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VERY INTUITIONISTIC THEORIES AND
QUANTIFIER ELIMINATION

WIM RUITENBURG

Abstract. We show methods to construct, and give examples of,
consistent intuitionistic theories that admit quantifier elimination.
The examples are very intuitionistic in the sense that they prove
the negation of the schema of linearity.

1. Introduction

We present a simple method by which one can construct intuitionistic
theories that admit quantifier elimination, and that are in some sense
very intuitionistic. Our task splits into two main components.

First, we offer a pragmatic criterion for an intuitionistic theory to
be very intuitionistic. We do not claim that ours is the only right
definition of very intuitionistic theory.

Second, we present a simple method by which one can construct
intuitionistic theories over which each formula is equivalent to a positive
existential formula, that is, equivalent to a formula built from the atoms
using existential quantification, disjunction, and conjunction only.

Additionally, we give some examples of very intuitionistic theories
that admit quantifier elimination. This part is presented so that the
reader should be able to verify the main facts about these examples,
without any need to seriously read the earlier sections.

Intuitionistic theories that admit quantifier elimination, have been
and are studied elsewhere. For examples, see Craig Smoryński’s paper
[3], or more recent work by Seyed Mohammad Bagheri.
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2. Very intuitionistic theories

In this paper, first-order languages use �, ⊥, ∧, ∨, →, ∃, and ∀ as
basic symbols. Symbols � and ⊥ are both atoms and nullary connec-
tives. Negation ¬ϕ is short for ϕ → ⊥. Bi-implication ϕ ↔ ψ is short
for (ϕ → ψ)∧ (ψ → ϕ). We write x as short for finite lists of variables
x1, . . . , xn. Notations like a are defined the same way, in terms of finite
lists of constant symbols; the expression ‘x�y’ to denote the sequence
resulting from prepending x to the sequence y. We write ϕ(x) to
indicate that x includes all free variables of formula ϕ(x). Formally,
intuitionistic predicate logic IQC is a proper subsystem of classical
predicate logic CQC.

We should not expect one unique definition of very intuitionistic
theory. Our choice is a pragmatic one. Let Γ be a theory over IQC.
One way to classify Γ as very intuitionistic is, by finding a sentence
ϕ such that CQC 	 ϕ (so ϕ is a classical tautology), and Γ ∪ {¬ϕ}
is consistent (such ϕ can always be assumed to be conjunctions of
sentences of the form ∀x(ψ(x) ∨ ¬ψ(x))). However, we can still find
theories that look and feel classical, but satisfy this criterion. Therefore
we prefer the stronger criterion given below.

Define the theory AQC of almost-classical logic as the extension of
IQC, axiomatizable by the schemas

A1 ∀x(ϕ(y) ∨ ψ(xy)) → (ϕ(y) ∨ ∀xψ(xy)) (Constant Domains)
A2 (ϕ(x) → (ψ(x) ∨ σ(x))) → ((ϕ(x) → ψ(x)) ∨ (ϕ(x) → σ(x)))

(Linearity)
A3 (ϕ(y) → ∃xψ(xy)) → ∃x(ϕ(y) → ψ(xy))

Next, we motivate the use of the expression almost-classical.
A consistent theory Γ is first-order prime if it satisfies

Γ 	 ϕ∨ψ implies Γ 	 ϕ or Γ 	 ψ, for all sentences ϕ∨ψ
Γ 	 ∃xϕ(x) implies Γ 	 ϕ(c) for some c, for all sentences

∃xϕ(x)

A theory Γ is universally first-order prime if, additionally, it satisfies

For all sentences ∀xϕ(x), if Γ 	 ϕ(c) for all constant
symbols c, then Γ 	 ∀xϕ(x)

It is well-known that if Γ is a theory such that Γ � ϕ, then we can
extend Γ to a first-order prime theory Γ′

� ϕ over a language L[C],
obtained from the original language L by adding a set C of new con-
stant symbols. It is slightly less well-known that if Γ satisfies condition
A1 of Constant Domains, then Γ′ can be chosen universally first-order
prime; see [2] or [1].
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First-order prime theories play a key role in the construction of
Kripke models: Let M = M(L) be the category of (classical) mod-
els and morphisms over language L. Then a Kripke model is a functor
K : C → M, where C is a small category. So for each arrow f : k → m
of C, there is a morphism Kf : Kk → Km. Node structures can be
constructed from first-order prime theories in the usual way. We write
Kk for the domain of Kk. Forcing is inductively defined in the usual
way by

k ‖− P exactly when Kk |= P, P ∈ L[Kk] atomic
k ‖− ϕ ∧ ψ exactly when k ‖− ϕ and k ‖− ψ
k ‖− ϕ ∨ ψ exactly when k ‖− ϕ or k ‖− ψ
k ‖− ∃xϕ(x) exactly when k ‖− ϕ(ak) for some a ∈ Kk

k ‖− ϕ → ψ exactly when m ‖− ϕf implies m ‖− ψf , for
all f : k → m

k ‖− ∀xϕ(x) exactly when m ‖− ϕf(am) , for all f : k →
m and a ∈ Km

where ϕf ∈ L[Km] is constructed from ϕ ∈ L[Kk] by replacing all
constant symbols ak with a ∈ Kk, by (Kfa)m with Kfa ∈ Km. We
may drop the superscripts when the meaning is clear from the context.

By the strong completeness theorem, if Γ∪{ϕ} is a set of sentences,
then the following are equivalent:

• Γ 	 ϕ
• For all K and nodes k, if k ‖− γ for all γ ∈ Γ, then k ‖− ϕ

Usually we are allowed to restrict the choice of Kripke models. For
example, if Γ ⊇ CQC, then we can restrict ourselves to one-node Kripke
models with only the identity arrow: Such Kripke models essentially are
classical models, for if C has one node k, and just the identity arrow,
then k ‖− ϕ, if and only if Kk |= ϕ. We are particularly interested
in the following almost-classical Kripke models. Let Γ ⊇ AQC be a
universally first-order prime theory. Construct a Kripke model K(Γ) as
follows. As objects of the underlying category C we have all equivalence
classes [ϕ] of sentences such that Γ � ¬ϕ, taken modulo the equivalence
relation Γ 	 ϕ ↔ ψ. The category is a linear order with [ϕ] � [ψ] if and
only if Γ 	 ψ → ϕ. As structure above each node [ϕ], choose the model
constructed in the usual way from the universally first-order prime
theory axiomatized by Γ ∪ {ϕ}. The implied morphisms K(Γ)[ϕ] →
K(Γ)[ψ] are onto. Then [ϕ] ‖− ψ if and only if Γ 	 ϕ → ψ, for all
appropriate ϕ, and all ψ. Almost-classical models share with classical
models that they are essentially definable inside their universally first-
order prime theories. If Γ∪{ϕ} is a set of sentences such that Γ ⊇ AQC,
then the following are equivalent:
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• Γ 	 ϕ
• For all almost-classical K and nodes k, if k ‖− γ for all γ ∈ Γ,

then k ‖− ϕ

Definition: A theory Γ is very intuitionistic if there exists a sentence
ϕ such that AQC 	 ϕ, and Γ ∪ {¬ϕ} is consistent.

3. Simple quantifier elimination

Next we show that it is not too difficult to construct very intuition-
istic theories that admit quantifier elimination.

A formula is called positive existential if it is built from atoms using
at most disjunctions, conjunctions, and existential quantifiers. One
easily verifies:

Proposition 3.1. Let ϕ(x) be a positive existential formula. Let k be
a node of a Kripke model, and let a ∈ Kk. Then the following are
equivalent.

• k ‖− ϕ(a)
• Kk |= ϕ(a)

A formula is called geometric if it is of the form ∀x(ϕ(xy) → ψ(xy)),
with ϕ(xy) and ψ(xy) positive existential. One easily verifies:

Proposition 3.2. Let ϕ(x) be a geometric formula. Let k be a node of
a Kripke model K, and let a ∈ Kk. Then the following are equivalent.

• k ‖− ϕ(a)
• For all arrows f : k → m of the underlying small category of
K, we have Km |= ϕ(a)f

Let Γ be a set of sentences. We write G(Γ) for the theory axiomati-
zable by the geometric sentences that follow from Γ. A Kripke model
is locally Γ if all its classical node structures are models of Γ. Proposi-
tion 3.2 implies that a Kripke model satisfies G(Γ) if and only if it is
locally G(Γ). A Kripke model K is called fully Γ, if for all geometric
formulas ϕ(x), all nodes k, and all a ∈ Kk, if there is a classical model
B |= Γ and morphism g : Kk → B such that B �|= ϕ(a)g, then there is
an arrow f : k → m of the underlying small category of K such that
Km �|= ϕ(a)f . A model K is fully locally Γ if it is both locally Γ and
fully Γ.

Let Γ ⊆ Γ′ be sets of sentences, and K be a Kripke model. If K is
locally Γ′, then K is locally Γ. If K is fully Γ, then K is fully Γ′.

Proposition 3.3. Let ∆ be a classical theory, and let K be a Kripke
model. Then the following are equivalent.
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• K is fully ∆
• For all geometric formulas ϕ(x), all nodes k, and all a ∈ Kk, if

k ‖− ϕ(a), then there is a positive existential formula σ(x) such
that k ‖− σ(a) and G(∆) 	 σ(x) → ϕ(x)

Proof. Assume K is fully ∆. Suppose that k ‖− ϕ(a), with ϕ(a) geo-
metric. So Km |= ϕ(a)f , for all arrows f : k → m. So, by assumption,
B |= ϕ(a)g, for all morphisms g : Kk → B |= ∆. Let D+

k be the pos-
itive atomic sentence diagram of Kk over the language L[Kk]. Then
∆ ∪ D+

k 	 ϕ(a). There is a finite conjunction γ(ab) of atoms of D+
k

such that ∆ 	 γ(ab) → ϕ(a). So ∆ 	 ∃yγ(xy) → ϕ(x). Set σ(x)
equal to ∃yγ(xy). With the intuitionistically valid principle

∀x(α(y) → β(xy)) ↔ (α(y) → ∀xβ(xy))

and intuitionistic propositional logic, formula σ(x) → ϕ(x) is equiva-
lent to a geometric formula. So G(∆) 	 σ(x) → ϕ(x).

Conversely, assume the second item. Suppose that k ‖− ϕ(a), with
ϕ(a) geometric. It suffices to show that ∆∪D+

k 	 ϕ(a). By assumption,
there is a positive existential formula σ(x) such that D+

k 	 σ(a) and
G(∆) 	 σ(x) → ϕ(x). Thus ∆ ∪ D+

k 	 ϕ(a). �
Proposition 3.3 implies that if ∆ is a classical theory, and K is a fully

∆ Kripke model, then K is also fully G(∆).
There is a natural way to extend the inductive definition of forc-

ing k ‖− ϕ to sentences in the construction of which we allow infinite
disjunctions and conjunctions, by:

k ‖− ∨
i ϕi if and only if k ‖− ϕi, for some i

k ‖− ∧
i ϕi if and only if k ‖− ϕi, for all i

Let ∆ be a classical theory, and ϕ(x) be a geometric formula. Define

Σ(x) = Σ(∆)ϕ(x)(x) =
∨{σ(x) | σ(x) is positive exis-

tential and G(∆) 	 σ(x) → ϕ(x)}
Modulo provable equivalence, the set of positive existential formulas
that make up the definition of Σ(x) forms an ideal on the lattice of all
positive existential formulas σ(x). Clearly, Σ(x) is equal to

∨{σ(x) | σ(x) is positive existential and ∆ 	 σ(x) →
ϕ(x)}

Proposition 3.4. Let ϕ(x) be a geometric formula, ∆ be a classical
theory, and K be a Kripke model. Set Σ(x) = Σ(∆)ϕ(x)(x). Then

If K is locally ∆, then K |= Σ(x) → ϕ(x)
If K is fully ∆, then K |= ϕ(x) → Σ(x)

Proof. Let k be a node of K, and a ∈ Kk. If K is locally ∆, then
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k ‖− ∧{σ(a) → ϕ(a) | σ(x) is positive existential and
G(∆) 	 σ(x) → ϕ(x)}

So k ‖− Σ(a) → ϕ(a).
Assume K is fully ∆. Suppose k ‖− ϕ(a). By Proposition 3.3 there

is a positive existential formula σ(x) such that k ‖− σ(a) and G(∆) 	
σ(x) → ϕ(x). So k ‖− Σ(a). �

Let ∆ be a classical theory. A fully locally ∆ Kripke model K is
called positive existentially compact if for all geometric formulas ϕ(x)
there exist positive existential σ(x) such that

K |= Σ(∆)ϕ(x)(x) ↔ σ(x)

Proposition 3.5. Let ∆ be a classical theory. Let K be a fully locally
∆ Kripke model which is positive existentially compact. Then for all
formulas ϕ(x) there exist positive existential σ(x) such that

K |= ϕ(x) ↔ σ(x)

Proof. We complete the proof by induction on the complexity of ϕ(x).
The case holds for atoms. The cases for which it holds are closed under
conjunction, disjunction, and existential quantification. Suppose ϕ(x)
is of the form α(x) → β(x). By induction there are positive existential
σ(x) and τ(x) such that K |= α(x) ↔ σ(x) and K |= β(x) ↔ τ(x).
Now σ(x) → τ(x) is geometric. So there is Σ(x) = Σ(∆)σ(x)→τ(x)(x)
such that

K |= ϕ(x) ↔ Σ(x)

Apply positive existential compactness. Suppose ϕ(x) is of the form
∀y ψ(yx). By induction there is positive existential σ(yx) such that
K |= ψ(yx) ↔ σ(yx). Now ∀y σ(yx) is geometric, up to a trivial
translation. So there is Σ(x) = Σ(∆)∀y(�→σ(yx))(x) such that

K |= ϕ(x) ↔ Σ(x)

Apply positive existential compactness. �
There are several situations where positive existential compactness

easily follows. Below is an example.

Lemma 3.6. Suppose that language L has finitely many predicates
and constant symbols, and no function symbols. Let x be a finite list of
variables. Then there are, up to (intuitionistic) provable equivalence,
only finitely many quantifier free positive existential formulas with free
variables all among x.

Proof. There are only finitely many atomic formulas in the variables x.
These finitely many atomic formulas can only generate a finite lattice
modulo provable equivalence. �
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Lemma 3.6 is false when we remove the quantifier free restriction.

Theorem 3.7. Suppose that language L has finitely many predicates
and constant symbols, and no function symbols. Let ∆ be a classical
theory such that for all positive existential quantifier free α(xy) there
exist positive existential quantifier free β(y) such that

∆ 	 ∃xα(xy) ↔ β(y)

Let K be a fully locally ∆ Kripke model. Then for all formulas ϕ(x)
there exist positive existential quantifier free σ(x) such that

K |= ϕ(x) ↔ σ(x)

Proof. With Proposition 3.5, it suffices to show that K is positive ex-
istentially compact. Let ϕ(x) be a geometric formula. Set

Ξ(x) =
∨{σ(x) | σ(x) is positive existential quantifier

free and G(∆) 	 σ(x) → ϕ(x)}
If α(xy) and β(y) are positive existential, then both ∃xα(xy) → β(y)
and β(y) → ∃xα(xy) are geometric. So, by Proposition 3.2, posi-
tive existential quantifier elimination applies to the theory of K. By
Proposition 3.4, we have

K |= ϕ(x) ↔ Σϕ(x)(x) ↔ Ξ(x)

Modulo provable equivalence, the set of positive existential quantifier
free formulas that make Ξ(x) forms an ideal on the lattice of positive
existential quantifier free formulas with all variables among x. By
Lemma 3.6, this lattice is finite. So Ξ(x) equals its maximal element.
Thus K is positive existentially compact. �

We are almost ready for some simple examples of very intuitionistic
theories that admit quantifier elimination.

Consider the following principle. A Kripke model is locally atomically
prime if for all nodes k, all positive existential quantifier free δ(x), σ(x),
and τ(x), with δ(x) atomic, and all a ∈ Kk, we have k ‖− [δ(a) →
(σ(a) ∨ τ(a))] → [(δ(a) → σ(a)) ∨ (δ(a) → τ(a))].

Proposition 3.8. Let ∆ be a classical theory such that

for all models A of ∆, all atomic δ(x), and all a ∈ A,
there is a morphism e : A → B |= ∆ such that for
all morphisms f : A → C |= ∆, if C |= δ(a)f , then
B |= δ(a)e, and there is a morphism g such that
f = ge.

Then locally fully ∆ Kripke models are locally atomically prime.

Proof. Let K be locally fully ∆, and let k be a node such that
k ‖− δ(a) → (σ(a) ∨ τ(a)), where δ(x), σ(x), and τ(x) are positive
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existential quantifier free with δ(x) atomic, and a ∈ Kk. To show:
k ‖− (δ(a) → σ(a)) ∨ (δ(a) → τ(a)). Let e : Kk → B |= ∆ be the
morphism given by the assumption about ∆ and δ(a). We may assume
that k �‖− ¬δ(a). There is f : k → m such that Km |= δ(a)f . So, by
the assumption, B |= δ(a)e. Since K is fully ∆, also B |= σ(a) ∨ τ(a),
say B |= σ(a). Now whenever h : k → n is such that Kn |= δ(a)h, there
is a morphism g : B → Kn such that h = ge. So Kn |= σ(a)h. Thus
k ‖− δ(a) → σ(a). �

4. Simple examples of quantifier elimination

In the examples of this section, both Theorem 3.7 and Proposition
3.8 apply. The earlier theory helped in discovery and development of
the examples. Next, we re-arranged the material so that the reader
need not seriously look at the earlier sections to follow most details of
this section. Standard knowledge of intuitionistic predicate logic IQC
and Kripke models suffices.

The following proposition-logical intuitionistically valid equivalences
are useful in quantifier elimination:

[ϕ → (ψ ∧ θ)] ↔ [(ϕ → ψ) ∧ (ϕ → θ)]
[(ψ ∨ θ) → ϕ] ↔ [(ψ → ϕ) ∧ (θ → ϕ)]
[(ψ ∧ θ) → ϕ] ↔ [ψ → (θ → ϕ)]

As with theories over classical logic, quantifier elimination requires us
to find, for each quantifier free formula ϕ(xy), a quantifier free formula
ψ(y), such that the intuitionistic theory satisfies

∃xϕ(xy) ↔ ψ(y)

We also must find quantifier free θ(y) such that the intuitionistic theory
satisfies

∀xϕ(xy) ↔ θ(y)

The following intuitionistically valid equivalences may help with quan-
tifier elimination involving ∃ and ∀:

∀x(ϕ(xy) ∧ ψ(xy)) ↔ (∀xϕ(xy) ∧ ∀xψ(xy))
∃x(ϕ(xy) ∨ ψ(xy)) ↔ (∃xϕ(xy) ∨ ∃xψ(xy))
∃x(ϕ(y) ∧ ψ(xy)) ↔ (ϕ(y) ∧ ∃xψ(xy))
∀x(ϕ(xy) → ψ(y)) ↔ (∃xϕ(xy) → ψ(y))
∀x(ϕ(y) → ψ(xy)) ↔ (ϕ(y) → ∀xψ(xy))

4.1. Equality. Let L be the minimal language with just the equal-
ity predicate x = y. We already have positive existential quantifier
elimination, since we have the most difficult cases

	 (∃x
∧

i<n x = xi) ↔
∧

i<j<n xi = xj
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The general case then follows with the intuitionistic equivalences from
the beginning of Section 4.

The Kripke model below is fully locally CQC. Its underlying small
category C needs only one node. As this node we choose an infinite
set, say ω. As arrows we have all functions which are almost identities,
that is, functions which are equal to the identity map except for at
most finitely many elements. (As will be clear later, this is a choice.
To get the theory ΓE below, it suffices if for all arrows f , all a and c,
and all finite sets B with a /∈ B, there is an arrow g satisfying ga = c,
and g is identical to f on B. So we could choose all arrows onto.) Our
Kripke model is the identity functor from C to M(L). We leave it as
easy exercises to show that this Kripke model satisfies the following
axioms:

E1 (x = y → ∨
i<n ui = vi) →

∨
i<n(x = y → ui = vi)

E2 (x = y → u = v) → (u = v∨ (x = u∧ y = v)∨ (x = v∧ y = u))
E3 ∀x(

∨
i<m x = xi ∨

∨
j<n uj = vj) →

∨
j<n uj = vj

We allow the indexed disjunctions to be empty. Empty disjunctions
equal ⊥. So E1 includes statement ¬¬x = y as a special case; and E3
includes statement ¬∀x(

∨
i<m x = xi) as a special case. The reverses of

the principal implications of E1 through E3 are tautologies over IQC.
Let ΓE be the theory axiomatized by E1 through E3.

Proposition 4.1. Over ΓE, each quantifier free formula is equivalent
to a disjunction of conjunctions of atoms.

Proof. By the intuitionistic proposition-logically valid equivalences from
the beginning of Section 4, we may assume that innermost implications
are of the form

(
∧

i<m xi = yi) →
∨

j<n uj = vj

Again using the proposition-logical equivalences, we can rewrite this as
a nested implication

(x0 = y0 → . . . (xm−2 = ym−2 → (xm−1 = ym−1 →∨
j<n uj = vj)) . . .)

Repeated application of E1 and E2 shows that this is equivalent to a
disjunction of conjunctions of atoms. An induction argument on the
depth of nested implications shows that each quantifier free formula is
equivalent, over ΓE, to a disjunction of conjunctions of atoms. �

In fact, over ΓE all formulas are equivalent to disjunctions of con-
junctions of atoms, because:

Proposition 4.2. The theory ΓE admits quantifier elimination.
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Proof. By induction on the complexity of formulas. In the case for ∃
we may assume a starting formula of the form

∃x
∧

i<n x = xi

This is equivalent to
∧

i<j<n xi = xj

Finally, the case for ∀. We may assume a starting formula of the form

∀x(
∨

i<m x = xi ∨
∨

j<n uj = vj)

Apply E3. �
Applications:

Proposition 4.3. ΓE 	 ϕ or ΓE 	 ¬ϕ, for all sentences ϕ.
ΓE 	 ¬∀xyuv((x = y → u = v) ∨ (u = v → x = y)).

Proof. We only check the second half. Over ΓE , the expression (x =
y → u = v) ∨ (u = v → x = y) is equivalent to

x = y ∨ u = v ∨ (x = u ∧ y = v) ∨ (x = v ∧ y = u)

So ∀v((x = y → u = v) ∨ (u = v → x = y)) implies

∀v(x = y ∨ u = v ∨ y = v ∨ x = v)

Apply E3. This implies x = y. So

ΓE 	 [∀v((x = y → u = v)∨(u = v → x = y))] ↔ x = y

�
So ΓE is a very intuitionistic complete theory because inconsistent

with AQC. ΓE is complete, so it is the intuitionistic theory of the one-
node Kripke model at the top of this Subsection 4.1.

Proposition 4.4. ΓE 	 ¬ϕ or ΓE 	 ¬¬ϕ, for all formulas ϕ.

Proof. By quantifier elimination over ΓE, each formula ϕ is equivalent
to a disjunction of conjunctions of atoms. Now ΓE 	 ¬¬x = y. So
if at least one conjunction is non-trivial, then ΓE 	 ¬¬ϕ. Otherwise,
trivially ΓE 	 ¬ϕ or ΓE 	 ¬¬ϕ. �

Note that ΓE is the theory of a directed Kripke model.
Here is another Kripke model of ΓE . As nodes of the underlying

small category C, take all finite sets n = {0, 1, 2, . . . , n − 1}. As ar-
rows between m and n, take all functions. As Kripke model, take the
identity functor to M(L). We easily verify that this Kripke model sat-
isfies axioms E1 through E3. Completeness of ΓE implies that it is the
theory of this Kripke model.

Obviously, ΓE satisfies the Constant Domain schema A1. But ΓE

satisfies a much stronger property:
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Proposition 4.5. ΓE satisfies the schema

∀x(ϕ(xy) ∨ ψ(xy)) ↔ (∀xϕ(xy) ∨ ∀xψ(xy))

Proof. By Proposition 4.1 and quantifier elimination, we may assume
that ϕ(xy) and ψ(xy) are disjunctions of conjunctions of atoms. Since
IQC satisfies the schema

∀x((σ1(xy)∧σ2(xy))∨ τ(xy)) ↔ [∀x(σ1(xy)∨ τ(xy))∧
∀x(σ2(xy) ∨ τ(xy))]

we may assume ϕ(xy) and ψ(xy) to be disjunctions of atoms. Apply
schema E3. �
4.2. Linear order. Let L be the language with equality x = y and a
binary predicate x ≤ y. The theory of linear order is axiomatizable by

L1 x ≤ x
L2 x ≤ y ∧ y ≤ x → x = y
L3 x ≤ y ∧ y ≤ z → x ≤ z
L4 x ≤ y ∨ y ≤ x

We write Γ4 for the theory axiomatized by L1 through L4. It satisfies

Γ4 	 [∃x(
∧

i<m xi ≤ x ∧ ∧
j<n x ≤ yj)] ↔

∧
i<m,j<n xi ≤ yj

By axioms L1 and L2, equality x = y is equivalent to a conjunction
x ≤ y ∧ y ≤ x. So over Γ4 we have positive existential quantifier
elimination.

The Kripke model below is fully locally CQC ∪ Γ4. Its underlying
small category C has as only node the dense linear order without end-
points, Q. As arrows we have all order preserving maps which are
almost identities in the following sense: There are a < b such that the
morphism is the identity on all x ≤ a and all x ≥ b. (This is a choice.
To get the theory ΓL below, it suffices if for all arrows f , all a and c,
and all finite sets B such that for all b ∈ B, if a ≤ b then c ≤ fb, and
if b ≤ a, then fb ≤ c, we have a map g such that ga = c, and g equals
f on B. So we could choose all arrows onto.) Our Kripke model is the
identity functor from C to M(L). We leave it as easy exercises to show
that this Kripke model satisfies Γ4, plus the axioms:

L5 (x ≤ y → ∨
i<n ui ≤ vi) →

∨
i<n(x ≤ y → ui ≤ vi)

L6 (x ≤ y → u ≤ v) → ((u ≤ v) ∨ (u ≤ x ∧ y ≤ v))
L7 ∀x(y ≤ x ∨ x ≤ z ∨ ∨

k<p uk ≤ vk) → (y ≤ z ∨ ∨
k<p uk ≤ vk)

L8 ∀x(y ≤ x ∨ ∨
k<p uk ≤ vk) →

∨
k<p uk ≤ vk

L9 ∀x(x ≤ z ∨ ∨
k<p uk ≤ vk) →

∨
k<p uk ≤ vk

Let ΓL be the theory axiomatized by L1 through L9. The reverses of
the principal implications of L5 through L9 are tautologies over IQC,
or trivially follow from Γ4.



110 WIM RUITENBURG

Proposition 4.6. ΓL satisfies the schema

∀x(
∨

i<m xi ≤ x ∨ ∨
j<n x ≤ yj ∨ ∨

k<p uk ≤ vk) →
(
∨

i<m,j<n xi ≤ yj ∨
∨

k<p uk ≤ vk)

where indexed disjunctions are allowed to be empty, hence to be ⊥.

Proof. First assume m > 0 and n > 0. By Γ4 we have
∨

σ,τ (
∧

i<m−1 xσ(i) ≤ xσ(i+1) ∧
∧

j<n−1 yτ(j) ≤ yτ(j+1))

where σ and τ range over all permutations on the appropriate index
sets. Take this disjunction in conjunction with the left hand side of the
implication of this Proposition, and repeatedly apply axiom L7:

∨
σ,τ (xσ(0) ≤ yτ(n−1) ∨

∨
k<p uk ≤ vk)

If m > 0 and n = 0 we repeatedly apply L8, and get
∨

σ

∨
k<p uk ≤ vk

The other cases are similar or easier. �
The reverse of the main implication in the formula of Proposition

4.6, clearly holds over Γ4.

Proposition 4.7. Over ΓL, each quantifier free formula is equivalent
to a disjunction of conjunctions of atoms.

Proof. The quantifier free equivalences from the beginning of Section 4,
plus L1 and L2, imply that we may assume that innermost implications
are of the form

(
∧

i<m xi ≤ yi) →
∨

j<n uj ≤ vj

Again using the quantifier free equivalences, we can rewrite this as a
nested implication

(x0 ≤ y0 → . . . (xm−2 ≤ ym−2 → (xm−1 ≤ ym−1 →∨
j<n uj ≤ vj)) . . .)

Repeated application of L5 and L6, shows that this is equivalent to a
disjunction of conjunctions of atoms. An induction argument on the
depth of nested implications, shows that each quantifier free formula is
equivalent, over ΓL, to a disjunction of conjunctions of atoms. �

Over ΓL all formulas are equivalent to disjunctions of conjunctions
of atoms:

Proposition 4.8. The theory ΓL admits quantifier elimination.

Proof. By induction on the complexity of formulas. In the case for ∃
we may assume a starting formula of the form

∃x(
∧

i<m xi ≤ x ∧ ∧
j<n x ≤ yj)

This is equivalent to
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∧
i<m,j<n xi ≤ yj

Finally, the case for ∀. We may assume a starting formula of the form

∀x(
∨

i<m xi ≤ x ∨ ∨
j<n x ≤ yj ∨

∨
k<p uk ≤ vk)

Apply Proposition 4.6. �

Just as for theory ΓE of Subsection 4.1, we have

Proposition 4.9. ΓL 	 ϕ or ΓL 	 ¬ϕ, for all sentences ϕ.
ΓL 	 ¬∀xyuv((x ≤ y → u ≤ v) ∨ (u ≤ v → x ≤ y)).
ΓL 	 ¬ϕ or ΓL 	 ¬¬ϕ, for all formulas ϕ.

Proof. All quantifier free sentences are equivalent to � or ⊥. So, by
quantifier elimination over ΓL, all sentences are equivalent to � or ⊥.

Over ΓL, the expression (x ≤ y → u ≤ v) ∨ (u ≤ v → x ≤ y) is
equivalent to

(u ≤ v) ∨ (u ≤ x ∧ y ≤ v) ∨ (x ≤ y) ∨ (x ≤ u ∧ v ≤ y)

So ∀v((x ≤ y → u ≤ v) ∨ (u ≤ v → x ≤ y)) is equivalent to

((x ≤ y) ∨ (x ≤ u)) ∧ ((u ≤ x) ∨ (x ≤ y) ∨ (u ≤ y))

So

ΓL 	 ∀uv((x ≤ y → u ≤ v)∨(u ≤ v → x ≤ y)) ↔ x ≤ y

By quantifier elimination over ΓL, each formula ϕ is equivalent to
a disjunction of conjunctions of atoms. Now ΓL 	 ¬¬x ≤ y. So if
at least one conjunction is non-trivial, then ΓL 	 ¬¬ϕ. Otherwise,
trivially ΓL 	 ¬ϕ or ΓL 	 ¬¬ϕ. �

So ΓL is a very intuitionistic complete theory, and is the theory of
the Kripke model at the beginning of this Subsection 4.2.

Here is another Kripke model of ΓL. As nodes of the underlying
small category C, take all finite sets n = {0, 1, 2, . . . , n− 1} with their
standard ordering. As morphisms between m and n, take all order
preserving maps. As Kripke model, take the identity functor to M(L).
We easily verify that this Kripke model satisfies axioms L1 through L9.
Completeness of ΓL implies that it is the theory of this Kripke model.
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