradox turns into a proof of Löb's Rule, a
rule that is relatively inconsistent with modus ponens.

§1. THE PROOF INTERPRETATION

L. E. J. Brouwer's introduction of intuitionistic mathematics was not a reaction
to the paradoxes, although its influence may have been felt; it offered an alter-
native to the formalist and logicist approaches. Consequently, a naïve extension
of intuitionistic mathematics to set theory with full comprehension does not solve
the paradoxes. Brouwer's Ph.D. thesis of 1907, and later work, expounded the
intuitionist's point of view (see [Brouwer 1975]). One aspect of this point of view
was a proscription of the use of logical principles as a guide to mathematics, the
most well-known among these being the Principle of the Excluded Middle. The
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Principle of the Excluded Middle holds in verifiable 'finite' situations, but cannot
be generalized to a rule of mathematics. Brouwer even introduced new principles
that contradict Excluded Middle; they imply, among other things, that all real-
valued functions are continuous. These additional principles have been criticized
by other constructivists (see, for example, [Bishop, Bridges 1985, p. 9]). Brouwer
avoided the use of formal language, perhaps not because of its unreliability, but
as a matter of personal style [Brouwer 1981, p. xi].

In 1927 the Dutch Mathematical Society published a prize question concerning
a formalization of intuitionism. Brouwer's student A. Heyting wrote an essay on
it and was awarded the prize in early 1928. It appeared in the Sitzungsberichte
der preußischen Akademie von Wissenschaften as [Heyting 1930], [Heyting 1930a]
and [Heyting 1930b], although it was originally intended to appear in Mathema-
tische Annalen [Smoryński 1988, p. 48]. In these same papers Heyting introduced
Heyting Arithmetic H A, the intuitionistic equivalent of Peano Arithmetic, and an
incomplete axiomatization of analysis, the theory of choice sequences.

In modern notation, using sequents, the axiomatization of Intuitionistic Pred-
icate Calculus IQC can be stated as follows. We use Latin letters to refer to
substitution places for formulas, and Greek letters for actual formulas of a first-
order language with logical constants T, _L; binary connectives Л, V, —+; and
quantifiers V, 3. We also assume our language to have an equality predicate =
(there are only a few occasions where one wishes to do without =) . Negation
->A is introduced as an abbreviation for A —> _L; bi-implication A <-» B, as an
abbreviation for (A —* B) ¡\{B —* A). IQC is given by sequent rules and sequent
axioms. For the rules a thin horizontal line means that if the sequents above the
line hold, then so do the ones below the line. À fat line means the same, but in
both directions.
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We allow the substitution of new variables for bound variables. In case f, the
variable x is not free in A and the term t does not contain a variable bound by
a quantifier of B\ in cases \, the variable x is not free in Л; and in case *, the
variables x,y are not bound by a quantifier of A.

The subsystem of IQC without quantifiers, terms, or equality is Intuitionistic
Propositional Calculus IPC. Extensions of IQC may be constructed by adding
additional rules and sequent axioms. Extensions are called theories. All theories
are inductively defined unless explicitly presented otherwise (see PI PC below). A
theory T is called an extension of a theory S if T satisfies all rules and sequents of
S. Thanks to modus ponens, additional sequents may be assumed to be of the form
T.I- A, usually abbreviated as h A от, if no confusion is possible, as A. Examples
are Classical Predicate Calculus CQC equals IQC extended with h AV ~<А, and
С PC, whicłfis the similar extension of IPC. The theory PIPC of propositional
prime extensions of IPC is the extension of IPC with the rule

h A or h B

The 'or' in the new rule makes the definition of PIPC non-inductive. Note that
IPC doesn't satisfy this rule: In its extension С PC both Ь A and I <A fail for
some A. On the other hand, if tp h -ф holds in PIPC, then it also holds in IPC
[Godei 1932]. So PIPC is a proper extension of IPC because PIPC has fewer
extensions. There exists a theory PIQC of prime extensions of IQC similar to
PIPC if sufficiently many constant symbols are available: PIQC extends IQC
and PIPC with the non-inductive rule

h ЗхАх

\- A(c) for some constant с

Let Г be a set of formulas, sequents, and rules and tp be a formula. We write
Г h (p, Г proves <p, if there exists a finite subset Д С Ги{Т} such that Двед ^ ^ f
is a consequence of the system IQC plus the additional sequents and rules of Г.
So IPC h <p if and only if PIPC h y?, for all <p.

In a letter to Oskar Becker, Heyting explains his discovery of the axiomatization
of (a system equivalent to) IQC by going through Principia Mathematica [White-
head, Russell 1925] and making a new system out of the acceptable axioms and
rules.

Brouwer did not explicitly give interpretations for the logical connectives, so
Heyting and others had to discover an interpretation for them independent of
Brouwer or to extract their meaning from their use in Brouwer's papers. Heyting,
and independently A. N. Kolmogorov, developed a proof interpretation for the
logical operators [Heyting 1934], [Kolmogorov 1932]. Their interpretations are
essentially equivalent. Following [Sundholm 1983] it is more appropriate to speak
of 'explanation' rather than of 'interpretation.' Unfortunately, 'interpretation' has
become widely used, so we will adhere to that terminology.
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A statement tp is true only if we have a proof p for it satisfying the requirements
mentioned below. We assume the quantifiers 3 and V to range over a sufficiently
simple domain.

(1) p proves if Л ф just in case p consists of a pair q,r of proofs of tp and ф.
(2) p proves if V ф just in case p consists of a pair n,q such that either n = 0

and q proves <p or n — 1 and q proves ф.
(3) p proves <p —> ф just in case it provides a construction q that transforms

proofs s of (p into proofs qs of ф.
(4) p proves 3x(px just in case p consists of a pair q,r such that g is a construc-

tion that yields an element с such that r is a proof of <pc.
(5) p proves \/xipx just in case it provides a construction q such that for all с

in the domain, qc is a proof of tpc.

Negation -чр is an abbreviation for <p —> ±; there is no proof for X. The in-
terpretation is known as the Brouwer-Heyting-Kolmogorov (BHK) interpretation
[Troelstra, van Dalen 1988, pp. 9-10].

The proof interpretation is not reductive: It doesn't express the interpretations
of implication and universal quantification in simpler terms.

S. C. Kleene's realizability [Kleene 1945], although not conceived for that pur-
pose, can be considered a formal justification of the proof interpretation with re-
spect to intuitionistic arithmetic HA. Kleene's motivations came from the finitis-
tic interpretation of the connectives in [Hubert, Bernays 1934] (see [Kleene 1973]),
but it takes little to understand the realizability interpretation of /i-A-formulas as
modeling the BHK interpretation.

Consider the first-order language of arithmetic including a (primitive) recursive
pairing function (x,y) with projections p\X and p2X, and the partial function {x}y,
the Kleene bracket expression of applying the xih partial function to y. We write
!{ж}у as an abbreviation for 3z({x}y — z). Number realizability is a translation
A i—» xv A of formulas A not containing x, inductively defined by

zrT = T;

xr(t = u) = {t = u), t,u terms;

xr(A Л В) = р\хтА Л р2хгВ;

хт{А V В) = (pia; = 0 -* р2хтА) Л (ргх ф 0 -

хт(А -> В) = Уу(утА -* \{х}у Л {х}утВ);

хт(ЗуАу) — p2xrA(p1x); and

xrÇiyAy) = Vy(!{x}y Л {xjyrAy).

If it were the case that A is true in HA if and only if nrA is true for some number n,
then this translation could be considered an explication of the proof interpretation,
as such an n encodes the reasons why A is true along lines in accord with the proof
interpretation. However, we may be able to show птА for some n without being
able to prove A within HA.



We call a formula almost negative if it is built up from formulas of the form
3x(t = u) using Л, —>, and V. The axiom schema ECT0, the extended Church's
thesis, states

Vx(Ax -> 3yB{x,y)) h 3zVx(Ax -> \{z}x Л B(x, {z}x)),

where A is almost negative. We may interpret ECTo as saying that all functions
of arithmetic are recursive. By [Troelstra 1973, p. 196], we have

HA + ECTo h A « 3x(xrA)

and
HA + ECTo h Л if and only if HA h Зх(хгЛ).

So nr A says that if we limit ourselves to a recursive universe, then n encodes
evidence for the truth of A. Many constructivists suspect that everything that one
will ever encounter in constructive arithmetic is recursive; however, the proposition
that everything in constructive arithmetic is recursive is not constructive and
therefore not acceptable.

The following variation on number realizability, q-realizability, circumvents the
limitations of a recursive universe. The translation A i—> xaA for formulas not
containing x is defined inductively by

xaT = T;

xą_L = _L;

xą(t = и) = (t = и), Í,IÍ terms;
xą(A Л В) = pixqA Л p2xąB;

xą(A V В) = (ргх = 0 -> А Л p2xąA) A ( p i i ^ 0 - > 5 A p2xąB);
xą{A -+B) = Щ(А Л yąA) -> \{х}у Л {

= A(pix) /\p2xąA(p1x); and
= Vy(!{a:}y Л {x}yąAy).

q-realizability doesn't have the straightforward connection with a formal system
that number realizability has with HA + ECT0. In fact, q-realizability is not
closed under deduction [Troelstra 1973, p. 205]. The expression nąA only pro-
vides, following [Kleene 1973], missing information about a proof of A from HA.
For example, using q-realizability, we can show that if HA H Vx(.Ax —» 3yB(x,y))
with A almost negative, then HA h Vx(Ax —* \{e}x Л В(х, {e}x)) for some e. As
an explanation for the proof interpretation q-realizability fails for another reason
as well. The translations for V, —>, and 3 refer to proofs of HA and therefore the
explanation is not reductive. This final argument especially applies to the variant
of q-realizability in [Troelstra, van Dalen 1988, p. 243].

One problem with the BHK proof interpretation is its circularity in the expla-
nation of implication, as observed by G. Gentzen. This argument [Gentzen 1936,
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§11], set in the context of HA, involves finitisi interpretations of the connectives
and is directed towards a consistency proof of arithmetic. It applies more generally.
Gentzen notes that if we want to explain the meaning of 'p is a proof of <p —> •ф'1

in the sense of the BHK proof interpretation, then implication introduction

AABY-C

AY- B->C

is perfectly permissible as А А В h С merely expresses that a proof of С from B,
given A, is available. The restricted application of modus ponens

Y- A AY- В

Y- B

is in harmony with the BHK interpretation since AY- В expresses that we have
an actual proof for В if we assume A. Restricted modus ponens is a special case of
transitivity. On the other hand, implication elimination, the reverse of implication
introduction, is equivalent to the full modus ponens axiom

AA{A^ B)Y- B.

In this case, the existence of a proof of В from A is expressed in terms of —> by
the assumption A —• B, hence the explanation for implication is circular.

Negation ->A is equivalent to A —» J_, so its BHK interpretation suffers from
a drawback similar to that for implication. Additionally, there is the problem of
interpreting the meaning of _L. Replacement of J_ by the statement 0 = 1 resolves
the issue in the special case of HA; the problem remains for the general situation.

Universal quantification is considered in [Gentzen 1936, §10]. According to
Gentzen, a sentence VxBx may be understood finitistically as '50 and Bl and B1
and .. . ' as long as Bx is fairly simple. Moreover, in the rule

AY- Bx

A Y- WxBx

with x not free in A, the justification of the rule is elementary only if the formula
A is quantifier free. Unfortunately, Gentzen's approach to universal quantifica-
tion is insufficient as a justification of the BHK interpretation, as we will make
abundantly clear when discussing BQC below.

M. Okada attempts to resolve the circularity in the axiomatization of —• by
considering subsystems of intuitionistic logic with weakened implication introduc-
tion [Okada 1987], [Okada 1988]. The propositional logic WLJ of [Okada 1987] is
equivalent to the intuitionistic propositional calculus IPC except that the rule

AABY-C

AY- В ^C

holds only for A that are conjunctions of implications D{ —» £J¿. This is unex-
pected, particularly because Gentzen suggests problems with implication elimina-
tion, not implication introduction. Okada's approach may produce a subsystem

276



for which a Gentzen-style consistency proof works, but it lacks a sound philosoph-
ical motivation. Okada introduces a validity concept for sequents and shows that
all sequents derivable in WLJ are valid, thereby justifying the validity of WLJ
under his constructive semantics. Valid sequents, however, need not be derivable
in WLJ.

In [Okada 1988] we find a first-order extension RLJ of WLJ with unrestricted
universal quantification. Gentzen's semantics [Gentzen 1936] gives a justification
for a complete set of inference rules for RLJ. A justification along the lines of the
BHK proof interpretation fails.

In [Kreisel 1962] we find the following suggested modifications of (3) and (5) of
the BHK proof interpretation:

(3') p proves if —> ф just in case p consists of a pair q,r such that q is a
construction that transforms proofs s oí <p into proofs qs of ф and such
that г is a proof that q is such a construction.

(5') p proves VxAx just in case p consists of a pair q,r such that for all с in the
domain, qc is a proof of Ac, and such that г is a proof that q is so.

Kreisel's version has been treated as a viable alternative to Heyting's proof inter-
pretation (see, e.g., [Troelstra 1977] and [van Dalen 1982]); more recently it seems
to have slid into the background [Troelstra, van Dalen 1988, pp. 9, 31].

The revised interpretation in [Kreisel 1962] comes from an attempt to set up a
formal system in terms of which the formal rules of intuitionistic predicate calculus
can be interpreted. According to Kreisel an intuitionistic statement A is under-
stood if we have a construction r¿ that decides for each construction с whether or
not it is a proof of A. Moreover it is assumed that we recognize a proof when we
see one.

Kreisel introduces the relation П(с, A) as formal notation for

Construction с proves A.

The decidability of U(c, A) requires the additional clauses of (3') and (5'). Expres-
sions П(с, .4.) themselves are treated as formulas in the same way as A, allowing
for composite expressions like П(с?, П(с, ̂ 4)) [Sundholm 1983].

P. Aczel observed that we ought to add that Kreisel's system tacitly assumes
the existence of a universe to which everything belongs [Sundholm 1983]. In par-
ticular, the existence of the constructions гд seems to assume the existence of a
universe of all possible constructions because the r^ universally quantify over all
such constructions. G. Sundholm states in [Sundholm 1983, p. 155] that it is the
equivalence

A if and only if 3p(p is a proof of A)

that presupposes the existence of a universe of 'everything.' This argument seems
slightly weaker since the quantifier may range over an incomplete universe.

In [Beesőn 1985, pp. 403ff], M. J. Beesőn illustrates the difficulties one encoun-
ters when trying to formalize Kreisel's predicate П(с, J4) using a simple straight-
forward approach; his resulting system С is conservative over HA, but refutes the
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decidability of П. In a subsequent discussion Beesőn suggests that one possible
cause is trying to unite two incompatible intuitive concepts—a universe and de-
cidability of П.

In [Bishop 1970] E. Bishop calls the 'numerical' meaning of implication the most
urgent foundational problem of constructive mathematics. In [Bishop, Bridges
1985] there is an interpretation of implication P —> Q that differs somewhat from
the BHK definition: ' . . . the validity of the computational facts implicit in the
statement P must insure the validity of the computational facts implicit in the
statement Q . . . ', but Bishop expresses dissatisfaction with this. Fortunately, in
[Bishop, Bridges 1985], in each instance where (even nested) implication is used,
the 'numerical' meaning is clear, although there is no general interpretation for
implication.

As a point of departure for finding a general interpretation for implication,
Bishop, in examining some of his theorems in constructive analysis that involve
implication, notices the following pattern. A complete mathematical statement—a
theorem including all its prerequisites such as definitions and proofs of theorems
on which it depends—essentially asserts that a given constructive function / with
constructive domain S vanishes, that is, fx = 0 for all x 6 S. Bishop's theorems
involve incomplete mathematical statements, statements that assert that there
exists a constructive set T such that if we construct an element y 6 Г, then P{y)
is a complete statement. Thus incomplete statements are of the form 3y4xA(x,y)
where Л is a decidable predicate. If this is taken as a rule, then implications are
of the form

(1) 3y\/xA(x,y) -^ 3v\/uB{u,v).

The similarity with [Godei 1958] is obvious, and Bishop bases his argument on
Gödel's interpretation. In the formal system of [Godei 1958] it is possible to
convert a proof of ( 1 ) into a proof of

3v3xVy\/u(A{x(y,u),y) -* B(u,v(y))).

Bishop speculates that one day this 'numerical' implication may replace ordinary
implication. Unfortunately, his later studies of implication are left as only frag-
mentary notes [Bishop, Bridges 1985, p. 13].

§2. PARADOXES

G. Frege's naive logical notion of set is inconsistent [Frege 1893], [Frege 1903].
В. Russell showed in 1901 that in Frege's system the set R = {x \ x £ x} is an
element of itself if and only if it is not. This argument is elementary and needs
only a small fragment of Frege's system: The 'property' R is a set since {x | <p(x)}
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is a set for all 93; and a € {x \ <p(x)} holds if and only if <f(a) holds. So if <p(x) is
the formula x ^ аз, then R £ R ii and only if R (£ R.

The correspondence between Russell's Paradox and the Liar Paradox is well-
known. J. van Benthem points out the logical nature of Russell's Paradox [van
Benthem 1978]; Russell's R cannot be a set because of the tautology

-i3xVy(Pyx *-> -iPyy).

This tautology is essentially non-propositional.
The most popular solutions to the Russell Paradox use hierarchical models like

Russell's type theory or Zer melo- Fraenkel set theory with choice ZFC. In these
systems sets come after their elements. So R cannot be a set.

Russell's Paradox is related to G. Cantor's paradox on the entity of all sets. In
[Cantor 1891] Cantor showed that the power set of a set is bigger than the original
set in the sense that there exists no map from a set 5* onto the power set VS. For
suppose f: S —> VS is onto. Let R — {x € S \ x £ fx}. Since / is onto, R = fv
for some v. So v g fv if and only if' v £ fv.

If, by the assumption of Cantor's Paradox, there exists a set V of all sets, then
y G V if and only if y Ç V. So the identity maps V onto VV, a contradiction.

In Cantor's view the paradoxes concerning the collection of all sets or the col-
lection of all ordinals (Burali-Forti Paradox, 1896/1897) show only that certain
constructs {x I <p(x)} do not represent sets. The same idea is reflected in the
modern set/class distinction.

There is a version of A-notation similar to set notation where we write Xx.f(x)
for {x I f(x)}. The A-calculus dates back to the combinatory algebras of [Schönfin-
kel 1924] and [Curry 1930] and the 'extended' A-calculus of [Church 1932], [Church
1933]. Kleene and J. B. Rosser showed that A. Church's system is inconsistent,
essentially by deriving Richard's Paradox [Kleene, Rosser 1935]. Modern pure
A-calculus is a consistent derivative of Church's system [Barendregt 1984, 1.1.1].
The typed combinatory algebra (it is similar for the typed A-calculus) has basic
entities I A, KA.,B Ì

 and SA,B,C for all A,B,C. Each object (function) has a type
В <t= A, and if / and g are functions of types С <= В and В <= A respectively,
then fg has type С <í= A. Application represents modus ponens: If / has type
В <í= A and a has type A, then f(a) has type B. In [Curry, Feys 1958] it is pointed
out that the types of /4 , KA,BÌ and SA,B,CI being A <= A, (A 4= В) Ф= A, and
((A <= C) <= (B <= C)) <= ((A <= B) «= C), respectively, constitute a complete
set of axioms for intuitionistic implicational logic.

Russell's Paradox then can be presented in the form

if and only if
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In [Curry 1942] H. B. Curry interprets inconsistency as the ability to derive all
statements. This enables him to remove negation as an ingredient of Russell's
Paradox: For arbitrary B, let F be the term XX.(X{X) -» B). Then F(F) equals
F(F) —> B. Following the notation of [van Benthem 1978, p. 54] Curry argues
that F(F) -> F(F) holds, and thus F(F) -> (F(F) -> B). By absorption we have
F{F) —> В which equals F(F). So by modus ponens, B.

Van Benthem mentions two reactions to Curry's Paradox. P. T. Geach suspects
the special application of the absorption rule A —* (A —> В) \- А —* В [Geach
1972, pp. 210-211], but presents insufficient motivation, while F. B. Fitch blames
modus ponens. But most mathematicians consider modus ponens 'the logician's
best friend' ([van Benthem 1978, p. 55]; J. Myhill in a private discussion in 1983).
In this paper we attempt to show that modus ponens need not be our best friend.

Curry sought to solve the paradoxes by adding illative notions to pure combi-
natory logic [Curry, Feys 1958], [Curry et al. 1972]; both Curry and Aczel add a
'proposition' condition to the objects, making paradoxical objects non-propositions
[Aczel 1980] (see [Barendregt 1984] for more references). Extensions of [Aczel
1980], and consistency for these extensions, are presented in [Flagg, Myhill 1987],
[Flagg, Myhill 1987a], and [Flagg 1987].

Fitch has a system that is related to the approaches followed by Curry and
Aczel. It avoids Curry's Paradox, and obtains consistent systems, by reducing the
rules for implication [Fitch 1950], [Fitch 1952]. Fitch's earlier systems are weak
in that many properties can only be expressed in an 'external' way; e.g., being a
function from the reals to the reals must be expressed in the metalanguage [Myhill
1975, p. 181]. The weak implications that are added later on are cumbersome
and, according to Myhill, philosophically unnatural [Myhill 1975, p. 182]. Myhill
proposes another solution to the Curry Paradox while remaining close to Fitch's
system. Essentially, Myhill's solution entails introducing indexed implications
—>i, —>2Í —>з»• • • in place of a simple implication —к The resulting axiom system
consists of a set of axioms and rules To that includes neither introduction or
elimination rules nor axioms for implication. The system To may include set-
theoretical axioms including full comprehension and other axioms involved in some
of the traditional set-theoretic paradoxes. We have an ascending sequence To Ç
T\ _ Ti Ç . . . of extensions such that Tn satisfies the additional introduction rule

AABh С follows from Гп-1_ _ _ _ _ _ _ _

and the elimination rule

A\- В ->m С with m<n
_______ .

Myhill's system is similar to the union of the systems Tn. The system in [Myhill
1975] includes a special treatment of negation: System Tn includes the axioms

А Л - 5 h -i{A ->„ В) and-(.4->n £?) г- А л-._?.
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If To is a sufficiently rich language, then we can construct the object R = {x | x e
x —>\ B} for some B. With extensionality we derive

RE Rl- Re R^i B,

and thus
ReR\- В

in T\ but not in TQ. So only
h де д->2 в

holds and no Russell Paradox results.

In [Lob 1955] M. H. Lob answered a question of L. Henkin on the provability
in Peano Arithmetic PA of sentences that assert their own provability. Let DA
be short for ProvpA([A]). Then does PA h A <-* DA imply PA h A? Löb's
affirmative answer is a corollary of the remarkable LSb's Rule. Provability О
satisfies the axiom schémas

(1) D(A - ^ B ) H D A - > DB;
(2) D ( D A - * A ) b D A (Löb's Axiom);

and the rule

h A
(3)

Ь DA'

The schema

(4) , DAHDDA

and Löb's Rule

h i • •

follow from these axioms and rule and Intuitionistic Proposi tional Calculus I PC.
This invites us to define a modal logic PrL (by [Smoryński 1985]; G. Boolos calls
it G [Boolos 1979]) by extending the system CPC with the axioms and rule (1),
(2), and (3) for the modal operator. We may replace Löb's Axiom by Löb's Rule
without changing the strength of PrL; the proof of the equivalence even works
when we replace CPC by I PC.

R. M. Solovay discovered that the axioms for PrL are complete in the sense
described below [Solovay 1976]. Each map Ф that maps atoms p of the language
of PrL to sentences Фр of the language of PA can be extended to a map on the
collection of all formulas of PrL by induction: ФТ = T; Ф± = ±; Ф(А о В) =
ФА о ФВ for о e {A,V,->}; and Ф(ОА) = РТОУРА(\ФА}). Then

PrL h if if and only if PA \~ Ф<р for all Ф.
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From the Explicit Fixed Point Theorem for PrL ([Boolos 1979, p. 141], [Smor-
yński 1985, p. 79]) it follows that for every В there exists A such that

(5) \-A^(OA->B).

holds in PrL. Lob, conversely, uses (5) to derive his Rule: (5) holds in PA by
the Fixed Point Lemma for PA. Axioms and rule (1), (3), (4), and (5) are given
as directly following from PA. Assume h D o —* B. Then (5) and (3) give us
\- a(A -»• (DA -• B)) for some A, and thus I- ПА -» (ПОА -> DB). So
h ПА —> D 5 and, using the assumption, Ь П.4. —> B. By (5), h A; and thus h JB.
This proof shows the immediate connection with Curry's Paradox; the referee to
[Lob 1955] points out that if we replace D by 'true', then this argument implies
that every sentence is true.

§3. BASIC PROPOSITIONAL CALCULUS

Intuitionists generally consider intuitionistic logic to be a description of regular-
ities that are observed in intuitionistic mathematical practice. It is also generally
maintained that first-order intuitionistic calculus IQC is a proper reflection of
these regularities; Heyting developed the formalization and proof interpretation,
and Brouwer appreciated this clarification of intuitionism. We believe, however,
that a 'truly' constructive logic should have an interpretation that is non-circular
and constructive in itself. We have not found an interpretation for IQC satisfying
this constraint. One way to obtain a system with non-circular interpretation is
by reversing the approach usually taken: Start with the proof interpretation and
derive logical rules that are acceptable following this interpretation.

We assume the existence of a universe of proofs U. The term universe is not
to be understood as meaning 'set'. We have only limited knowledge about what
constitutes a proof, and therefore only limited knowledge about the complexity
of U. A sequent ip h ф expresses that there exists a proof that derives ф from
the assumption уз. So proofs depend on assumptions <p as much as they prove
statements ф. Next we present examples of some existence and closure properties
of U. If we assume <p, then we accept this very assumption as a proof of <p. So
уз H v holds for all <p. Axiom schémas like A \- Л and АА(ВУС) Ь (АЛВ)У{АЛС)
express the existence of certain proofs in U. If p is a proof of <p h ф, and g is a
proof of ф h 9, then there exists a composition pq that constitutes a proof of <p h 9.
So rules like

Ah В В\- С
TTC

or

express that U satisfies certain closure rules.
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And now about implication. A formula <p —> ф expresses that there exists a
proof in U of if У- ф. The occurrence of —> in a sequent means that the sequent
makes a statement about the existence of proofs. Therefore if h ф —> в follows
from f Л ф (- 9. The reverse closure rule, equivalent to modus ponens, fails. It
implies T —» if h if which says that from the assumption of a proof of if in U we
derive the existence of an actual proof of if in U. This is different from a statement
(T h if) h f which says that if there were an actual proof of if, then we have an
actual proof of if. Axioms if h ф where if contains implication, may change the
meaning of —> relative to К For example, when we consider intuitionistic logic
with modus ponens, then a proof p of an implication if —• ф includes a construc-
tion q that converts proofs s of if into proofs qs of ф. In basic logic, p should only
include a proof q of ф using if as an assumption. Closure rules for U give rise to
sequents involving implication. A valid sequent like [if —> V) Л (ф —> в) h if —• в
says that if we assume the existence of proofs of if \~ ф and ф h в, then we may
assume the existence of a proof of <f h в.

We start by constructing a propositional logic В PC. The interpretations of
disjunction and conjunction are considered straightforward and beyond question.
Following [Gentzen 1936], we also favorably regard implication introduction as
saying that А Л В Ь С merely expresses that we can construct a proof of С from В
if we are given A. This results in the following axioms and rules being acceptable.

A\- A

A\- В BhC

A\-C

A\-T Lh.A

A\- В A\-C B\- A Ch A

A\- В ЛС BvC\- A
AABt С

A\- В ^С
AA(BvC)\-(Af\B)v(A/\C)

These axioms and rules form a system ВРСц. The distributivity axiom schema is
essential since we don't have modus ponens. The constants T and X are included
but are not essential to our system: T is equivalent to all sequents of the form
A —> Л, while in many systems we have a natural candidate to replace X by (for
example by 0 = 1 in arithmetic). In a forthcoming paper we show that for some
model-theoretic results it is essential to exclude X as part of the axiom system.

To get В PC we must now add implications Л —* В in the proper way whenever
we can derive A h 2?; implication must reflect provability as tightly as possible
without introducing a circular argument. If, for example, we have a (derived) rule
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then we must add the axiom

(o"i -> n ) Л (<r2 -> r2) h <r -> r.

For each (derivable) sequent cr h r we must add the schema A \~ <r —> r; this,
however, immediately follows from the rule for Л, transitivity of H, and implication
introduction. So once BPCo has been built, we only add axioms for —> that are
associated with rules. For example, for transitivity, conjunction introduction, and
disjunction introduction we add the axiom schémas

{A -> В) Л (В -»• С) h A -> С

The analogous axiom schémas that accompany the remaining rules of BPCo follow
from BPCo extended with these three axiom schémas. For example, В h A —> A
follows from В Л A h A using implication introduction; and (B V C) —• A h
5 —> A follows from h J? —> {BMC) and the added transitivity axiom for —».
It suffices to add new axioms for the defining rules of BPCo only, as all derived
rules then follow by transitivity. This extended system we call Basic Prepositional
Calculus BPC. The extension BPC involves new axioms and no new rules, so
there is no need to repeat the process of looking for additional axioms for —>.
Intuitionistic Propositional Calculus IPC is equivalent to BPC extended with
implication elimination

Ah В ->C
A/\BhC '

It turns out that the system BPC is equivalent to A. Visser's system BPL
[Visser 1981]. A preprint of that paper initiated the author's original research into
BPC, resulting in [Ruitenburg 1984].

From the construction of BPC we derive

3.1 PROPOSITION. Let T be a theory consisting of additional sequents only.
Then

implies
Г,(<г 1-»т 1)Л---Л(<гп-»гп)г-<г-*г. -\

Note that if we wish to add new rules to T, then, to preserve the availability of
Proposition 3.1, we are required to add matching sequents to Г.

[Visser 1981] mentions two substitution methods; a substitution rule and a sub-
stitution sequent. Both hold for BPC. Using Proposition 3.1, the substitution
sequent

A «-» В h С [A] <-> С [В]



follows immediately from the substitution rule

A\- В Bh A
C\A) h C[B] and C[B] h C[A]'

3.2 PROPOSITION (FUNCTIONAL COMPLETENESS). Let Г be a theory consist-
ing of additional sequents only. If T satisfies

then
T,<p Ла\- т.

PROOF: A straightforward induction on proof complexity. H

Consistency of BPC is straightforward as it is a subsystem of intuitionistic
propositional calculus I PC. Moreover, BPC does not satisfy modus ponens (or
equivalently: implication elimination):

3.3 PROPOSITION. BPC + (h A -> B) is consistent.

PROOF: Replace all occurrences of implication in the axiomatization of BPC
by T. The resulting axiom system still is a subsystem of intuitionistic logic. 4

So BPC doesn't even satisfy the rule

KB '

In the system of Proposition 3.3 implication —+ fails to reflect derivability of that
system; —> does not faithfully reflect К A theory T is faithful if T satisfies the
reverse of Proposition 3.1, that is,

T,(<Ti -» TÍ) Л • • • Л (<гп -» тп) h a -> r,

implies

Obviously, all extensions of IPC are faithful. Proposition 3.7 below shows that
BPC is faithful too.

BPC satisfies a weaker version of modus ponens:

3.4 PROPOSITION. BPC satisfies the rule

A h B -» С

AABhT — С
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and, equivalently, the axiom

Af\(A-+ B)l-T -^ B.

PROOF: If A H В -> С, then Л л В \- (T -> 5) л (В -* С). H

So /PC is equivalent to BPC plus the schema T -> i h A. Thus I PC satisfies
the conditions for T in Propositions 3.1 and 3.2.

The paper [Visser 1981] includes a class of Kripke models and a completeness
theorem. For completeness's sake we include these results, since though the gen-
eral theory of Kripke models itself is not constructive, the Completeness Theorem
3.6 enables us to get a better understanding of BPC relative to other proposi-
tional logics, as it provides simple proofs for some properties of BPC without the
necessity of having to go through proof theoretical technicalities.

A (generalized) Kripke model of BPC consists of a tuple К = ( P K , / K ) where

(1) P K = P = (P, -<) consists of a set of nodes P with a transitive binary
relation -< on P, that is, if a -< ß -< 7 then a -< 7.

(2) / K = / assigns to each atom p of BPC a subset Ip С Р that is upward
closed, that is, if ß >- a G Ip, then ß G Ip-

We write ahp for a G Ip. The canonical extension of Ih to all formulas of BPC is
inductively defined by

alHT;

ahif Л ф <==> ahip and ah-ф;

ah<p V ф <£=> ahtp or ah$; and

a\\-(p —»• ф <=> ßh<p implies ßb-ф for all ß >- a.

We write -< for the reflexive closure of -<. We extend !h to sequents by defining

a1r(tp h ф) ^=> ßhip implies ßit-ф for all ß У а.

A Kripke model К satisfies a rule

cr\\- TX ... <тп\- тп

*\~T

if for all nodes a, if alh(<Tj h r¿) for all i, then ah(a \~ т). We write К (= (tp \~ ф)
if ah(tp H V») for all nodes a. Obviously, if ß >- ah(<p h ф), then ßh((p h ^ ) . We
easily verify

3.5 PROPOSITION [Visser 1981]. If ß >- alt-y>, then ßlrtp. H

So a It-y» if and only if a\r(\- if).
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Let S be a set of sequents and rules. Then for all Kripke models К we write
К \= S if К |= (er h т) for all er \- r e S, and К satisfies all rules of S. We write
S |= (y> Ь VO if К |= S implies K H ^ ^ ) , for all K.

3.6 THEOREM (COMPLETENESS THEOREM) [Visser 1981]. Let Г и {v? H Ф} be
a set of sequents. Then Г h (уз Ь У') if and only if Г |= (<p \~ ф)

PROOF: We present a sketch of the proof. For details, see [Visser 1981]. Sound-
ness is proved by a straightforward induction on the complexity of proofs. For the
completeness part, suppose Г I/ (<p h ф). It suffices to construct a model К such
that К |= Г and К ^ (<p h ф). Let PBPC, prime BPC, be the extension of
BPC with the rule

h i V B
h A or h В '

This new rule makes PBPC non-inductive. A theory Д is called closed if all
sequents derivable from Д are elements of Д. As set of nodes P we choose the
collection of all consistent closed theories extending PBPC + T; there exists а Д
such that (ip h ф) £ Д [Visser 1981], so this collection is nonempty. We set Д -< Д'
if А Л/л H v G Д' whenever A h /x —> v G Д. For atoms p, set J p = {Д | (h p) G Д}.
By induction on the complexity of sequents one shows that Д№-(<т h r) if and only
if о- h r G Д. Thus К h Г and К И= {ч> Ь V0- ^

Visser uses a derived completeness theorem to show that BPC is decidable;
BPC Ь (<p \- ф) if and only if К f= (<p h ф) for all finite К of a size limited by the
number of subformulas of ¡p Л ф.

Although modus ponens fails even in the limited way described above, BPC does
reflect the fact that —> embodies provability, as the second claim below illustrates.

3.7 PROPOSITION.

(1) ^ <т\/ г holds in BPC if and only if (- a or h r hold. So P B P C \- (<p \~ ф)
. if and only if BPC H (p h ф).

(2) BPC is faithful.

PROOF: Obviously, if BPC Y- y or S P C h У>, then BPC h (^ V ф). Conversely,
suppose Ki \k <p and K2 ^ V1 f°r some models Kj and K 2 . Construct a new
model К by adding a new node a to the disjoint union of the models Ki and K2,
with a -< ß for all nodes ß from K! and K2, and a £ Ip for all atoms p. Then
a Jh<p and a Jh-ф, so a Jh<p V ф. Thus S P C \/<рУф.

Suppose (érj —> TÍ) Л • • • Л (<тп —» ту,) Ь сг —> r holds in BPC, and let К be a
model such that К \= (<r¿ h r¿) for all г. Form a new model L by adding a new
bottom node a to К with a -< ß for all nodes ß of K, and a £ Ip for all p. Then

—» Ti) Л • • • Л (<rn —> ту,), and so aha —> r. Thus К (= (<r h r ) . H

Examples: Let T -» v? h er -> r hold in BPC. By Proposition 3.7, (h <¿) h (<т Ь
г) holds. So by Proposition 3.2 BPC satisfies <p A a h т.
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BPC satisfies the first two of the Curry-Feys axioms: A h A and A h В —> A.
The axiom С -> (В -• А) Ь (С -> В) -> (С -* Л) fails since it implies
С —> (В —> А) I- В —> (С —> A). The following is a counterexample to that
sequent. Let К be the Kripke model with three nodes a < ß -< 7 and -< is anti-
reflexive. Set Ip = 0, I , = {/9,7}, and / r = {7}. Then К f= г -»• ( 9 -> p) and
К ^ 9 - (r -> p).

Besides IPC there is another SPC-extension of note: Formal Propositional
Calculus FPC {FPL in [Visser 1981]), obtained by adding the rule

(Lob's Rule).
A [ _ B

Obviously, IPC and FPC are relatively inconsistent. We easily show that FPC
is equivalent to the system BPC augmented by the axiom schema

(T -• A) -> A\- T -» Л (Löb's Axiom):

use the transitivity of —• to obtain ((T —• A) —> Л) Л (T —» (T —» A)) h T - » y l
and then apply Löb's rule. Conversely, suppose А Л (T —• B) h В. Then A H
(T -> j?) -» В and, applying Löb's Axiom, A h T -> B. Hence A h i A ( T - + 5 ) ,
so transitivity of h gives us A h 5 . So FPC satisfies the conditions for T in
Propositions 3.1 and 3.2.

A striking property of FPC is

3.8 THEOREM (EXPLICIT FIXED POINT THEOREM). For all A\p], FPC satisfies
the sequents

A[A[T\] h A[T] and

A[T] h '

PROOF: See [Visser 1981]. -\

Since FPC is faithful, Theorem 3.8 is equivalent to

FPC h A[T] *-* A[A[T]].

We consider the relation between Theorem 3.8 and the Explicit Fixed Point
Theorem of PrL below, when we discuss translations into modal logic.

3.9 PROPOSITION.

(1) Ь <r V r holds in FPC if and only if (- <r or h т hold.
(2) F P C is faithful.
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PROOF: The model constructions in the proof of Proposition 3.7 turn models
of FPC into models of FPC. 4

Provability is usually considered in the context of modal logic. Translations of
IPC into the modal logic date back to [Godei 1933]. Now we form a translation
from the language of BPC into the language of KA ([Boolos 1979]; [Smoryński
1985] calls it BML). The translation A i—• A' is inductively defined by

T' = T;

1 ' = JL;

p' = р Л Dp, p an atom;

(А Л В)' = А' Л В';

( Í V В)' = A'V В'; and

{А-у В)' = П{А' -> В1).

The system KA is axiomatized by С PC, the axioms

D(A -> В) Ь ПА -» DJ3, and

DÌ h пал,

and the rule

H DA
The extension 54 satisfies the additional

DA h A;

and PrL equals if 4 plus the extra schema

D(DA -» A) h DA.

Note that the additional sequents defining / P C and FPC as extensions of J9PC
are translated into the additional sequents defining SA and PrL as extensions of
KA.

The connection between IPC and 54 can be generalized to

3.10 PROPOSITION.

BPC, <p h V if and only if # 4 , <p' h т/*'

/PC, p h V if and only if 54, y?' h ^ '

FPC, <p \- ф if and only if Pr£ , y?' h V'

PROOF: Exercise. H

Proposition ЗЛО for FPC versus PrL and a special case of the Explicit Fixed
Point Theorem [Smoryński 1985, p. 78] imply the Explicit Fixed Point Theorem
3.8 for FPC.
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§4. BASIC PREDICATE CALCULUS

The extension of BPC to first-order Basic Predicate Calculus BQC presents us
with the same challenges as BPC, plus one: universal quantification. The extra
problem shows similarities to the use of partial elements in the original [Heyting
1930], [Heyting 1930a]. In the discussion below we use the related additional
existence predicate E of [Scott 1979] as a starting point.

In [Scott 1979] variables are allowed to range over partial elements like 1 /x over
the reals when we don't know whether x is invertible or equals 0 or is somewhere
in between. The expression Ex stands for lx exists.' For intuitionistic predicate
logic IQC—with full modus ponens—this leads to the following rules defining 3
and V:

A\- Ex -> С Ex AB \- A
A I- VxC 3xB h A

where x is not free in A.
The existence predicate E allows for a different interpretation. For IQC with

total elements only, Ex equals T. This implies that we may eliminate the subex-
pressions Ex from the rules altogether. For BQC with total elements only, this
is true for the rules concerning existential quantification but not for universal
quantification.

Although x is 'total', its existence is 'partial' in the sense that it depends on
its context. A proof of <p(x) f- ф(х) consists of having a proof of ф(х) assuming
the existence of an element x and assuming if(x). Therefore the usual rule for
existential quantification is acceptable. The sequent ipx h 3x<px, for example, is
acceptable since the assumption <px and the assumption that x is an element im-
mediately imply 3x<p(x). We tacitly assume that there exists at least one element
in the domain.

Universal quantifier elimination is not acceptable: the formula Vx<p(x) expresses
h <p(x), that is, it expresses that from the assumption that x is an element we
derive <p(x). So the sequent Vx<p(x) h <p(x) is unacceptable: from an assumed
proof of <p(x) from assuming that x is an element, and the assumption that x is
an element, we conclude the existence of an actual proof of <p(x). Even the as-
sumption h \/x(fi(x) is not sufficient to get h y?(a:). The most we can derive from
Vxtp(x) is T —> <p(x). More generally, let Ух:<р(х).ф(х) be the formula expressing
ff{x) h ф(х). Then Vx:ip(x).t¡}(x) entails ip(x) -* ф{х).

For the language of BQC we use Ух: В.С as standard notation; \/xC is an
abbreviation for Va;: T.C. Similarly, the expression 3x: B.C is equivalent to Зх(ВЛ
С).

The extension BQCo of BPC is formed by the following axioms and rules; the
interpretation of existential quantification is considered straightforward.

Ax Ь Вх

At h Bt '
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AV В ^C Bh A

A\-\/x:B.C 3xBV A

A A 3xB h 3x(A A B) t

T h i = i

(x = y) A Ax Ь Ay *

The special form of the substitution rule and the extra axiom for the existential
quantifier are essential because we don't have modus ponens. As with BPCQ, we
need additional axioms for the new rules. The following two suffice to complete
the axiomatization of BQC:

{B -»• A)\- 3xB -> A %

We allow the substitution of new variables for bound variables. In case f> the
term t does not contain a variable bound by a quantifier of A or B; in cases X, the
variable x is not free in A; and in case *, the variables x,y are not bound by a
quantifier of A.

The presence of variables makes associating sequents with rules slightly more
complicated. For example, the sequent associated with the substitution rule reads

Wx-.Ax.Bx H At -> Bt

and immediately follows from universal quantifier elimination and the substitution
rule.

Because of the relative weakness of implication —>, nested universal quantifi-
cations VxVy... are weaker than a single quantification over strings V(x,y,... ).
Therefore we allow strings x = (xi,X2, • • • ,xn) a s replacement for x in the- rule
and sequent axioms for universal implication:

A\- В ->C
— — — and

A-*(B ^ C) H A-+ Vx: B.C,

where none of the variables in the string x is free in A. So when we write Ух,ууз
we mean something essentially different from VxVyy?.

BQC satisfies the equivalent of Proposition 3.1. However, a proper formulation
requires us to use universal closures if any of the sequents <x¿ H r¿ share free
variables. Suppose all free variables that occur in the formula <p —> ф are among
the variables x = {x\,..., x n ). Then the universal closure of if —» ф is the sentence
Vx: (р.ф. Now the equivalent of Proposition 3.1 reads: If T is a theory of sequents
such that
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then
Г, (Vx: «ri .Tj) Л • • • Л (Vx: <тп.тп) h Vx: а.т.

A faithful theory satisfies the reverse implication.
BQC satisfies the equivalent of Proposition 3.2 if <p and <r \~ r don't share any

free variables.

A (generalized) Kripke model of BQC consists of a triple К = ( P K , £ > K , / K )
where

(1) P K = P is a transitive structure as in propositional Kripke models,
(2) D = D assigns to each node a a nonempty set Da, and to each ordered

pair а ^ / З а function tr? : Da —> Dß such that if a -< ß -< 7, then <̂ <Гд =
<т™, and

(3) / K = J assigns to each n-ary predicate p a function / p on domain P such
that Ipa is a subset of (Da)n, and (<r£)n(Jpa) Ç /p/3 whenever a •< ß. To
each n-ary function symbol g, I assigns a function Ig on domain P such that
Iga:(Da)n —+ Da is a function satisfying <Tg(Iga) — (Igß)((Tß)n whenever
a -< ß. Constant symbols are treated as 0-ary functions.

To each term t we assign a function It on P that, for each a, is the composition
of functions Iga where the g are the function symbols that make up term t. For
atomic sentences p(t) we write ahp(t) exactly when /«a G Ipa. Augment the
language of BQC with new constant symbols for all the elements of all the nodes
Da. Then we write <pa if all constants in tp are from elements in Da; given a -< ß
and <pa, then y>ß is the sentence constructed from <pa by replacing all constant
symbols ca by (Tg(ca). The canonical extension of Ih to all sentences of BQC is
inductively defined in the familiar way for T, Л, and V, and by the additional

albe = d <==> c, d 6 Da and с — d\

ah(<p —• -ф)а <F=Ï ßh(fß implies /911-0/3, for all ß >~ a;

a!h(Vx:<?(x).-0(x))a <S=̂  ß^<p{c)ß implies ß^(c)ß for all ß У a and с e (£/3)n ;

and

а1Ь(Зжу(х))а <=Ф а1Ь<р(с)а for some с € Da.

For formulas <¿5(x)a and i>(x)a, we write alh(<^(x) h ф(х))а iî ßhtp(c)ß implies
ßhrl>(c)ß, for all ß У a and с G (D/3)n.

4.1 PROPOSITION. If /3 >~ a and а1Ьу?а, then ßt-<pß. H ß >~ a and al-(y> h V»)«,
then

PROOF: By induction on the complexity of formulas. H

Borrowing the notation and definitions for \= from BPC we get

4.2 THEOREM (COMPLETENESS T H E O R E M ) . Let Г и {<р \- Ф} be à set of

sequents. Then Г h (<p Ь V>) if and only if Г (= (v? Ь V»)-
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PROOF: We present only a hint of a proof. Soundness follows from a straightfor-
ward induction on the complexity of proofs. Conversely, suppose Г \f (<p h ф). То
construct a model К of Г such that К ^ (<p \~ ф), we take as the set of nodes the
collection of consistent and closed theories extending PBQC + Г, where PBQC,
prime BQC, is the extension of PBPC and BQC with the rule

h ЗхАх

h Ac for some constant с

The language has to be repeatedly augmented with additional constants. These
technicalities are beyond the scope of this paper; rather, cf. [Smoryński 1973, pp.
330fF]. We set Д -< Д' if А Л ц h u-e Д' whenever A h fj, -> и € Д. Define

DA — {c | с is a constant existing at node Д}/ ~ ,

where с ~ d is the equivalence relation Д H с = d. The resulting Kripke model
satisfies Г but fails to satisfy tp h ф. Н

The extension IQC of Intuitionistic Predicate Calculus equals I PC + BQC; the
extension FQC of Formal Predicate Calculus equals FPC + BQC] CQC equals
IQC + ( h 4 V -IA). The systems PIQC and PFQC are obtained by replacing
BQC by PBQC in the two definitions above. PCQC = PIQC + CQC is the
theory of complete theories.

4.3 PROPOSITION (EXPLICIT DEFINABILITY). Let 3xip(x) be a sentence. Then

(1) BQC h 3xip(x) if and only if BQC Ь <p(t) for some term t without variables
bound by a quantifier of p.

(2) IQC \- 3xtp(x) if and only if IQC h ip(t) for some term t without variables
bound by a quantifier of <p.

(3) FQC \~ 3x<p(x) if and only if FQC h ip(t) for some term t without variables
bound by a quantifier of y.

PROOF: The implications from right to left immediately follow from the deriv-
ability of <p(t) h 3x<p(x). Conversely, suppose that for all suitable terms t there is
a model K* such that К* ^ <p(t). We may assume the Kt's to have smallest nodes
at such that at Jh(p(t(c)) for some substitution of constants с from Dat for the
variables of t. Construct a new model L by adding a new node a to the disjoint
union of the models K t, with a -< ß for all nodes ß from the K t. Da consists
of the terms of the language, augmented with sufficiently many constant symbols
to cover the new constants in all the i(c) (countably many will do); the &ß are
defined accordingly. We make sure that each term t(c) of Da is mapped to some
t(c) € Dat with at ß-<p(t(c)). Set a Jlhp(t(c)) for all predicates p and terms t(c)
over Da. Then a Jh3x<p{x). Thus BPC \f 3xy{x).

The case for IQC is well-known. The proof for FQC is identical to the proof
for BQC since if the K t are models for FQC, then so is L. 4
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There is a translation between BQC and the first-order extension QKA of К А
satisfying the equivalent of Proposition 3.10. The system QKA is axiomatized by
KA + CQC. The translation А н-> A' from the language of BPC into the language
of К A is extended to the quantifiers by

{\/x:A.B)' = n\/x(Ä -> В') and

{ЗхА)' = 3xÄ.

One easily shows that

BQC,<p h ф if and only if QKA,<p' h ф'.

Weakening some of the logical connectives of IQC to get BQC could have
made the first-order Basic Calculus toó weak to be useful. We show that it isn't.
On one hand, most intuitionistic first-order mathematics (and classical first-order
mathematics) extends to basic first-order mathematics; on the other hand, Basic
Arithmetic В A, the equivalent of Heyting Arithmetic HA and Peano Arithmetic
PA, is still a powerful theory.

A formula sequent is geometric if it does not contain any occurrences of —> or V.
A set of sequents is called a geometric theory if it contains geometric sequents only.

4.4 PROPOSITION. Let Г be a geometric theory, and y> h ф a geometric sequent.
Then T h (y? h ф) if and only if CQC, Г h (p г- Ф).

PROOF: Each node Da of a Kripke model K, with its structure borrowed from
K, is a classical CQC model for the language of BQC. A trivial induction on the
complexity of formula sequents shows that if cr h r is a geometric sequent, then
К |= (<r h r) if and only if Da f= (o- h r) for all nodes a of К. Ч

A glance through [Mines et al. 1988] convinces that a substantial portion of
its contents can be generalized from IQC to BQC without major revisions. A
significant part is geometric, and another significant part assumes equality to be
decidable.

For BQC, decidability of = means that there is a relation ф such that both
f- (x = y) V (ж ф у) and (ж = у) Л (ж ф у) • ± hold. Many interesting struc-
tures in constructive mathematics don't have a decidable equality. The expression
x = у —> X is considerably weaker than the equivalent 'denial inequality' of IQC
and therefore less useful. Instead, we take the relation ф to be primitive, with an
appropriate axiomatization. What axiomatization for ф is right for BQC? We
propose a generalized theory of inequality along the lines of [Ruitenburg 1988];
the idea behind the theory of difference relations in that paper is to include a
geometric theory for inequality that is as strong as possible.
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Basic Arithmetic BA is the basic calculus equivalent of Heyting Arithmetic HA
and Peano Arithmetic PA. It has axioms

Sx = 0 H J_

Sx = Sy (- x = y

г- ж • 0 = О

h г + Sy = 5(х + у)

\- х • Sy - (х • у) + х

and rule
Л(х) h ¿(Sa;)

h Л(х)
where х is not free in A(0). The sequent schema Wx: A(x).A(Sx) h .4.(0) —> A(x)
that is associated with the induction rule follows from В A: apply the induction
rule to the formula A(0) —> A(x). So the equivalent of Propositions 3.1 and 3.2
applies to В A.

We employ the usual abbreviations 1 for 50, 2 for 51, etc. We easily verify that
В A satisfies the schema 1 = 0 h A, so we can replace JL by 1 = 0. Note that HA
equals В A + ((T -> A) \~ A).

4.5 PROPOSITION.

(1) (Explicit Definability) BA h 3xtp(x) if and only if В A \- <p(n) for some
numeral n.

(2) BA\- <pV ф if and only if В A \- <p or В A h ф.
(3) BA is faithful.

PROOF: (1). Let K 0 , K b . . . be a sequence of models of В A such that K n ty=
<p(n). Form a new model L by adding a new bottom node a to the disjoint union
of the Kn 's, and set Da = N = {0,1,2,... }. Then L |= В A and a Jh3x<p(x).

Explicit Definability implies the disjunction property: replace <pУф by 3x((a; =
0 Л уз) V (x = 1 Л ф)) and apply (1).

(3). Suppose BA, (Vx: <тх ,т\)I Л • • • Л (Vx: <rn.rn) H Vx: <т.т, and let К f= BA be
such that К |= («r̂  h r¿) for all г. Form a new model L by adding a new bottom
node a with Da = N. Then L f= 5Л, and aha i —> r,- for all i; hence olhff —> r,
and thus К (= (<r h т). Ч

Let FA be the system of Formal Arithmetic BA + FQC. One easily verifies that
the model constructions in the proof of Proposition 4.5 preserve FA. So FA satis-
fies the corresponding properties of Explicit Definability and faithfulness. Similar
statements for Intuitionistic Arithmetic (Heyting Arithmetic) HA are well-known.

Beside the fact that В A is a 'nice' theory, we need it to be a 'strong' theory. We
show that the equality relation is decidable and that a substantial part of standard
arithmetic is derivable.
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Formulas y> and ф are called complements over a theory Г if Г h <p V ф and
T, ip Л ф h _L. Define i < y to be an abbreviation for 3z(x + S z = y), and ж ф у,
inequality, to be an abbreviation for x < у У у < x.

4.6 PROPOSITION. BA satisfies the Trichotomy Law x < y\/ x = y\/ у < x. So
= and ф are complements over £?A.

PROOF: The proof consists of a few trivial applications of the induction rule.
We mention some intermediate stages, leaving the details as exercises. Prove by
induction the associativity, and then the commutativity, of addition. A straight-
forward calculation proves BA,x < y h Sx < Sy. By induction one shows
В A h O = i V O < i . Then derive (Sx < y V Sx = .y V y < Sx) from each
of the three assumptions x < y, x = y, and y < x, and apply induction. H

Formulas of PA can be embedded into the language of В A by first writing them
in prenex normal form where the quantifier-free part is a combination of equalities
= , inequalities ф, disjunctions V, and conjunctions Л. Then translate this prenex
form by replacing the occurrences of ф with ф defined in the language of В А. А
strengthening of Proposition 4.4 shows that a large portion of В A immediately
follows from PA = В A 4- CQC using this translation.

Let ß be a node of a Kripke model K. Then K^ denotes the submodel of К with
set of underlying nodes all a>z ß. We write ß,(<J\ \~ cr2)ll-(r1 h т 2) \î ßh(cri h <r2)
implies ßt(ri h r 2) . Recall that we also write Da for the classical structure above
a node a of a Kripke model K.

4.7 PROPOSITION. Let ß be a node of a Kripke model K, and let <r h r
be a geometric sequent whose free variables are among the ones in the sequence
x = ( x i , . . . ,xn). Then ß\r(cr Ь r ) if and only if Da \= VXIO-.T for all nodes a of

Щ

PROOF: ßi-(<r \- r) if and only if a\\~(cr(c)a \r r(c)a) for all nodes a of Kß and
с e (Da)n. Apply the proof of Proposition 4.4. H

4.8 COROLLARY; Let ß be a node of a Kripke model K, and let <T\ \- <r2
and т-у \~ r 2 be geometric sequents whose free variables are among the ones in
the sequence x = ( x j , . . . ,xn). Then /3, (o-j h <Т2)1Ь(г1 f- r 2 ) if and only if
Da |= Vx:<Ti.o-2 for all nodes a of Kß implies Da f= VX:TI.T2 for all nodes a
ofK/j. H

4.9 THEOREM. Let Г be a faithful theory, and let <T\ h <r2 and T\ h r 2 be
geometric sequents whose free variables are among the ones in the sequence x =
(xi,... ,xn). Then T, Vx:<Ti.<r2 Ь Vx: Ti.r2 if and only if for all К (= T and nodes
ß of K, if Da f= Vx: <т\ .сг2 for ail nodes a of К/з, then Da (= Vx: т\ .т2 for all nodes
a of

PROOF: Since Г is faithful, Т,Ух:<тг.<т2 h Vx:ri.r2 if and only if Т,((тг (- a2)
(T\ l~ T2). Apply Corollary 4.8. H
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BA is faithful, so by Theorem 4.9, the theory of all nodes of all Kripke models of
В A satisfies the П!] induction rule of PA. So again by Theorem 4.9, В A satisfies
the II" fragment of the theory of the nodes.

§5. RUSSELL'S PARADOX REVISITED

Basic Calculus was not designed with the intent of offering a solution to Rus-
sell's Paradox or to any other set-theoretic paradox. Therefore it came as a little
bit of a surprise that over Basic Calculus the proof of Russell's Paradox turns
into a valuable theorem. The results below are partially influenced by the indexed
implications —>i, —>2> • • • of [Myhill 1975]. In fact, if we define A —*\ В = A —> B,
and A —>n+i В = T —> (A —>n B) for all n, then Myhill's demonstration of how
to circumvent Russell's Paradox gets close to the proofs below.

We introduce an incomplete set theory F with full comprehension. The only
axiom schémas and rules that are included in this theory are those that at the
least should be valid and that allow us to derive our main theorem. So the goals
of this section are modest compared to the ones of a paper like [Flagg 1987]. At
this moment we don't have a consistency proof for F.

The language of F is a JBQC-style language with binary relation £, and such
that for each formula if we have a term {x | if}. The construction of these new
terms is iterated countably many times so that the if themselves may contain
constructions of the form {у \ ф}. The only logical axioms and rules of F are the
ones of BQC. Following Frege, the terms {x \ if} are such that F satisfies

AY- y G {x I Bx}

Ah-By '

where x and y are not bound by a quantifier of B. The sets are completely
determined by their elements, so F satisfies the rule of extensionaljty

AAxEyY-x£z A f\x Çz z\- x ÇL y

AY- y = z

where x is not free in A.

The symbol ± is redundant if we have a constant symbol 0 satisfying the schema
x £ 0 h x € y. Let V = {x | T}. Then we can replace _L by the sentence 0 = V.

Rather than constructing ways to circumvent Russell's Paradox, the following
procedure converts its traditional proof into a useful theorem.

Let <p be a formula in which x does not occur. Define \<p] — {x | x G x —> if}.

5.1 LEMMA. F satisfies the schema \A] € \A} h T" —» A.
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PROOF: Use

Ы e M г- (т -> H G M ) л ( M G Ы -> V )

and transitivity of —•. H

5.2 COROLLARY. F satisfies the schema h |"¿] G [T —> А]. Ч

5.3 THEOREM. F satisfies Löb's Axiom Schema (T —• A) —• A h T -> A.

PROOF: Let <p be a formula and let i be a variable that does not occur in <p.
Then (x G x -* (T -+ уз)) Л ((T - »¥>) -» ^ h i £ i -> p . So i Ç [T -»
vl Л ((T ~* V) ~* У7) \~ x £ [vi- Obviously, x G [V] h ж G f T —* ip~\, hence
(T ^кр)-*<р\- \(f] = \T -+<p]. So by Corollary 5.2, (T -* <p)-+<p \- \<p] G \<fi].
Thus by Lemma 5.1, (T —>(,£>)—> y? Ь T —> y>. 4

The systems FQC and JQC are relatively inconsistent, so Theorem 5.3 implies
that F + IQC is inconsistent, which is Russell's Paradox. Thus Theorem 5.3
presents new evidence that BQC is a better foundation than IQC.

Many studies of Frege-style systems are less concerned with a proper foundation
than with consistency. In light of Theorem 5.3 it is, therefore, an important
question whether there are faithful, consistent, and preferably maximal, extensions
of F PC and FQC that may be added to F. A natural candidate is the addition
of the axiom schema of linearity

h(A-*B) V(B -> A).

FPC plus linearity is a maximal faithful consistent theory.

ACKNOWLEDGEMENTS: The importance of Albert Visser's [Visser 1981] is self-
evident. A paper presented by John Myhill in 1983 in Norman, Oklahoma, stim-
ulated me to derive Theorem 5.3. I wish to thank John Simms for many useful
suggestions about an earlier version of this paper.
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